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Abstract

A heavy focus has recently been placed on the current state of each country’s
critical infrastructure security. Unfortunately, widely deployed supervisory control
and data acquisition (SCADA) protocols provide little to no inherent security
controls while traditional security mechanisms prove largely ineffective in industrial
control environments. Moreover, the recent advent of advanced persistent threats
(APTs) has highlighted the relative ineffectiveness of existing SCADA-centric

security solutions.

In this thesis I will identify various algorithmic strategies for detecting and
mitigating common APT attack vectors impacting SCADA environments. Primarily,
the integration of flow-based intrusion detection systems, passive device
fingerprinting, low-interaction honeypots, and traditional signature-based intrusion
detection technologies provides a highly effective capacity for detecting common
attack vectors used by APTs. Finally I will show how the integration of these
technologies into a single security solution has provided a verifiably robust and

effective solution for the problem at hand.

Keywords: Industrial Control Security; SCADA Security; Advanced Persistent Threats;

Intrusion Detection; Intrusion Prevention; Critical Infrastructure Security

iv



Table of Contents

20 1] 0 o Lo iv
Table Of CONEENLS.....ccccceiiiinscsissssr s n e a e snnan e \%
LISt Of FIGUIES .. ssssas s sssasas s s s sssanans xi
Chapter 1. INtroducCtion......ccii s ———————— 1
1.1 Problem Statement........iinmsmnsnssssssss s 2

B I 000 1 s 011 (00 ) 3
1.3 Thesis Organization ... —————————— 4
Chapter 2. BaCKground........cummmmmmmsmmmmsssmssssssssssssssssssssssssssssssssssssssssssssssssssssssaes 6
2.1 Origins Of SCADA ... sssanas 7
2.2 SCADA ArchiteCUre.....iccoeieiirmsesssmsssssssssssssssssssssssssssssssssss s sssssssssssssssssssssssssssnaes 8
/788 N 00 4 (o) W =) U ) oo TPV 8
2.2.2  OPErator INTETTACE ...cceeeeeereeeereeeeeeee ettt st s b s s s st 10
2.2.3  FIEld DEVICES vttt sttt st snens 10

2.3 Wide-Area SCADA NetWOrKS .....cccumnmmmsmsmsmnssnsssssmsssssssssssssssssssssssssssssssssssanns 11
2.3.1  Wired COMMUNICAtIONS .ovviririirirresreresssssisss st ssesse st ssesssssssssssssssssssesnens 11
2.3.2  Wireless COMMUNICATIONS ..o ssssssse s ssssssssssssssssssssssens 11

2.4 Common SCADA Communication Protocols.........n. 12
2.4.1  MOADUS ProtOCOL .t sssss st snens 12

2.4.2  DNP3 ProtOCO] ettt ssssss s sssssssss s sssssssssssssssssssssssnens 13

2.5 SCADA CONVEIZEIICE ...cvrrermssssssssssmsmsssssssssssssssssssssssssssssssssssssssasssssssssssssssssassssssssnsns 14
Chapter 3. SCADA and SeCUTILY .....ccccummmmmmsmsmssssmsssssssssssssmssssssssssssssssssssssssssssssssssssssssssanns 16
3.1 Current State of SCADA SeCUTLItY ......cvrmrmsmsmssmsmmsssssmsmssssssssssssssssssssssssssssssssssnns 16
3.1.1 The Importance 0f SCADA SECUTILY ...oueureiemeereereeserssessessssesessesssesssesssesssssssssssssssssssses 17

3.1.2  SCADA SeCUTIitY INCIAENLS c.reuriereererrerreeeesressersessessesssessessesssessessessesssessessesssessessesssessessessssssessees 18

3.1.3  SCADA SeCUrity STandards .....coeereesesnsessessesssesessesssessessessssssessessssssessessessessesssssssssessees 19
3.1.3.1 NIST System Protection Profile ... 20

3.1.3.2 ISA-SPOO ..ttt 20

3.1.3.3 AGA-12 DOCUMENTES ...orvrrirrireeesesessesssssessesssssssssssessesssssssssssssssssssssssssessssssssssssssses 20



3.1.3.4 NIST SP 800-82 ... sssssssssssssssssssnes 21

3.1.3.5 APL-T 1O ettt 21
3.1.4 Issues Inhibiting SECUTrity AdOPLION .. see e ses s ssessesees 21
3.2 Security Considerations for SCADA NetwoOrks ......ccccoumsmnsssnsessnsnssssnsssssanns 23
R T/ B\ 7 U = 01 2O 24
20207 2 U111 =Y 4 o TP 24
S TOZNC TN U1 0= o1 (2= () o 00 25
I T/ V0 0 B 23 010U ¥ U () o UPOu 25
3.2.5  CONFIAdENTALILY couceeeeeeeereeeeeeseiseesreseeese ettt s s s s s st 26
3.2.6  L0OZEING ANd AUAITING .o sesssessesses s ssessesssessessesssssssssesssessessessssssesees 26
3.2.7 Detection Of SECUTILY EVENLES ..ocoiicerreerecereeseesseeseesseesesssesssssssesessssssesssssssessss s ssssssseses 27
S J077 S 10 - [ ) o PP 28
T8 B o ¢ )73 Tr=Y 00 41 oo ) (3O 29
3.3 SCADA Attack VecCtors......ssssssssssssssssssssssss 29
3.3 1 MeSSAZE SPOOLINEG cccuuieieeieerrereeseeseieee ettt es s bbbt s b b ss s s e 30
3.3.2  MesSage MOAifiCatioN . erceereeresrersersesses e sssessessessssssessessssssessessessse s sesssessessessssasesees 30
R THC TS T 2U=3 01 | Ut = o << 31
3.3.4 Man-in-the-Middle CONAITIONS .....cccuercerreereereeerrerrerree e sssesessees 31
3.3.5  Denial Of SEIVICE ..ouerierceem e sesesss e ssess s s ssess s ssssssessssessssass s sssessmsessans 32
3.3.6  Control Software EXPlOitation ... cceneseesseeseissessesesssessesssessssssssssss s ssssssssseses 32
3.3.7 Operating System EXPlOitation ... seessesses s sesssessessesssssessees 33
TGRS T o o) 75] Tr=Y N U <3O 34
3.4 Protocol-Level Risk Mitigation Strategies ... 34
3.4.1 Authentication and Integrity Using Digital Signatures.......eneneensesseenees 35
342 SSL/TLS e sreereeeeesseesseessseesssess e ssses s es st s ss s s s es s aennans 36
3.4.3 Authentication Using Challenge-ReSPONSE ......courereereenrerreeneesemsessersessessessessessessessessees 37
3.4.4 Authentication USING HMAC......onrseessesnsesessesssessessessssssessessssssesssssessssssesssssssssessees 38
3.4.5 Integrity Assurance Using Hashing Algorithms ... 38
3.4.6  SECUTILY WIAPPETS ..ceiureureceeereeresressessesesesessessessessessessessssessessessessessasssssssssssssessessessssssssssessessensens 39
B4.6.1 SSL/TLS ettt sses s ss bbb 40
3.4.6.2 IPSEC oo ———————— 40
3.4.6.3 Payload ENCryption..... s ssssssssssssssssssssssssssssssssssssssses 41
3.4.7  SecUre DNP3 .. s 41

vi



3.5 Incident Detection Using Intrusion Detection Systems ..........cousnsesesesnsnns 42

3.5.1 Intrusion Detection OVEIVIEW ......eeeenerssesessesssessessessssssessessesssesssssesssessessssssssessees 43
3.5.2 Signature-based Intrusion Detection SYSTEIMS ......corenrererreermemsersesnsessessessessessesssessessees 45
3.5.3 Anomaly-based Intrusion Detection SYStEMS......ccumererrerreenmesserserssessessesssessessesssessessees 46
3.5.4 Flow-based Intrusion Detection SYStEIMIS .....corereereenresserseesessessessessessessessessessessessees 47
3.5.5 State-based Intrusion Detection SYSTEIMS....courerreereenresserseesessessessessessessessessessessessees 49
3.6 Incident Detection Using HONEYPOLS.......ccovimmimsesmsmsmssssmsssssssssssssssssssssssssssens 50
3.6.1 Low Interaction HONEYPOLS ..o sessessesesessssssse e ssessssssssssessessessens 51
3.6.2 High Interaction HONEYPOLS ..corereereenresrersersessesserssessessesssessessessesssessessesssessessesssessessesssssessees 52
TS T0S TR I g ) O 53
Chapter 4. SCADA and Advanced Persistent Threats (APTS) .....ccoummmmssesesennns 55
4.1 Advanced Persistent Threats.........u————n 55
0 00 T O o o= U 1= ] (PP 56
4.1.2  ATEACK LIfECYCIE oottt bbbt sess s bbb 57
4.1.3  TYPes Of APT ALLACKS cocurierierrerrereetrectect s ssssese st st sessss s st sesssssssssans 58
4.1.3.1 InSider AtLACKS ... ssssans 58
4.1.3.2 Targeted MaAlWare ......sssssssssssssssssssssssssssssssesssssssssans 59
4.1.3.3 Network INfiltration ... 60
4.1.4 Known Cases of SCADA-Specific APT Attacks....omerenrenrenseeneesneinssenseesesesesssessseenns 61
4.2 General Mitigation of APT Attacks ... 62
4.2.1 Perimeter vs. Interior NetWOrKk SECUTILY ...cooererererreenresnerseesessesseessessessssssessessessssssesseens 63
4.2.2  Defense iN dePth .ttt ss s st 64
4.3 Detecting APT AttaCKS ....comrrsmsmmmmmmmssmsmsmssssssssssssssssssssssssssssssssssssssssssssssssaas 66
4.3.1 Strategies Used to AVOid DeteCtion ....ereresneeneesessesseessessesseessessessssssessesssssesssesseens 66
4.3.1.1 Use of Legitimate Credentials........ssssssssessesns 67
4.3.1.2 Impersonation of Legitimate DeviCes ... 67
4.3.1.3 Leveraging Zero-day EXpPlOitS.....ssssssssssssssssssssesans 68
4.3.1.4 Knowledge of Security MechaniSms ... 69
4.3.1.5 Use of Covert Channels for Data EXfiltration ... 69
4.3.2 Detection of Specific APT Attack SCENATIOS ...oorrereermerneeereeseisseeseesseesse s sessseessesans 70
4.3.2.1 Network and Device Enumeration Phase.........cnn. 71
4.3.2.2 Leveraging Legitimate Credentials ... 72

vii



4.3.2.3 Device Impersonation Attacks ... 74

4.3.2.4 7e10-Day AtACKS ..o 79
4.3.2.5 Targeted MalWare ... ssssssssssssssans 80
4.3.2.6 Exfiltration of Data via Covert Channels........n. 82
4.3.2.7 Summary of APT Detection Technologies........coniminenesssessnennns 83
Chapter 5. Detection in Depth Algorithm and Architecture...........ccocusernrrsnsesnnnnns 84
5.1 Requirements for Countering SCADA APTS ......cccorrmmmmmsmssssssssssssssssssssssssnns 84
5.1.1 Providing APT Incident DeteCtion ... eereererreemesseessesessesseessessessesssessessesssessessessssssessees 85
5.1.1.1 Network and Device Enumeration Phase.......... 86
5.1.1.2 Device Impersonation Attacks ... 86
5.1.1.3 lllegitimate Credential USE ........nsssessssssssssssssssssssssssssssens 87
5.1.1.4 Zero-Day EXploitation ... sssssssssssssssssssssssssssssssssssssenes 88
5.1.1.5 Covert Channel DeteCtion. ... sssssssssssssssssssssssssssssssssenes 88
5.1.2 Intercepting Malicious Connections and Collecting Forensic Data ......cccoueerreenees 89
5.1.3  SOIULION EffiCIENCY ceuveeieeieerieseeseeseeeseseetsect st sse st sesssss s ssssssss s st ssses 90
5.2 Architectural Overview......ssss—s 91
5.2.1 Intercepting NetWOrk PaCKetS ... sessesses s sessessessessssssesees 93
5.2.2 Analyzing Packet Contents and CONTEXE.....coreereermenmessesseesessessessessessessessessesssessessees 93
5.2.3 Handling Clean CONMNECTIONS. ....oweremesrerrersessessesssessessessssssessessesssessessssssessessesssessessesssssessees 94
5.2.4 Handling Malicious CONNECIONS .ceereereereemesresserssessessesssessessessesssessessesssessessesssessessessssssessees 94
5.2.5 Handling Suspicious CONNECLIONS ..cureureereemesrerserssessessesssessessessesssessessesssessessesssessessessssssessees 95
5.2.6 Leveraging Traditional Signature-Based IDS Technologies .......cccommenreererneenreenens 96
5.3 Security Event Detection Algorithm ..., 96
5.3.1 Creating a Network Baseline ... seesesses s sessessessesssssesees 97
5.3.1.1 Learning NetWork FIOWS .......cominiisssssssssssssssssssssssssssssssenns 98
5.3.1.2 Fingerprinting DeVICES ... ssssssssssssssssssssssssssssssssssssssnes 99
5.3.2  1dentifying SECUTILY EVENTS. ...ttt esseesss s ssssssssssssssssesssssssssssssssesans 103
5.3.2.1 CRECK 1 ottt 107
5.3.2.2 CRECK 2 ottt 108
5.3.2.3 CRECK 3 ettt 108
5.3.24 CRECK 4 ottt 109

viii



SIS T0 A 04 o 1= o G TP 110

S T0 A ST O o 1= o QX 110
5.3.3 Handling Classified NetWork TrafficC.....c.omeneomeneeneiseesesseeseessesseseseesseessessseesseenns 111
5.3.3.1 Dropping Irrelevant CONNECtIONS .....ccmererermerssessseessesessssssssssesssessseens 112
5.3.3.2 Sending Malicious Connections to the Honeypot ........ccounenrernrirninns 112

5.3.3.3 Monitoring Suspicious Connections with the Connection Monitor.117

5.3.3.4 Re-Injecting Clean CONNECHIONS.....cc.curesnermmrmesssesssssssssssssssssssssssssssssseens 120
5.3.4 Logging and Data COlleCtiON .....ereerereerersereeseesessessesssessessesssssse s sesssessessesssessessessssssesns 120
5.4 Summary of Algorithmic and Architectural Capabilities ...........ccesueuene 122
Chapter 6. Implementation and Performance Evaluation..........ccounssnnnsannnns 124
6.1 Deployment ArchiteCture........mnmmms————— 124
00 0 O & 0 A7 TP 126
6.1.2 Network-Level RedUNAanCy .....ernennenessesnsesessesssesessessssssessessesssesssssessessessssssesseens 127
6.1.3  NetWOTK PlaCemMENt ... sessessessessessesssssssssessssssssse s sessss s sessssssessesssessesss 127
6.1.4 Operating System and Analysis ENGINE ......ccrnnreererneenmemnernsesnesee s sessessessessesseens 128
6.1.6 Just-in-Time Honeypot COMPONENT .....c.overeurereeererreererresreseesesseseesessessessesessssessessessessessens 128
6.1.7 Traditional Signature-Based IDS COMPONENT....corerrerreereermesseeseessessessersessessessesseens 129
6.1.8 Out-of-Band SEM CONMNECHION ...vcuurrererreerneereetreessessseessessseesse s ssessssssssssssesssssssssssssssssans 129
6.2 Security Event Detection and Mitigation Evaluation .......cccuoumnnicscsnnns 131
6.2.1 Detecting the Device Enumeration Phase ... seeeeseeseseeseens 131
6.2.1.1 Scenario and SETUP ... s 131
6.2.1.2 Observations and ANalySiS...... s 134
6.2.2 Detecting Device Impersonation Attacks......enenenernseneseeseensesessessessessessesseens 137
6.2.2.1 Fingerprint Uniqueness Testing Setup ... 139
6.2.2.2 Fingerprint Uniqueness ReSUILS......cenininsseessesssssessessessennns 140
6.2.2.3 Fingerprint Algorithm Testing Scenario........ne. 141
6.2.2.4 Fingerprint Algorithm Observations and Analysis ... 143
6.2.3 Detecting Illegitimate Credential USe.......coenenreererneennesneensennesee s sessessessessesseens 145
6.2.3.1 Scenario and SETUP ... sssssssssssssssass 145
6.2.3.2 Observations and ANalysSiS...... s 146
6.2.4 Detecting Zero-Day Vulnerabilities and Targeted Malware........ccconueneenreereeseereens 148

ix



6.2.4.1 Scenario and SETUP ... sssssssssssssssans 148

6.2.4.2 Observations and ANalysSiS...... s 150

6.2.5 Detecting Data EXfiltration AtEEMPLS ......ocrereeereeemeeseeneiseesesssesesessessssssesssssssssssesssesans 155
6.2.5.1 Scenario and SETUP ... 156
6.2.5.2 Observations and ANalysSiS...... s 156

6.3 Evaluating Device EffiCiency ... 159
TN T Y TSy oV €0 =) P 159

LSC T2 D T v W 001 1 (=015 U ) o 100 160
6.3.3  Observations and ANALYSIS ....eeerressessessessessesssssssssessssssssessessesssessessessessessesssessesss 164
Chapter 7. Conclusions and Future Work..........ccnnmmsn. 169
Reference LiSt.....sssssssssssssssssssssssssss s sssssssssasasas 172



List of Figures

Figure 1: A Man-in-the-Middle Attack Between a HMI and PLC .......cccovneninniinieneennns 75
Figure 2: An Example Device FINGEeIrprint.....essssssssssssssssssssssssses 78
Figure 3: APT Attack Vectors vs. Detection Technologies ... 83
Figure 4: Logical System Components and Data FIOWS.......ccoeees 91
Figure 5: Device FINerprint LayOUl...... s sssssssssssssssssssssssssssssssssenss 101
Figure 6: Security Appliance Fingerprint Value ... 101
Figure 7: Client Device FIngerprint Value ... 102
Figure 8: Security Event Detection AIOTithIm ... 105
Figure 9: Comparison of Honeypot SOftWare ........ceenirmssessssssssssssssssssssssenns 114
Figure 10: Inner Workings of HONEYLrap ......oneessssesssssssssssssssssssssssssssssenns 115
Figure 11: Monitoring Suspicious CONNECLIONS ... 118
Figure 12: Out-of-Band Security Event LOGZINg.......creessssssssssssssssssenns 121
Figure 13: Deploying an Inline Security Appliance.......omreeernesssssssessssenns 125
Figure 14: Device Enumeration SCEeNArio ... 132
Figure 15: Scanning for NetWork DevVICES.......comirmnenesissssessssssssssssssssssssssssssssenns 134
Figure 16: Analyzing Security EVENt LOZS.....osssssssssssssssssssssssssssssssenns 136
Figure 17: Unique Fingerprint Distribution Over N HOStS ......ccouneninernsnsscsnsesnsissinns 140
Figure 18: Device Impersonation Attack via IP Hijacking.......ccoeesnsienenns 142
Figure 19: Analyzing Fingerprint Algorithm Security Event Logs ......c.ccounenecennienenns 144

Xi



Figure 20: Hijacking a Credential Reuse Attack ... 146

Figure 21: Identifying Abused Credentials ... 147
Figure 22: Scanning for Vulnerable HOSES ... 150
Figure 23: Viewing Connection LOZS. ... 151
Figure 24: Successfully Exploiting the Target........ 152
Figure 25: Capturing Zero-Day EXploit COde.....cmsssssssssssesssssenns 153
Figure 26: Capturing Additional Zero-Day Exploit Code........omemmmnimnensesssssninns 154
Figure 27: Using Curl to EXfiltrate Data ......sssssssssssssssssssssssssssenns 156
Figure 28Hijacking the Outbound CONNECtioN.....cccmereenernermessesseeseressssssess s 157
Figure 29: Emulating a Successful File Transfer ... 157
Figure 30: Analyzing the Exfiltration Attempt......ccommeeninnsneesssssessesssssenns 158
Figure 31: Stress Testing USing iPerf ... 162
Figure 32: Effective Throughput for Non-Malicious Connections.......oeeensienenns 164
Figure 33: Effective Throughput for Suspicious CONNections.........eeeienenns 165
Figure 34: Effective Throughput for Malicious CONNections .........creneessseessssenns 166
Figure 35: Overall Device Throughput Rates ... 167

xii



Chapter 1. Introduction

Following recent industrial control security (ICS) incidents like the Stuxnet
worm outbreak in Iran, much focus has been put on the current state of each
country’s critical infrastructure security. Part of this concern lies in the quality of
currently deployed network security mechanisms used to protect our most sensitive

networks.

Supervisory control and data acquisition (SCADA) networks are responsible for
managing the critical infrastructure that keeps each country operating smoothly.
This includes crucial infrastructure components like power distribution stations,
water treatment plants, transportation infrastructure, etc. In the case of a SCADA
system disruption, critical infrastructure systems supervising the operational facets

of each society could fail to provide the resources needed to run an economy.

At first, network infrastructures used to facilitate SCADA communications
appear to resemble traditional IT networks; however, they differ tremendously.
SCADA networks tend to have a static amount of client devices, their communication
flows are predictable, communication protocols are often proprietary, and high
availability is absolutely paramount. Due to the unique nature of these networks,
traditional IT security protection and mitigation mechanisms prove to be ineffective.
Furthermore, widely deployed SCADA protocols like DNP3 and Modbus provide no
inherent security controls. This makes managing security inherently difficult. Ideally
these protocols would be replaced with newer, more secure variations; however, the
need for backwards compatibility and high availability inhibits the adoption of

newer protocols.

Because of this dependence on legacy hardware and software, we must rely
heavily on effective security event detection and mitigation algorithms as we begin

to phase out legacy SCADA systems. Unfortunately the critical nature of SCADA



creates a catch-22 when dealing with security events: false positive security events
on a network, if blocked, can significantly impact system functionality, possibly
causing a SCADA environment to transition to an unstable state. Because of this,

security events need to be handled tactfully as to not impact normal operations.

1.1 Problem Statement

Unfortunately our reliance on legacy hardware and software has created a
perfect storm of sorts, leaving our most critical networks vulnerable to a plethora of
attack vectors. This is particularly true in the case of advanced persistent threats
(APTs) attacking complex networks over long periods of time. Advanced attack
vectors like illegitimate credential use, device impersonation attacks, zero-day
exploits, and targeted malware are extremely difficult to detect in typical networks,

let alone SCADA environments.

To solve these issues, we must work towards deploying security technologies
capable of detecting both traditional and APT-style attacks while handling security

event mitigation effectively in a non-blocking manner.

A variety of SCADA-specific security technologies exist, ranging from inline
legacy-ready cryptography devices to intrusion detection systems capable of
detecting anomalous connections within a network. However, most proposed
solutions to SCADA’s inherent security problems have a binary approach to event
detection and mitigation: either reject available security controls due to lack of
functionality or accept a single detection mechanism in hopes that it is sufficient. As
history has taught us many times, a single approach to security event detection is

never sufficient.



1.2 Contribution

To this end, I believe leveraging the defense in depth principle within security
event detection and mitigation algorithms can provide the targeted and robust
solution we seek for SCADA networks. Like strategies taken to secure IT networks,
security event detection technologies deployed in SCADA environments should
provide a multi-layered approach to event detection. This detection in depth
approach is capable of increasing security event detection rates while reducing false
positives. Furthermore, the integration of multiple detection and mitigation
technologies allows us to couple the best features of each system together, creating a

robust and well-rounded framework for handing security events in SCADA networks.

In this thesis I will propose and measure the effectiveness of integrating four
security technologies - flow-based intrusion detection, network device
fingerprinting, just-in-time honeypots, and traditional signature-based intrusion
detection systems - into a single algorithm capable of providing detection in depth
for SCADA environments. Furthermore, I will explore how the proposed solution is
capable of detecting and handling advanced attack vectors perpetrated by advanced
persistent threats without adversely impacting the availability of the monitored

environment.

[ hope that enabling the evolution and integration of multiple security
technologies can help us mitigate risk within our most critical networks, buying us
time to replace legacy software and hardware with more robust and security-centric

alternatives.



1.3  Thesis Organization

In this thesis I will overview a variety of topics, ranging from SCADA and
industrial control system basics to the implementation and evaluation of my
proposed solution. I hope to provide a well-rounded view of the current threatscape,
including existing security technologies, deficiencies, and mitigation strategies

capable of detecting advanced network attack vectors.

In Chapter 2 I will provide an introduction to SCADA, including its origins,
protocols, and history of convergence with corporate networks. This will solidify a

baseline of understanding before moving on securing SCADA environments.

Next, I will lay the groundwork regarding the current state of security in SCADA.
A variety of topics will be discussed, including network security considerations,
related industry standards, typical attack vectors, protocol-level risk mitigation

strategies, and approaches to incident detection.

Once all background information has been discussed, I will take a look at
advanced persistent threats (APTs), including their past and present impact on
SCADA environments. To provide a well-rounded view of the current situation, I will
define their common characteristics, attack lifecycle, attack vectors, evasion

strategies, and recent attributed events.

In Chapter 5 I will provide a 10,000-foot architectural view of my proposed
security event detection algorithm and its inner workings. The proposed solution
will be compared to existing security solutions while showing how it meets various

requirements for detecting advanced persistent threats in SCADA networks.

Next, I will take a look at how the integration of multiple technologies within my
proposed algorithm can provide a viable solution to the security event detection

requirements outlined in chapter five. A detailed look at each component of the



system will be provided, including the logical and operational design of the system’s

event detection and mitigation algorithm.

Finally in Chapter 6, I will showcase the proposed solution’s effectiveness and
efficiency by exposing it to a variety of scenarios often perpetrated by an advanced
attacker. I will, through example, show how my solution is capable of detecting and
managing all major advanced network attack vectors without negatively impacting

the efficiency and latency of the monitored SCADA network.



Chapter 2. Background

Supervisory control and data acquisition (SCADA) systems provide an
automated process for gathering real time data, controlling industrial processes, and
monitoring industrial equipment that is physically dispersed. Utility companies and
various industries have used industrial automation systems for decades to automate

natural gas, hydro, water, nuclear, and manufacturing facilities.

Consisting of sensors, actuators, and control software, SCADA networks provide
industrial automation while providing real time data to human operators. Remote
terminal units, known as RTUs, gather telemetry data from various physical sources
like switches, breakers, pumps, temperature sensors, pressure sensors, and valves.
RTUs are typically network-enabled embedded devices that are designed to
withstand harsh operating environments, particularly the outdoors. These remote
devices send data to a master terminal unit (MTU) that is responsible for controlling
the actions performed by each RTU. Data collected from an MTU is then presented to
a human operator via a human machine interface, providing real time control of the
automated system. In the case of an emergency, a human operator is alerted to any

critical state changes, allowing him or her to correct the situation in real time.

At first glance SCADA networks appear to be similar to IT networks; however,
this is not the case. Due to the absolute real-time nature of such systems, SCADA
networks are usually referred to as "hard real time" systems. Traditionally SCADA
networks were physically isolated, providing some inherent level of security;
however, as protocols like TCP/IP continued to proliferate, SCADA networks slowly
converged with both corporate intranets and the Internet. The gradual evolution of
SCADA systems has introduced many security risks previous unknown in decades

past.



2.1 Origins of SCADA

Dating back to the 1960's, SCADA networks have been a vital component used
for utility and infrastructure management around the globe. [37] Remote terminal
units were traditionally managed by mainframe computers, creating a highly
centralized network layout that could be monitored and manipulated by human
operators. [37][65] During this time, SCADA networks were not fully automated;
however, they did provide a mechanism for reliably collecting telemetry data from
physically dispersed devices. [65] Human operators could view, analyze, and assess
collected data in order to determine which actions needed to be performed upon the
system. Commands would then be entered in the mainframe, allowing them to be
sent to the appropriate remote terminal unit. [37] In between the mainframe
computer and remote terminal units laid the master terminal unit (MTU). Its
responsibility was merely to replay data from the mainframe over dedicated serial
or leased lines that connected remote terminal units. No data analysis was

performed by the MTUs; they only acted as an intermediary device. [37][65]

Up until the 1990's, few changes occurred in the way SCADA networks operated.
[37]]65][68] However, as technology developed rapidly, the advent of cheap and
intelligent RTU devices allowed industrial operators to replace dumb units with
network-enabled and intelligent programmable logic controllers (PLCs). These PLCs
allowed operators to program various logic-driven programs that provided some
level of intelligent and autonomous decision making. [26] Remote terminal units
were then able to collect analog data from various physical sources, analyze the data,
and relay only relevant information to the master terminal unit. This marked a

massive change in the way we used SCADA networks.

When SCADA systems first started being deployed in the 1960's, the need for
low-latency communication networks superseded any security concerns regarding
SCADA systems. Traditionally SCADA systems were entirely isolated from all other

networks, providing an inherently positive security stance. [37] However, as the



proliferation of physically independent network protocols like TCP/IP continued to
increase, so did the adoption of Ethernet-enabled RTU devices. [32][42] Eventually,
SCADA networks started to converge with corporate intranets, providing business
logic insight into the operation of industrial control systems. Naturally, this
introduced many security and availability concerns. These once isolated systems
now became vulnerable to both internal and external attacks. In addition, since
security was not a paramount concern during initial deployment, the current
security stance of SCADA network protocols became extremely poor. In fact, most
SCADA protocols provide no mechanisms for ensuring confidentiality, integrity,
authentication, authenticity, or non-repudiation. [28][52][90] These security issues

will be discussed in detail later on in this thesis.

2.2 SCADA Architecture

SCADA networks generally consist of four main components: control center
software, operator interfaces, field devices, and wide area telecommunication
networks. [20] Working together, these components provide industrial automation

while ensuring human intervention is possible.

2.2.1 Control Center

Within the control center lie multiple hardware and software components
responsible for collecting, analyzing, and archiving data from field devices. These
components are linked together over a common management network. Control
centers generally contain a few essential components: master terminal units,
engineer workstations, database servers, business logic servers, and a data historian.

Each component has a specific role within the industrial control setting.



First, the master terminal unit acts as a SCADA server, providing a remote
termination point for physically dispersed remote terminal units. It is responsible
for collecting field device measurements that have been sent over various
communication mediums. These may include leased lines, serial lines, satellite links,
cellular links, etc. Once data has been received, irrelevant information is discarded
(like frame headers) and relevant data is sent to both the human machine interface

and data historian.

The real time nature of SCADA systems elicits the need for long-term system
state information storage. The data historian, working together with various
database deployments, provides a long-term storage medium for a SCADA system.
All sensor and actuator data flowing between the control center and field devices is
archived for future analysis. In addition, all actions performed within the SCADA
system are archived. This provides a set of data capable of describing the past,
present, and possible future states of the industrial control system. In the case of an
emergency, the data historian can be queried to determine which physical action

caused the system to transition to an unstable state.

Working hand-in-hand with the data historian, business logic servers provide
insight into the day-to-day operations of the SCADA network. These servers may act
as an intermediary between the control center network and a corporate intranet.
Generally speaking, business logic severs sit in a network demilitarized zone (DMZ),

talking to the data historian on behalf of external, authenticated users.

Lastly, engineering workstations facilitate the everyday operations within the
industrial control networks. Engineers may use these workstations to run
simulations, extract data from the data historian, or execute various projects within
the control center. In addition, they provide granular control over the SCADA
network. This may include modifying HMI applications and reconfiguring control

devices remotely. More than one engineer workstation may be present at a time.



2.2.2 Operator Interface

Also located within the control center network, the operator interface is
responsible for acting as an intermediary between the SCADA network and human
operators. This human machine interface (HMI) allows humans to access and assess
data collected from various field devices and interacts with the industrial control

process. [20]

2.2.3 Field Devices

Field devices, also known as control devices, are integral to implementing
process control logic within remote locations. These devices provide automated,
intelligent system management by interfacing with various I/0 devices like remote
terminal units (RTUs), programmable logic controllers (PLCs), and intelligent
electronic devices (IEDs). [20] By collecting real-time data from I/O sensors, field

devices are capable of performing control actions on various actuator devices.

Some field devices, particularly RTUs and PLCs, are designed to allow their
program logic to be updated remotely. [20] Thanks to this functionality, most field

devices can be deployed physically while only ever being managed remotely.

In some cases, field devices are not capable of directly interacting with wide-
area SCADA networks. [18][20] In such a case, SCADA gateway devices, like front-
end processors (FEPs), are used to bridge field devices to wide area networks. [20]
Acting as an intermediary, FEPs forward sensor and actuator information, generally
collected from serial-only devices, to master terminal units located within the

control center network.
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2.3 Wide-Area SCADA Networks

In order to facilitate communications between devices within SCADA networKks,
various industrial control protocols have been developed. These protocols run over
numerous physical mediums to provide wide-area connectivity. Primarily, the
Modbus and DNP3 protocols have been used in North America to ensure efficient
hard real-time communications. As SCADA continues to converge with traditional IT
networks, these protocols continue to evolve as well. The widespread use of TCP/IP
within communication networks has facilitated the adoption of IP-based SCADA

protocols like Modbus TCP. [51]

2.3.1 Wired Communications

Wide area communications between field devices and a control center may
occur over many different mediums. These may include: telephone, serial, fiber,
Ethernet lines, and corporate intranet leased lines. [40][51] Traditionally serial and
plain old telephone systems (POTS) were the most deployed communication

mediums. [51]

As times changed and technology evolved, SCADA systems slowly transitioned
to IP-based networks. Naturally, newer technologies like Ethernet began replacing

older, slower serial lines. [56]

2.3.2 Wireless Communications

In addition to wired communication mediums, wireless communications have

also recently become popular for long distance SCADA deployments. [51] Thanks to
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the ever-increasing reliability and bandwidth of wireless networks, wireless

deployments have become a viable and robust option when deploying field devices.

Field devices deployed in SCADA networks can leverage many different wireless
mediums like: ZigBee, various licensed and unlicensed spectrums, cellular links,

WiMAX, and even satellite links. [51]

2.4 Common SCADA Communication Protocols

Thanks to the highly customized nature of SCADA and industrial control
networks, the American Gas Associate claims there are approximately 150-200
proprietary SCADA protocol variations. [42] Most of these proprietary protocols
were created and deployed during SCADA’s developing years; however, more recent
deployments have embraced industry protocol standards like Modbus and DNP3.
Primarily, the Modbus and DNP3 protocols have been used in North America to
ensure efficient hard real-time communications. These standards provide well-
documented guidelines for implementing industry-accepted and highly robust

SCADA communication mechanisms. [42]

2.4.1 Modbus Protocol

The Modbus protocol suite, popular in the oil and gas sectors, is one of the oldest
and most widely used SCADA protocols. [41][75] The protocol suite can be broken
into two main versions: Modbus Serial and Modbus TCP. [41] Each protocol provides
mechanisms for both unicast and multicast transmissions between one or more

master (MTU) units and one or more slave (RTU) devices. [41]
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Modbus Serial supports two serial encoding modes: ASCII and RTU. For serial
networks, a single master is capable of communicating with up to 240 slave devices

per serial line.

Secondarily, Modbus TCP offers additional flexibility, supporting Modbus
deployments over IP networks. Working at the application layer, this version of
Modbus is capable of facilitating communications between an infinite number of
devices. Generally, one or more master devices are responsible for managing a pre-
set number of slave devices. Unlike its serial counterpart, Modbus TCP allows

remote terminal units to be managed by more than one master device. [41][75]

Although Modbus provides robust legacy hardware support, security was not
kept in mind during the development phase of the protocol. The lack of security
controls supported by the Modbus protocol suite makes it susceptible to various
attacks like: message spoofing, modification, and replay; denial of service attacks;
and man-in-the-middle attacks. These specific attacks will be discusses later in this

thesis.

2.4.2 DNP3 Protocol

Westronic Inc. developed the Distributed Network Protocol (DNP3) in the early
1990’s to provide a standardized solution for communications between SCADA MTU
and RTU devices. [28] Taking the SCADA world by storm, DNP3 has been deployed
by over 75% of North American electric utility companies. [28][29][52] Part of this
protocol’s popularity lies in its extreme flexibility; it supports many physical and
data link topologies like Ethernet, licensed radio, frame relay networks, and fiber.
[37] In addition, DNP3 provides full backwards compatibility with the once popular
Utility Communications Architecture, Manufacturing Message Specification

(UCA/MMS). [37]
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DNP3’s usage generally falls within the confines of a traditional client-server
network topology. A master device, often located in the control center,
communicates with one or more field devices using DNP3 running over various
physical and data-link layers. In order to provide additional efficiency in real-world
deployments, the protocol is able to facilitate communications between a single

master device and multiple remote terminal units. [37]

DNP3 protocol communication messages fall into three categories: point-to-
point, multicast, and unsolicited responses. [28] Point-to-point DNP3
communications transpire between a single MTU and a single RTU. This situation
may occur when a remote station contains only a single, all encompassing remote
terminal unit. Secondarily, MTUs are able to send multicast messages to all
substation devices at once. For example, a control operator may want to read
actuator values from all devices in order to take a system state ‘snapshot’. [28][37]
Lastly, field devices are able to send unsolicited responses to a MTU in the case of an
emergency or other anomalous event. [28] This may transpire when a sensor
measurement on a PLC exceeds a maximum threshold value, as determined by its

logic program.

Although DNP3 provides various robust and convenient network
communication topologies, like other SCADA protocols, security was not kept in
mind during its development phase. In addition, DNP3 is susceptible to many
security attacks, mostly due to lack of authentication. These attacks include:
message spoofing, modification, and replay; denial of service attacks; and man-in-

the-middle attacks. Specific attack vectors will be discusses later in this thesis.

2.5 SCADA Convergence

During the advent of SCADA technologies, a heavy focus was put on providing

robustness, safety, and reliability within these systems. SCADA's strict requirements
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for high availability are apparent considering most systems have been running
stably over serial lines for decades. [56][87] In order to provide such stability,
SCADA networks were typically isolated from external communications. This

provided some inherent level of security.

However, the initial focus on robustness over security became detrimental after
the Internet became highly accessible in the 1990’s. [56][60] The convenience of
Internet and WAN connectivity encouraged the integration of SCADA networks into
corporate LANs and intranets. This amalgamation provided increased bandwidth
and ease of deployment while enabling additional integration with business logic
processes. [60][87] Furthermore, redundant SCADA components like SCADA serial

gateway devices were retired from use, further reducing network complexity.

As SCADA continued to converge with IP-based networks during the last few
decades, the attack surface of these networks increased. Since SCADA now closely
resembles traditional IT networks, many previously irrelevant security
vulnerabilities have been introduced. These include things like denial of service,

insider, and external hacker attacks. [56][60]
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Chapter 3. SCADA and Security

3.1  Current State of SCADA Security

Most security issues pertaining to SCADA networks occurred in the last few
decades as these networks became no longer isolated. [87] Naturally, the adoption
of IP-based technologies introduced many security vulnerabilities into these
networks. [87] Unfortunately, although SCADA closely resembles IT networks,
traditional security mitigation technologies are not an option due to their impact on

availability. [87]

Even in cases where equipment is identified as being vulnerable, change control
is still a major priority. Devices will often remain unpatched and vulnerable for
decades. [51] After all, most industrial control networks cannot be taken down for

maintenance.

In addition, security auditing within SCADA networks is scarce due to lack of
security awareness training and safe security auditing frameworks. [87] Many
SCADA security standards exist; however, lack of security awareness prevents these
standards from being adopted. Some network operators may not even be aware of

the underlying security issues of their SCADA deployment. [39][56]

Finally, widely deployed SCADA protocols like DNP3 and Modbus have no
inherent security controls. This makes managing security inherently difficult. Ideally
these protocols would be replaced with newer, more secure variations; however, the
need for backwards compatibility and high availability impacts the adoption of
newer protocols. [12][52]
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3.1.1 The Importance of SCADA Security

SCADA networks are responsible for managing the critical infrastructure that
keeps our country operating. This includes control systems for power distribution,
water treatment, transportation infrastructure, etc. In the case of a SCADA system
disruption, the critical infrastructure components controlling our society could fail
to provide the resources needed to run our economy. Critical infrastructure is an
essential component required for the smooth operation of a government and its

economy. [63]

Following the terrorism attacks on September 11th, 2001, the security of
national resources in countries around the world have been put in the limelight.
Typically both governments and companies responsible for protecting critical
infrastructure have overlooked SCADA security. [56] This is partly due to the lack of
security controls available, and the inability to upgrade systems that are heavily
relied upon. [53][56] Cyber warfare has become an integral component of modern
warfare; this can be seen in the recent supposed ‘state-sponsored’ attacks against
Iran’s nuclear facilities. [22] For years, countries like China and North Korea have
been openly training technology experts in preparation for cyber attacks. [31][50]

This fundamental shift towards state-sponsored hacking cannot be ignored.

In the United States, the President’s Report on Critical Infrastructure highlights
the fact that vital critical infrastructure components are “susceptible to both cyber
and physical attacks.” [63] In addition, the United States Presidential Directive on
Homeland Security and Department of Energy discussed prioritizing the protection
of critical infrastructure assets from cyber attacks. [85] Improvements to SCADA
security do not affect a single country; some critical infrastructure is trans-national,

providing assets for both Canada and the United States. [35][63]

As SCADA networks continue to communicate using Internet technologies, the
need for SCADA security controls increases. The following government and private

groups are working towards various security controls and policy documents
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outlining industry best practices: Department of Homeland Security (DHS), National
Institute of Science and Technology (NIST), National Infrastructure Advisory Council
(NIAC), National Communication System (NCS), National Cyber Security Division
(NCSD), US-CERT, Government of Canada, American Gas Association (AGA), and

many more. [63]

3.1.2 SCADA Security Incidents

When considering cyber security incidents pertaining to SCADA networks, three
main events come to mind. First, the Department of Homeland Security’s “Aurora”
attack; second, the recent state-sponsored Stuxnet attack targeting Iran’s nuclear
facilities; and finally, the disgruntled potential employee who hacked into a city’s

waste management network in Queensland, Australia. [84][87][88]

The Department of Homeland Security conducted the ‘Aurora’ attack in March
2007 with engineers from Idaho National Laboratories. This operation aimed to
determine the impact cyber intrusions could have on physical infrastructure.
[84][88] The successful execution of a network attack against a physical asset
resulted in the “partial destruction of a $1 million dollar large diesel-electric

generator.” [88]

More recently, the Stuxnet malware attack against Iran’s nuclear facilities
showcased the threat malware poses to industrial control systems. Based on the
high complexity of the attack, the small form factor of the code, and the insider
knowledge required to execute the attack, some suggest the outbreak was state
sponsored. [22] This highly sophisticated, SCADA specific worm utilized multiple
zero-day Windows exploits coupled with stolen certificates to replicate towards the

intended target. [22]

Malware is not the only reason for being concerned about SCADA security, as

seen in the Shire of Maroochy township attack in Queensland, Australia in the year
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2000. Vitek Boden was turned down from a job with the municipality, and “hacked
into the city’s wastewater management system. Over the course of two months,
Boden repeatedly drove around the Maroochy Shire Council area issuing radio
commands to sewage equipment and causing over 230,000 gallons of raw sewage to
spill into local parks, rivers, and even onto the grounds of a Hyatt Regency
Hotel.“ [87] The system was tampered with approximately 40 times before the
attacks were actually detected. [1][88] This situation showcased the real risk of

insider attacks.

Lastly, although not a cyber security attack, the importance of change
management procedures was showcased in March 2008 in Baxley, Georgia. A
nuclear power plant in Baxley was forced to shutdown when an operator deployed a
software patch to a single computer. This patch caused communications to be

disrupted between two SCADA systems, causing system failure. [49]

3.1.3 SCADA Security Standards

Multiple industrial control system security standards have been proposed by
both public and private organizations. These documents outline SCADA and
industrial control system best practices, security assurance methods, and security

assessment methodologies.
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3.1.3.1 NIST System Protection Profile

The National Institute of Standards and Technology published the NIST System
Protection Profile (SPP) in 2004 [80]; this document outlines how to develop
formalized information assurance requirements for industrial control systems.
Noting the dissimilarities seen in varying types of industrial control systems, the SPP
document provides guidelines for creating protection profiles that target specific ICS
categories. [20] Functional and assurance requirements are outlined within this

document, providing further granularity.

3.1.3.2 ISA-SP99

Like the NIST SPP, the ISA-SP99 technical documents provide a security
implementation guide for both manufacturing and industrial control systems.
Together, these documents provide information about the specific security controls
available for industrial control networks. In addition, integration of these

technologies is discussed, outlining best practices and usage guidance. [20][73][74]

3.1.3.3 AGA-12 Documents

This set of documents, produced by the American Gas Association, outlines
methods for ensuring the confidentiality and integrity of encapsulated serial
protocols. In addition, these documents outline cryptographic and testing
requirements for encapsulated serial datagrams. A methodology for assessing and

auditing security policies and controls is outlined within AGA-12 Part 1. [5][7][20]

20



3.1.3.4 NIST SP 800-82

In 2006, the NIST SP 800-82 document was released to specifically address
SCADA and industrial control system security issues. It “discusses common system
topologies, threats and vulnerabilities, and suggest security countermeasures to be
used in mitigating risk.” [20][80] This document overviews available technical

security controls while still addressing operation and managerial security concerns.

3.1.3.5API-1164

The API-1164 Pipeline SCADA Security Standard provides a comprehensive
checklist of industry guidelines for ICS security best practices. [78] It addresses
“access control, communication, information distribution and classification, physical

security, data flow, network design, and a management system for personnel.” [20]

3.1.4 Issues Inhibiting Security Adoption

Many issues exist that impede the adoption of security controls and policies
within SCADA networks. These issues range from non-standard auditing

frameworks to difficulties deploying device patches.

First, the sensitive nature of SCADA networks impedes our ability to deploy
mitigating technologies. Primarily, devices cannot be upgraded for years since
upgrades may impact crucial industrial processes. [56] Software patches can be
difficult to audit, and staged patch management strategies may not translate well to
SCADA networks. [39] In addition, experimental security technologies cannot be
tested within control systems due to the hard real time nature of SCADA. Going

hand-in-hand with this, the replacement of legacy hardware and software is also not
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simple. [51] Many SCADA devices have been operating for decades without being
restarted or shut down. [56] This follows the common adage: why replace the device

if it is not ‘broken’?

Secondarily, as discussed previously, popular industrial control communication
protocols like DNP3 and Modbus were not designed with security in mind. These
protocols do not provide any authentication mechanisms between MTU and RTU
devices. Stemming from this, these protocols are vulnerable to many different
security issues, including: man-in-the-middle and denial of service attacks, as well as
packet replay, modification, and forging attacks. The optimal solution to this
problem involves the development and deployment of more secure protocols that
provide full backwards compatibility. However, the development of such protocols
proves to be difficult due to the low computation resources available to RTU and PLC

devices. [12][28]

Although modern SCADA networks appear to closely resemble IT networks, the
hard real-time nature of these systems prevents the deployment of traditional
security controls. Hard real-time systems are required to meet communication
deadlines, every time. Unlike IT networks, even small increases in network latency
can severely disrupt SCADA operations. [29][51] This well-defined requirement for
communication deadlines prevents the deployment of intrusive security
technologies like application layer firewalls, intrusion prevention systems, and
antivirus programs. [51][56] Such technologies introduce additional computational

or network overhead, negatively impacting these communication deadlines.

Additionally, more reliable technologies like firewalls, access control
mechanisms, and demilitarized zones (DMZ) can still impact availability if
misconfigured. [51] SCADA networks can be extremely complex depending on the
deployment, increasing the chances of misconfiguration. One example involves the
nuclear power plant in Baxley, Georgia that was forced to shutdown in March of
2008 when an operator deployed a software patch to a single computer. [49] This

software patch alone did not cause the outage; in fact, the operator’s lack of system
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knowledge allowed the software patch to inhibit communication between two
network devices. [49] Examples like this highlight the importance of strict change
management within SCADA networks. Although patches and remediation

technologies may be available to operators, deployment may not be a viable option.

Finally, auditing the security stance of a SCADA network proves to be extremely
difficult. Although industry leaders like NIST provide auditing frameworks, the safe
execution of audits can be extremely difficult. These difficulties may range from an
operator’s lack of SCADA security knowledge to denial of service conditions created
from port scanning. Ideally, SCADA systems would follow strict industry security
guidelines; however, these guidelines need to be audited to ensure their
effectiveness. One important component of security auditing involves the detection
and exploitation of vulnerability through penetration testing. This type of auditing is
generally not possible thanks to its impact on SCADA system availability. [51][80]
For example, the execution of a simple port scan against a PLC device may cause it to
lose network connectivity. [51][56] Without the required security knowledge, it is
difficult for SCADA operators and management to successfully mediate risk and fully

understand the security stance of their network.

3.2  Security Considerations for SCADA Networks

Unlike IT networks, SCADA systems have a unique set of security considerations.
In particular, the general security concepts of ensuring confidentiality, integrity, and
availability have different focus areas when used in SCADA systems. Ideally SCADA
security solutions should be simple while providing well-rounded security that does
not impact system availability. These considerations will be discussed in more detail

in the following sections.
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3.2.1 Auvailability

Generally speaking, high availability is important to both IT and SCADA
networks. However, unlike IT networks, SCADA relies heavily on strict
communication deadlines in order to facilitate smooth system operations. These
networks are called “hard real-time systems”: communication deadlines have to be
met continuously. [23][39] The introduction of additional communication latency
could prevent a SCADA system from operating properly. [51] These delays may even

cause the system to transition to an unstable state.

Because of this, the availability component of the CIA triad is considered the
most crucial. Stringent requirements for high availability impact an operator’s
ability to deploy security controls, upgrade devices, and implement new SCADA
communication protocols. [51][56] Any impact on availability is considered

extremely detrimental, regardless of the SCADA system in question.

3.2.2 Integrity

Naturally, the integrity of communications within SCADA systems is also
paramount. The hard real-time nature of SCADA does not provide any window of
opportunity for retransmitting corrupted packets. This can be seen when analyzing
popular SCADA communication protocols like DNP3 and Modbus. Most protocols
implement integrity checking mechanisms like cyclic redundancy checks (CRC) to
detect corrupted data frames. In some cases transportation layer integrity checks
alone may not be sufficient. Thus, protocols like DNP3 may provide additional

integrity checks at the application layer. [26][35]
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3.2.3 Authentication

Although not currently implemented within SCADA protocols, authentication is
considered a crucial and highly desirable security control. Currently deployed
SCADA protocols like DNP3 and Modbus do not provide any inherent authentication
mechanisms to verify the identity of master and slave devices. [28][35][41] Instead,
typically a device identifier is located within the protocol header, proving minimal
identification information to the receiving device. Since this identification
mechanism is not implemented securely, it is trivial to forge protocol packets within

a SCADA network. [28][35][41]

Ideally, SCADA protocols should implement an authentication mechanism that
provides a verifiable and secure way of identifying the source of all data
transmissions. This would allow remote terminal units to verify control messages
were sent from a master terminal unit, for example. The fundamental security of
SCADA systems relies on the successful implementation of such authentication
controls. However, as noted previously, the deployment of new and improved

SCADA protocols is a daunting task.

3.2.4 Non-Repudiation

Similarly, implementations of authentication mechanisms within SCADA
networks should provide an unchallengeable way of identifying the source of a data
stream. Within IT security, this is generally called non-repudiation. When an
effective authentication mechanism is deployed, there should be no way for a sender
to deny they ever sent a data transmission. This can be achieved, for example, by
using authentication mechanisms that rely on public key infrastructure. Naturally,
this requirement would be automatically resolved when implementing an effective

authentication mechanism.
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3.2.5 Confidentiality

Contrary to typical security wisdom, the confidentiality of SCADA protocol
datagrams is not considered important. [35][51] In fact, the unwelcome use of
encryption technologies within SCADA networks may introduce system-crippling
communication delays. Such delays tend to occur when an encryption algorithm
creates significant overhead on network or endpoint devices. [35][51] In particular,
field devices like remote terminal units and programmable logic controllers do not
have the computational capacity to perform cryptographic operations on network

packets. [51][56]

Most importantly, there is no need to provide confidentiality within SCADA
systems since all data transmissions are considered non-sensitive. Why introduce
additional cryptographic overhead when confidentiality isn’t even a requirement?

Thus, confidentiality controls are generally not associated with SCADA protocols.

3.2.6 Logging and Auditing

At any moment in time, industrial control systems fall within a series of system
states that can be used to measure the responsiveness and status of the system. A
system may transition from a stable to instable state for various physical reasons.
These changes, measured by sensors within the SCADA system, are analyzed and

presented to a human operator via the human machine interface (HMI).

In order to improve the efficiency of an industrial control system, operators may
need to analyze historical information regarding the system and its state transitions.
This data is typically logged to the data historian and other backend database
servers. In the case of an emergency, this data needs to be recorded in order to

determine the source of the system instability.
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An important part of logging within SCADA systems is the ability to audit human
actions that manipulate the control system. [51] Audit logs should be recorded in
order to facilitate the analysis of human actions during a system emergency or
security breach. Currently, most control centers have a lax approach to security
auditing. [51] Primarily, audit trails are difficult to follow thanks to shared accounts
and default passwords. [51] In a secure SCADA system, user actions should be easily

logged and analyzed.

Lastly, implemented security policies and controls should be measurable.
Traditionally this is done using security audits. These audits may test user security
awareness, strength of passwords, presence of account sharing, testing of deployed
security controls, etc. As mentioned previously, this proves to be difficult without

impacting system availability. [51]

3.2.7 Detection of Security Events

Equally important is the system’s ability to detect the occurrence of security
events. These events may be insider attacks, system attacks via the corporate LAN or
Internet, or even physical attacks on field devices. The detection of such events
appears to be fairly simple: SCADA networks contain a predictable number of
devices that follow a predictable communication flow model. [59][80] One may
assume that anomalous events would also be easily detectable. However, this is not
the case. [51][87] Thanks to the lack of security controls present in SCADA protocols,

packet forging, modification, and replay can be almost impossible to detect. [51][87]

An effective SCADA security solution leverages an overall system knowledge in
order to determine when packets have been forged or modified in transit. This can
be done using state-based intrusion detection systems. The simplest way to provide
an effective security incident detection mechanism involves deploying secure SCADA

protocols. Attacks like packet replay, modification, and forging can be prevented at
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the protocol level. In this case, network security controls can provide a defense in

depth approach to security event detection and prevention.

3.2.8 Isolation

The lack of security controls present in SCADA systems is partly due to SCADA
networks originally being isolated. In the past, at the time of deployment, the

transition to IP based networks could not be predicted. [20][88]

Following this, the original isolated nature of SCADA can be simulated in
modernized networks using demilitarized zones (DMZ). DMZs provide a buffer zone
between internal and external local area networks. This buffer zone typically is
isolated by two firewalls: one between the external network and the DMZ, and
another between the DMZ and internal network. This isolation zone allows external
clients to connect to internal resources without significantly degrading the security
stance of the internal network. This is particularly useful for internet-facing

resources like web servers.

In a SCADA system, a DMZ may provide a secure buffer zone between business
logic servers and the internal SCADA network. This would allow the network to be
connected safely to a corporate local area network. If deployed properly, the
bordering firewalls could provide granular flow control; ensuring exploitation of
DMZ servers could not overflow to the internal network. [51][87] It is important to
note that the security of a DMZ deployment relies highly on the proper configuration

of its isolating firewalls.
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3.2.9 Physical Controls

Lastly, the utilization of physical security controls is paramount to the
operational security of SCADA systems. Both field devices and substations should be

physically hardened to prevent unauthorized intrusions.

Substations should be able to resist break in attempts using various
technologies. These may include electric fences, biometric access control, CCTV, etc.
In addition, field devices deployed outside substations should resist tampering. The
exploitation of field devices could circumvent network perimeter security,
potentially allowing an attacker to circumvent internal security controls. Physical
hardening may be used to prevent devices from being reprogrammed, flashed,

destroyed, or removed. [51]

33 SCADA Attack Vectors

Due to SCADA’s insecure nature, many attacks currently exist, targeting
communication protocols, field devices, and internal control software. The Modbus
protocol alone has over 48 identified attacks, targeting both its serial and Ethernet
implementations. [41] Although attack methods differ depending on the protocol in
question, most attacks can be classified in eight different ways: message spoofing,
modification, and replay; man-in-the-middle and denial of service attacks; control
software and operating system exploitation; and physical attacks. These will be

discussed in detail in the following sections.
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3.3.1 Message Spoofing

Message spoofing occurs when a malicious attacker forges SCADA
communication packets while pretending to be a legitimate device. These spoofed
packets are valid and untraceable due to the lack of security controls present in
common SCADA protocols. [28][41][90] If an attacker manages to gain access to a
control network, in theory they would be able to manipulate most field devices.
[28][41] This is sometimes referred to as “you ping it, you own it” syndrome. An
attacker could gain network access to devices by hacking into control networks from
the Internet, corporate LANs, or even by physically exploiting field devices. [51]
Once network access is available, the exploitation of SCADA devices becomes trivial.
For example, a malicious user could craft a multicast Modbus TCP packet, instructing
all Modbus-enabled field devices to enter read-only mode. This would prevent
control operators from manipulating actuators remotely, essentially causing the

SCADA system to become unresponsive. [28][41][51]

3.3.2 Message Modification

Similarity, the lack of authentication controls within SCADA protocols could
allow an attacker to modify control messages in transit. This type of exploit is
typically leveraged through a man-in-the-middle attack; however, it could also affect
queued data. Since there is no way to prevent message modification, all legacy

SCADA protocols are susceptible to this attack. [28][41][90]

A malicious attacker could leverage this issue to modify control commands sent
from the control center to remote field devices. This is best demonstrated in
multicast transmission scenarios. For example, when DNP3 is used to send control
messages from one master to many slaves, the field devices do not reply to the

original message (as to avoid overwhelming the network). If such a control message
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was intercepted as it left the HMI, an attacker could modify the command, causing
the operator to be oblivious to the action actually performed. In theory, an attacker
could manipulate control messages leaving and entering the control center,

preventing human operators from ever detecting changes in the system.

3.3.3 Replay Attacks

Packet replay attacks occur when secure one-time identifiers are not used on a
per-packet basis. These nonce values should be unique for each transmission stream,
preventing attackers from reusing old packets. Protection against replay attacks can
be provided by a protocol’s authentication or cryptographic mechanism. It is
important to ensure session packets are unique while still allowing both sides to
verify the uniqueness of the session. For example, appending a random value to a

message before it is encrypted or signed can provide this kind of protection.

3.3.4 Man-in-the-Middle Conditions

Man-in-the-middle attacks occur when an attacker sits between a source and
destination device at the network level. This can occur physically, in the case of a
network tap, or logically through the manipulation of network routing and switching
technologies. The ability to intercept messages flowing between two network points

allows an attacker to modify messages while being transparent to each endpoint.

An attacker could leverage a man-in-the-middle condition to bring down a
SCADA system while ensuring human operators are not notified. This could happen
if an attacker was able to man-in-the-middle all communications between the
control center and remote devices. In addition, an attacker could leverage this kind

of attack to prevent operators from manipulating remote actuators.
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3.3.5 Denial of Service

A denial of service (DOS) condition could occur both intentionally and
accidentally within SCADA networks. DOS conditions occur when a device, or set of
devices, becomes unavailable or unresponsive due to network congestion or

exploitation.

An attacker could create a DOS condition by overwhelming field devices with
packets, jamming network links with fake traffic, exploiting SCADA devices causing
them to crash, or sending commands to field devices in order to turn them off. These
attacks are easily identifiable when they saturate network links; however, more
discrete attacks that modify field devices may make it appear as if the device has

legitimately malfunctioned.

As mentioned previously, denial of service conditions can also occur
inadvertently. These types of accidents can transpire from things like routing loops,
misconfigured routing/switching devices, improperly applied software patches,

unverified and tested system updates, or even random human errors. [51]

3.3.6 Control Software Exploitation

In scenarios where secure SCADA protocols have been deployed (like Secure
DNP, for example), an attacker may choose to manipulate or exploit control software.
Like many software applications, poor application development procedures can

produce both local and remotely exploitable software bugs.

Although many SCADA specific software exploits are not publically available, a
sophisticated attacker could gather information about deployed control software

and could discover a zero-day vulnerability. Software vulnerabilities could be
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detected by leveraging software-auditing tools like fuzzers and source code

analyzers.

Well-rounded SCADA security implementations should provide a defense in
depth strategy to network protection. This involves the use of compensative and
reactive security controls, as well as auditing software for vulnerabilities. All

software deployed within control networks is potentially exploitable.

3.3.7 Operating System Exploitation

As operating systems like Microsoft Windows became more popular in control
network deployments, the security risks associated with these operating systems
were assimilated into control network as well. In this capacity, the fundamental
exploitation of underlying technologies could allow an attacker to leverage attacks

on SCADA systems, just like in a typical IT network. [51][56]

Unfortunately, unlike its IT counterparts, SCADA networks cannot always
deploy operating system patches in a timely manner. [42][51] Untested and
unverified patches can cause systems to crash or lose connectivity with remote
devices. [49] Extra functionality shipped with commercial operating systems also
increases the attack surface of a machine. This includes technologies like Microsoft’s
server message block (SMB) and remote procedure call (RPC), which have a history
of being heavily exploited. Additionally, even in cases where operating systems are
patched regularly, these systems may still be vulnerable if not hardened and audited

regularly. After all, a system is only as secure as its weakest link.
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3.3.8 Physical Attacks

Lastly, physical attacks on field devices should not be overlooked. These attacks
could allow attackers to extract sensitive information, inject data into the control

network, or cause the device to become unresponsive. [51][58]

One great example of physical device security can be seen in smart grid
deployments. Advanced metering infrastructure (AMI) devices like smart meters
could be exploited to manipulate billing information, or even to spread malware
from meter to meter via a mesh communication network. [58] Exploitation of field
devices could potentially be used as a pivotal point for hopping back into the control

center network. [58]

3.4 Protocol-Level Risk Mitigation Strategies

Some critical SCADA network attacks, like packet modification, forging, and
replay can be mitigated using security technologies at various levels of the OSI
model. Even though most SCADA protocols do not provide inherent security
mechanisms, the replacement of such protocols is infeasible. However, the legacy
requirements for future SCADA systems should not dissuade us from making

protocol-level enhancements for future implementations.

Ideally, protocol level security enhancements should deliver absolute integrity
and non-repudiation for all communication streams while providing mutual
authentication of devices (particularly for critical commands). These components,
working together, can provide protection against man-in-the-middle attacks, as well
as message modification, spoofing, and reply attacks. In addition, authentication and
non-repudiation can provide more well rounded audit logs; this can be extremely

useful during security incident investigations. Additionally, enhanced SCADA
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protocols can prevent connection reset attacks that cause denial of service

conditions within SCADA network.

These improvements should be implemented in such a way as to not
significantly affect availability, by increasing the computational overhead or
bandwidth requirements of the system. Various security mechanisms that can
improve the overall security posture of SCADA networks will be discussed in this

section.

3.4.1 Authentication and Integrity Using Digital Signatures

Authentication using digital signatures allows control messages to be secured
using public-key encryption technologies. This security mechanism provides mutual
authentication for network devices while ensuring the integrity of all
communication channels. Although not mandatory or even recommended, this

security mechanism can also protect the confidentiality of selected control messages.

During typical device communications, a message’s checksum is calculated then
appended with a nonce and timestamp. A digest of these values is then encrypted
with the sending device’s private key and sent to the receiving device over a
network connection. Once the packet is received, a device then recalculates the
message’s checksum using the message content, nonce, and timestamp. The
appended signed checksum is then decrypted using the sender’s public key and is
then compared to the calculated checksum, verifying the message integrity and

source.

This approach to network communication security protects against man-in-the-
middle, message spoofing, modification, and replay attacks. Conversely, because this
security mechanism is implemented at the application layer, there is no way to

protect against denial of service attacks.
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Typically this methodology does not provide mutual authentication; however,
some deployments could provide mutual authentication at the cost of additional
computational overhead. Generally speaking, the use of public key encryption
increases the computational requirements of a system; however, efficiency can be
improved by deploying alternative encryption technologies like elliptic curve

cryptography (ECC). [5][7][38]

3.4.2 SSL/TLS

The Secure Socket Layer (SSL) and Transportation Layer Security (TLS)
protocols provide another alternative for protecting SCADA communication streams.
These technologies provide mutual authentication, integrity, and confidentiality of

data in transit using digital signatures and public-key encryption technologies. [37]

Much like digital signatures, SSL/TLS prevents man-in-the middle attacks, and
packet spoofing, modification, and reply attacks. This mechanism can be
implemented within the protocol itself or as a wrapper for various legacy SCADA
protocols. In addition, the IEC Technical Committee has approved the use of SSL/TLS
within ICS networks. [64] SSL/TLS has been successfully deployed in some SCADA
applications within the United States during the last decade. [64]

Nonetheless, SSL/TLS does not provide a perfect security solution for SCADA
systems. Some of its particular downsides include: known protocol weaknesses
[37][64], exploitable library implementations [37][64], excessive computational and
bandwidth overhead [37][64], and even the questionable reliability of external
certificate authorities (as seen in the Stuxnet attack). [22][31] Furthermore,
SSL/TLS does not provide evidence of data processing (non-repudiation) and only

supports reliable transportation protocols like TCP. [37]
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3.4.3 Authentication Using Challenge-Response

This security mechanism employs a shared secret cryptographic key that
provides a simple, yet reliable network authentication mechanism. Providing
integrity and authentication of SCADA communication streams, challenge-response
security can protect against man-in-the-middle attacks, and message spoofing,
injection, and modification attacks. In addition, since each network device utilizes a
unique shared secret with the MTU, perfect forward secrecy is provided. [37] This
ensures the exploitation of a single field device cannot significantly undermine the

overall security stance of the SCADA system.

During typical network communications, the receiving device can request the
sender answers a ‘challenge’ at any time. This challenge value, usually in the form of
a nonce, is merged with the known shared key then hashed. The resulting checksum
is then appended to the data being delivered, providing authentication of the

sending device while protecting the integrity of the message.

The effectiveness of the challenge-response security mechanism is reliant on its
proper implementation. Nonce values should be included in each message to
prevent packet replay attacks, ensuring packet uniqueness even when control
messages are static. Additionally, challenges should be mandatory for all critical
SCADA operations. This will provide optimal security while avoiding needless

authentication of non-critical SCADA messages.

Like other security solutions, the challenge-response mechanism can
detrimentally increase the computational overhead and bandwidth requirements of
SCADA systems. This can be partially offset by only authenticating critical messages.
In addition, the hashing algorithm used to calculate checksum values should be
selected based on its speed and effectiveness. Some hashing algorithms may not be
suitable for SCADA systems due to their high computational overhead. This will be

discussed further in section 6.5.
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3.4.4 Authentication Using HMAC

Hash-based message authentication code (HMAC) provides an authentication
and integrity mechanism by combining hashing algorithms with a pre-defined
cryptographic key. Depending on the hashing algorithm being used, this system can
be implemented with relatively low computation overhead. [44] This approach to
protocol security provides authentication, integrity, and protection against man-in-
the-middle attacks, and message spoofing, injection and replay attacks. Due to the

nature of HMAC, confidentiality of messages cannot be provided.

Checksums generated by HMAC can be appended to existing messages, creating
a measurable and predictable overhead for each message. The system’s overall
strength relies on the security of the hashing mechanism being used. Thanks to the
implementation of nonce values, HMAC is not significantly affected by hash
collisions attacks when compared to a hashing algorithm alone. [48][66] This allows
more efficient hashing algorithms like MD5 to be used, reducing computational

overhead for embedded field devices.

3.4.5 Integrity Assurance Using Hashing Algorithms

One-way hashing algorithms are an integral component of most integrity and
authentication security mechanisms. Hash functions provide a non-reversible
mechanism for mathematically reducing data into a reasonably unique, fixed-length
value. Algorithms like MD5 and SHA-1 are most commonly used, although both have
recently been shown to be weak. [44][48][66][83] When appended securely to a
message in transit, these algorithms provide a way to ensure data has not been

modified or inadvertently corrupted in transit.

Hashing algorithms, by design, are slow to compute. This is common to all

hashing algorithms in order to resist brute forcing attacks used to recover the
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original data. These algorithms are meant to provide integrity only, not
authentication or encryption. However, they may be used by various security

mechanisms (e.g.: HMAC) to provide an authentication component.

Their strength is proportional to the effectiveness of the hashing algorithm used
within the system. Common hashing algorithms like MD5 and SHA-1 are considered
weak. [44][48][66][83] In particular, MD5 is susceptible to collision attacks,
allowing an attacker to pad legitimate messages with random data that produces a
valid hash value. [83] In addition, SHA-1’s computation complexity has recently been
diminished by approximately 21% through the use of pre-computation. [79] This
increases the risk of a successful brute force attack. Properly implemented hashing
algorithms will implement a session-unique salt value. This ensures that static or
predictable messages always produce a wunique digest value, even when

retransmitted.

3.4.6 Security Wrappers

One alternative to integrating security controls within a new SCADA protocols is
to package legacy protocols inside a security wrapper. Although this provides
effective security and full backwards compatibility, this approach to security creates
too much computational overhead and increased bandwidth requirements. [26][37]
In addition, security wrappers tend to envelope the whole communication packet
within a crypto system. This may provide confidentiality, authentication, integrity,
and high availability (through denial-of-service mitigation); however, it adds
needless computational overhead. [12][28][41] In fact, the fundamental confidential
nature of security wrappers is entirely needless in SCADA systems: it is very clear
“from members [...] throughout the industry that it [is] not necessary to protect data

from being overheard [...].” [35]
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The implementation of security wrappers will be discussed in the following

sections.

3.4.6.1SSL/TLS

Detailed information about the use of SSL/TLS within SCADA networks is

discussed in section 3.4.2.

3.4.6.2 IPSec

Internet protocol security (IPSec) is a network-layer security mechanism
capable of protecting IP communications, regardless of the transportation protocol
being used. It provides a security wrapper for all communications between two
network hosts. This ensures the integrity, authenticity, and availability of all
network communications. In addition, it provides inherent denial of service
protection since random data cannot be injected into a network stream. This
thwarts communication stream reset attacks. Mutual authentication is provided
during the communication channel negotiation phase, providing the basis for

establishing a cryptographically secure communication channel.

Although this appears to be a great security solution, as seen in IT networks, it is
not a viable solution for SCADA networks. This is due to its excessive computational
overhead and increased bandwidth requirements. [26][37] In addition, field devices
employing various embedded operating systems may not have the ability to
implement IPSec communication channels. [51][56] This prevents [PSec from being

a viable solution to SCADA’s inherent security problems.
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3.4.6.3 Payload Encryption

Generally speaking, payload encryption can be implemented at multiple layers
of the open systems interconnection (OSI) model. This can be seen in the
implementation of payload encryption within IPSec, or even application-layer
public-key encryption. Payload encryption provides confidentiality, integrity, and
possibly authentication (depending on implementation), preventing attackers from
performing passive traffic analysis on network communications. Additionally, it

protects against packet modification, injection, and replay attacks.

Primarily, payload encryption is considered a waste of time and resources when
implemented, as it detrimentally increases the computational and bandwidth
requirements of SCADA systems. [26][37] Most importantly, it is “very clear
direction from members [...] throughout the industry that it [is] not necessary to

protect data from being overheard [...].” [35]

3.4.7 Secure DNP3

Lastly, improvements to legacy SCADA protocols do exist. Secure DNP3 is a
secure version of the DNP3 protocol that provides application-layer security while
still allowing full backwards compatibility. [35] It provides packet spoofing,
modification, and replay protection while delivering device authentication using the

challenge-response security model and pre-shared keys. [35]

This improved version of DNP3 permits an authenticator device (i.e.: a MTU or
collector) to, at any time, request the sending device answer a challenge. When a
challenge is received, the sender will authenticate itself using the challenge value
and a HMAC calculation. In order to reduce computational complexity, in some cases
challenges can be reused for additional packets. This system does not need to

authenticate all packets; authentication is done selectively. [35] Additionally, this
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protocol works well in non connection-oriented networks, particularly over

transportation layer protocols like UDP. [35]

Because message confidentiality is not required in SCADA systems [35], secure
DNP3 does not provide this security mechanism. Additionally, the protocol provides
perfect forward secrecy [35]; the divulgence of one key does not significantly impact
the security of the overall system. This protocol improvement provides a great

example for future improvements to other SCADA protocols.

3.5 Incident Detection Using Intrusion Detection Systems

Naturally, SCADA systems differ greatly from traditional IT networks in many
ways: they tend to have a static amount of client devices, their communication flows
are predictable, communication protocols are often proprietary, and the importance
of availability is crucial. Due to the hard availability nature of SCADA, many

traditional IT security protection and mitigation mechanisms prove to be ineffective.

Traditionally, computer networks lacking real-time protection mechanisms rely
upon intrusion detection technologies to alert administrators about possible system
breaches. However, these traditional IDSs are not capable of accurately detecting
SCADA attacks, as many vectors are not identical to those seen in typical networks.
[93] In particular, the mitigation of zero-day exploits (for example, the multitude
used in the Stuxnet attack) is difficult due to vague information regarding current

SCADA attack vectors. [93]

In the following sections we will explore current research regarding the use of

various intrusion detection algorithms within SCADA networks.
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3.5.1 Intrusion Detection Overview

Regardless of underlying security event detection algorithms, all intrusion
detection systems (IDSs) are responsible for monitoring either a single host or
network link in real time for possible security events. Traffic and related data are
analyzed for malicious content or violations of preconfigured security policies. Two

main types of IDS systems exist: host-based and network based. [3]

Host-based IDS systems are responsible for protecting endpoint assets like
servers, workstations, and infrastructure devices. This type of IDS may detect a
variety of attacks, ranging from malware infections to exploit payloads destined for
the protected host. Generally speaking, host-based IDS systems aim to detect a
plethora of attacks aimed at the monitored host. This type of detection in depth
provides a well-rounded picture of the health of a network, at the cost of increased

computational overhead and reduced situational effectiveness. [3][93]

Conversely, network-based IDS systems are used to detect the presence of, and
sometimes even protect against, network-based attack vectors. These IDS systems
are typically deployed inline on critical network segments. For example, they are
often deployed between a corporate intranet and DMZ to detect incoming attacks.
Network-based IDS systems are capable of being passive or reactive depending on

organizational requirements. [3][93]

Both types of IDS systems rely on a variety of mechanisms for detecting possible
attacks. These security event detection algorithms rely on a variety of approaches to
detect and mitigate events, ranging from malware detection to the identification of
statistically anomalous connections. Once possible attack vectors are identified, the
IDS system typically pushes alerts (and associated log information) to an external
security event manager (SEM) responsible for archiving and alerting administrators

of events.
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Over the years IDS systems have evolved into highly effective mechanisms for
detecting both known and novel attacks against network devices. Unfortunately,
many of these robust and effective IDS systems are not directly transferrable to
SCADA environments: the incomparability between traditional IT and SCADA
networks creates a novel set of attack vectors and risks unknown to current IDS

algorithms. [93]

Currently multiple surveys exist that overview all current approaches to
retrofitting IDS systems within SCADA networks. However, the usage of various IDS
technologies is often criticized, particularly within the realm of Modbus TCP
networks. Drawing from a plethora of sources, most surveys have described how an
intrusion detection system must be coupled with human intervention and other

security technologies in order to be truly effective. [93]

Furthermore, current efforts in the realm of SCADA IDS development are shown
to be largely ineffective. One survey noted that most authors have not “tested [their
methodologies] on real operational SCADA system network traffic to validate [their]
assumptions.” [86] In addition, critical investigations into current approaches to
SCADA IDS deployments revealed the ineffectiveness of any single event detection
technique. One author showed how current IDS technologies designed for SCADA
networks failed to protect environments where communication protocols were
"proprietary and [...] often undocumented or ported from insecure serial protocols

to an Internet protocol (IP) network stack.” [86]

Naturally, an ideal SCADA-specific IDS system should rely upon a variety of IDS
technologies to provide detection in depth. The integration of multiple security
event detection technologies can provide a layered approach to event detection,

removing any single point failure.

In the following subsections, I will provide an overview of all current network-
based IDS algorithms used to provide security event detection in SCADA systems.
We will not look at host-based IDS systems, as they are infeasible to deploy on most

proprietary and embedded SCADA devices. As we will see, no single technology
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exists that provides a perfect security solution for detecting security events on

SCADA networks.

3.5.2 Signature-based Intrusion Detection Systems

The first line of defense used by most simple and legacy IDS devices is a
signature-based intrusion detection algorithm. This rudimentary approach to event
detection relies up a set of pattern-based signatures that can be used to detect the
presence of attacks. These signatures are generated for specific exploits or attack
vectors and offer little flexibility when used to analyze network traffic. As network
traffic flows through a signature-based IDS system, it is analyzed for traffic
conforming to known attack signatures. If a signature is detected, an alert is
generated and sent to an external security event manager. In some cases, this type of

IDS is even capable of dropping traffic conforming to known attack signatures.

Unfortunately, the sole use of attack signatures creates a catch-22 situation:
generic signatures do not cover a broad number of attacks, whereas some signatures
must be explicitly created to detect specific attacks. [4][93] Typically, signature-
based IDS algorithms can be subverted through the slight modification of an attack
pattern or payload - sometimes the fragmentation of packets can even provide
detection avoidance. [4] Generic signatures commonly focus on traditional IT
infrastructure exploits and related attacks (e.g.: viruses, worms, shellcode, etc.);
however, these vulnerabilities are only a subset of the total attack vectors impacting

SCADA networks.

Luckily, some SCADA protocol specific signatures have been created, allowing
signature-based IDS systems to be more effective in SCADA networks. Most notably,
DigitalBond has developed attack signatures for the popular open-source Snort IDS
software. [5][70] These signatures are capable of detecting rudimentary attacks

against popular ICS protocols like DNP3 and Modbus.
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Unfortunately, IDS signatures designed to detect attacks over proprietary
SCADA protocols tend to be ineffective due to vendor-specific implementations of
each protocol. [4] Furthermore, these signatures are not capable of detecting zero-
day attacks, with the exception of repurposed malware conforming to known
signatures. [4][93] These IDS systems create a situation in which both false-
positives and false-negative rates are high - obviously not an ideal solution for

sensitive and critical SCADA networks.

3.5.3 Anomaly-based Intrusion Detection Systems

Another fundamental approach to security event detection uses anomaly-based
IDS algorithms to detect possible attacks. These systems rely upon the detection of
anomalous system, network traffic, or protocol behaviours to classify network traffic

as malicious.

Anomaly-based IDS systems rely heavily on heuristics to identify and classify
network traffic. Heuristics algorithms compare traffic to a known baseline to detect
anomalous traffic. [14][91] When anomalous behaviour is detected, traffic is logged

or dropped and an alert is sent to an external security event manager.

Heuristic-based IDS systems are able to reliably detect anomalous traffic - port
scans, network foot printing, man-in-the-middle attacks, etc. - but are incapable of
detecting sophisticated attacks over legacy SCADA protocols. [91] For example, an
attacker may successfully manipulate an SCADA system using legitimate, albeit
forged, communication packets that appear to be from legitimate sources. These
attacks often target weak and security-free legacy SCADA protocols like DNP3 and
Modbus. IDS systems developed for IT networks were not designed to detect such

attacks and provide little to no protection when deployed in SCADA networks. [91]

Because these systems rely on a learning period for baseline generation, an

attacker can slowly manipulate a baseline to ensure a specific type of attack goes
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undetected. [14][91] Furthermore, if an attacker is present on the network prior to
the device being installed, they are able to fully manipulate the baseline creation
process - this allows the full subversion of this detection mechanism. Finally, the
network ‘features’ used for baseline modeling are difficult to select yet highly impact

the effectiveness of this type of IDS. [91]

Studies have showed how anomaly detection can be used in various SCADA
networks, enabling the detection of malicious modifications to monitored systems
regardless of the devices being used. By using real data collected from an SCADA
network over a period of a year, and injecting random erroneous numbers into said
data, one author was able to mathematically measure the effectiveness of his
proposed technique. [14] In this study, anomaly was shown to be particularly
effective when detecting small abnormalities - resulting in an overall false-positive
rate below 4%. Naturally, this appears to be a good fit for SCADA networks

considering their static and predictable nature.

Although anomaly-based IDS systems do not provide a catchall solution for
SCADA environment, they do provide a better alternative to rudimentary signature-
based IDS systems. The proper implementation of anomaly-based IDS algorithms
may provide a plausible approach to event detection if integrated with additional

security event detection technologies.

3.5.4 Flow-based Intrusion Detection Systems

Contrary to other IDS methods used in SCADA systems, flow-based IDS
algorithms tend to work extremely well due to the static devices and predictable

network flows present in SCADA networks.

As mentioned previously in this document, SCADA networks tend to have a
static number of network devices that are infrequently added or upgraded.

Furthermore, each device has a single purpose and tends to communicate with a
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static number of devices to perform its tasks. [10] Because of this static nature, it is
feasible to create a mapping between all possible host combinations on the network
to define which protocols are used between devices, including the direction of
communication flow. This can effectively create a network traffic baseline capable of

detecting anomalous communication patterns through flow analysis.

This flow-based approach to intrusion detection can effectively detect brute
force network reconnaissance scans while also detecting advanced attack vectors
like device impersonation and network pivot attacks. [10] To create a baseline for
flow analysis, an IDS device needs to monitor the SCADA network during an initial
learning period. As new devices are added to the network, these changes need to be
explicitly added to the network baseline. Alternatively, the IDS system can be put

back into learning more for a short period of time.

Once the network baseline is created, traffic flowing through the IDS system is
compared to the flow-based network baseline. Traffic not conforming to the baseline
is marked as malicious, thus pushing an alert to an external security event manager.
Depending on the specific environment in which the device is deployed, some flow-
based IDS systems can terminate all connections not conforming to the network

baseline.

By monitoring communications in various parts of the network, flow-based IDS
systems can be used to detect network-level inconsistencies. Naturally, this is
heavily reliant on the proper and accurate generation of a network baseline.
Furthermore, if man-in-the-middle attacks go undetected, packet modification
attacks are capable of subverting flow-based security controls since these

communication streams conform to the network baseline.

It is possible that flow-based IDS algorithms can provide an almost perfect
security event detection mechanism for static and predictable SCADA networks;
however, they do not provide a catchall solution for detecting all types of attack
vectors. Ideally this type of IDS would be deployed with additional technologies to

provide a well-rounded approach to security event detection.
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3.5.5 State-based Intrusion Detection Systems

Unlike typical anomaly-based detection techniques, state-based IDS systems are
capable of providing introspection into SCADA protocols. This allows the security
mechanism to identify protocol payloads that fall outside pre-defined thresholds and

system state goals. [19][33][34]

This detection technique, similar to deep packet inspection, can detect cases
where attackers are attempting to fuzz SCADA protocol implementations on
network devices. [19] Fuzzing attacks can be used to identify poorly secured SCADA
devices that may be susceptible to overflow and logic-based remote exploits. State-
based IDS algorithms are capable of detecting both payload data unit anomalies -
like malformed packets, fields exceeding standard lengths, etc. - and application data

unit discrepancies, like invalid function codes being sent to remote devices. [19] [34]

By conforming SCADA system knowledge into a baseline “virtual image” state
machine, this type of algorithm can use customized rule languages to identify
malicious SCADA network states. [19][33] This provides deep insight into the
overall operational state of the SCADA environment, providing the ability to detect
patient and knowledgeable attackers attempting to slowly transition a SCADA

system to an unstable state.

Although it is possible to define specific critical states in SCADA systems, rarely
is such a state invoked through a single action within the system. Rather, attacks
tend to be multi-faceted. By correlating low-level monitoring and state detection
with general information about the state of the whole system, this type of IDS

system can successfully detect attacks with low false-positive rates. [19][33][34]

We must note that a state machine’s effectiveness is determined by the quality
of its baseline and accuracy of its mapped states. Previous studies have shown how
state-based intrusion detection systems, when coupled with traditional signature

detection methods, can provide a robust approach to security event detection. In
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addition, the deployment of state-based IDS systems allows SCADA operators to

identify potentially dangerous situations within the monitored environment.

3.6 Incident Detection Using Honeypots

One major security event detection mechanism exists that is capable of
providing effective event detection and forensic information collection with no false
positives: honeypots. Honeypots are virtual (or physical) systems designed to mimic
real network devices and services, potentially luring attackers away from
production systems. Honeypots come in a variety of forms, ranging from simple
network connection listeners to full-blown emulated services capable of interacting
with attackers. These systems can be combined into honeynets to create large-scale
deployments capable of detecting security events throughout a large network block.

[21][25][81]

Honeypots are generally used as an effective early-warning system for
identifying attackers already inside the network perimeter. In the case of advanced
persistent threats (APTs), honeypots increase the probability of detecting both APT
attacks and targeted malware. After all, an attacker is very likely to connect to a

honeypot system throughout an attack’s lifecycle.

Primarily, honeypot systems are designed to be very alluring to an attacker: they
commonly host exploitable services and emulate high-risk network devices. These
systems often appear identical to real services in hopes of tricking attackers and
deflecting attacks away from mission-critical devices and infrastructure. The
complexity and detectability of honeypot systems varies from deployment to
deployment and relies heavily on the type of honeypot software deployed.
[21][25][81]
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Since all honeypots are non-production by nature, any connection established
with a honeypot can be considered malicious. Thus, this type of security event
detection mechanism produces no false-positives by design. [21][25][81] Incoming
malicious connections are handled long enough to collect forensic information about
an attack, while real-time alerts are pushed to an external security event manager.
Depending on the interaction level of the honeypot - low or high - an attacker or
automated piece of malware may be fooled long enough to use a zero-day exploit or
other novel type of payload. Naturally, the collection of this type of information
provides invaluable insight into the attacks and exploits directly impacting SCADA

networks.

In the following subsections I will describe the three main types of honeypot
systems: low interaction, high interaction, and tarpits. Finally, the merits and
downsides of each system will be compared and contrasted to provide a well-

rounded view of current honeypot functionality.

3.6.1 Low Interaction Honeypots

The first and most rudimentary type of honeypot is a low-interaction honeypot.
This type of system is designed to listen for, and emulate, a variety of vulnerable
network services in hopes of attracting an attacker. Listeners deployed by this type
of honeypot mimic vulnerable network services by using pre-defined interaction
templates. [21][25][81] These honeypot services are then bound to the device’s

network interfaces and begin waiting for attacks.

Attacks directed towards low-interaction honeypots do not get far before failing,
considering the emulated nature of all listening services. Some low-interaction
honeypot software is capable of interacting with attackers over common protocols
(e.g.: HTTP, FTP); however, this functionality is limited to services explicitly

supported. [21] Because of the low-interaction nature of these honeypots, attackers
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are not commonly fooled into believing services are real. [21][81] Luckily, the mere
presence of a network connection directed at the honeypot indicates the presence of

an attacker.

Although an attacker easily detects low-interaction honeypots, they are
extremely effective for collecting samples of automated malware. Commonly
exploited services are generally supported by all low-interaction honeypots and are
capable of simulating full service exploitation during automated malware attacks.

This results in the collection of malware samples with little to no effort. [21]

Naturally, these types of honeypots do not provide a catchall solution, as they
are not capable of providing detailed forensic information about attacks. However,
their simulated nature facilitates mass deployment while providing extreme
consolidation, low complexity, and low resource utilization. These types of
honeypots are perfect for harvesting malware samples or providing a wide-scale
mechanism for detecting the presence of malicious connections within a network.
Furthermore, their entirely passive nature coupled with non-existent false-positive

rates proves ideal for deployment within SCADA networks.

3.6.2 High Interaction Honeypots

In contrast, some honeypot software is capable of providing a high level of
interaction during attacks while remaining transparent to the attacker. These types
of honeypots - called high-interaction honeypots - provide real, yet fully monitored,

services capable of being exploited. [21][25][81]

Services provided by this type of honeypot tend to mimic deployed software
within the network and aim to deflect attacks from critical infrastructure. [25] This
is often done by creating one or more virtual machines loaded with real, exploitable

software. These virtual machines are then monitored either in-band (often through
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kernel-level rootkits) or out-of-band (e.g.: passive network taps) to collect

information about attacks. [25]

Thanks to their high-interaction nature, these types of honeypots are able to
collect detailed information about all phases of an attack. This includes initial
network scans, exploits and payloads used to compromise the host, and actions
taken by the attacker post-exploitation. [21][25][81] Naturally, this information is
invaluable when performing a post-attack investigation. Furthermore, these types of
honeypots are capable of offering insight into zero-day exploits and other novel
attack vectors used within SCADA systems. [21] Like low-interaction honeypots,
these systems are capable of pushing alerts in real time to an external security event

manager.

Unfortunately, deploying these exploitable and sophisticated honeypots comes
at the cost of increased complexity, management overhead, and resource
requirements. [21][25][81] Furthermore, it is possible that the successful
exploitation of high-interaction honeypots can result in the subversion of IDS
software responsible for monitoring the system. Although this can be mitigated
through out-of-band monitoring, this type of monitoring may hamper the collection
of well-rounded forensic information. Generally speaking, the complexity and cost of

deploying this type of honeypot inhibits its use. [21][81]

3.6.3 Tarpits

Finally, some honeypots are designed to solely slow down network
reconnaissance and automated malware attacks against a monitored network. These
honeypots are called tarpits - fittingly named based on their intended functionality.

[11]

Tarpits aim to slow automated connections down to a snail’s pace. These

systems try to significantly hamper the ability for automated malware to propagate,
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as contacting the tarpit causes malware to continually wait for each connection to
terminate. By delaying packets almost to the point of termination, a tarpit can slow

down an attack long enough to trigger administrator intervention. [11]

These types of honeypots are extremely effective when used to detect
automated malware and reconnaissance attacks. [11] Tarpits are simple, require
little resources, and are capable of binding to hundreds of IP addresses with little to
no overhead. Furthermore, their ability to provide attack detection and mitigation

while being entirely passive proves invaluable for SCADA networks. [11]

Unfortunately, tarpits do not provide any useful information regarding attacks
taking place beyond simple connection information. Naturally, this information is of
little use to an administrator, considering additional security event detection
mechanisms may have already detected the presence of an automated attack.
Overall, tarpits provide little use other than slowing down automated connections.
This is especially true considering modern automated malware is threaded and will

not be impeded by having a single connection slowed down by a tarpit.
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Chapter 4. SCADA and Advanced Persistent Threats (APTs)

Advanced persistent threats (APTs) take on many forms, as seen during
numerous hacking incidents highlighted by the media in recent years. [16][24]
Although this term seems vague and all encompassing, the significance of APT
attacks should not be underestimated. In order to understand such attacks and their
importance in industrial control security, one must first define and attempt to
understand APT attackers, their methods, and exploitation strategies they

commonly use.

4.1 Advanced Persistent Threats

The term advanced persistent threat (APT) was coined by the United States Air
Force in the mid 2000’s to identify highly skilled and motivated cyber attackers
capable of infiltrating secure networks. The APT label was commonly used with a
numerical identifier to indicate a specific attacker without disclosing classified

information regarding their identity. [24][47][82]

As years progressed, external security companies like Mandiant and McAfee
began to see APT attacks targeting large corporations in various industries. [49] As
these types of attacks proliferated, the APT label was used to identify similarly
highly skilled and motivated attackers aiming to infiltrate and exfiltrate industry

secrets from private corporations. [24][30][82]

APTs, often working in groups, are usually funded by a third party or are highly
motivated through financial incentives. [12] Financial gain may range from payment
upon attack completion to funds gained from selling extremely sensitive trade

secrets. Unlike typical attackers, APTs may rely heavily on social engineering for
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initial network infiltration, considering the complexity and security controls present

in large, well-secured networks.

One of the most well known APT attacks targeting the technology industry
occurred in 2011 against RSA, a security vendor providing one-time token devices
(RSA SecurelD) that protect companies around the globe. [44] Although the time
frame of the attack was not disclosed, exfiltrated information was sensitive enough
to justify public-disclosure of the attack. This prompted RSA to warn customers that
token devices may be compromised. These types of extremely complex attacks have
occurred elsewhere in following years, including long-term attacks against large

targets like Times Magazine. [71]

4.1.1 Characteristics

Initially, APT attacks appear to be similar to traditional network infiltration
attacks, which have occurred since the Internet evolved out of the primordial ooze of
the 80’s. However, APT attacks (and attackers) differ in a few specific ways. [66]
APTs:

= Have long-term and specific objectives

= Are highly persistent and motivated

» Are funded either by a 3rd party or are financially motivated by post-
operation funding

= Have the resources, tools, and skills needed to attack highly secured
networks

= Have a high risk tolerance, especially in the case of state sponsored attacks

In addition, the timeframes seen in APT attacks tend to be longer than typical cyber
attacks. [66] Statistics compiled by Mandiant indicate that the average APT attack is
sustained over a period of 1 year; while the maximum (known) attack duration was

5 years. [54] Naturally, this highlights the highly persistent nature of APTs.
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4.1.2 Attack Lifecycle

Like typical hackers, APTs generally conform to a lifecycle when exploiting a
targeted network. This lifecycle takes them from initial network infiltration to
creating a foothold and finally exploiting the intended target. [54] Unlike typical
hackers, the tools and techniques used to infiltrate and maintain their foothold in
the target network tend to be more complex. Generally speaking, the APT lifecycle is

as follows:

Define the final target within the target network
Perform reconnaissance

Penetrate the perimeter of the network

Escalate privileges

Create a foothold and maintain a network presence
Perform lateral reconnaissance

Exploit laterally through the network

® N o kW R

Exfiltrate target information/data

The initial infiltration and foothold processes are particularly interesting,
considering their complexity. As mentioned previously, infiltration tactics tend to be
more complex than traditional cyber attacks. Considering the complexity and
security stance of target networks, APTs generally resort to targeting people instead
of servers or workstations. [54] These types of human-based attacks can be used to
bypass network perimeter security appliances. These types of attacks, generally
referred to as social engineering attacks, aim to manipulate people into divulging
passwords, downloading and executing binary files, emailing documents to

compromised accounts, etc. Social engineering attack vectors include things like:

= Spear phishing
* Spy phishing
* (Gaining remote through the supply chain

= Bribery
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= Extortion

Furthermore, APTs generally utilize complex and customized malware/exploits
to maintain network persistence. [12][66] By leveraging custom exploits and
crimeware packs, APT attackers can further reduce the probability of being caught

while furthering their foothold on the target network.

4.1.3 Types of APT Attacks

Generally speaking most APT attacks fall into three general categories: insider
attacks, targeted malware, and network infiltration. These types of specific attack
methodologies will be discussed in detail to further our understanding of our

adversary.

4.1.3.1 Insider Attacks

Unlike the attack vectors and methodologies used by typical hackers, some types
of APT attacks are more evasive due to the use of legitimate insider access and
credentials. In some cases, extremely persistent or motivated adversaries may gain
employment at a target, giving them first-hand knowledge of the network and

providing them with a legitimate network presence.

Although most security hardening guidelines describe the use of defense in
depth strategies for network protection, these types of implementations may be rare
in non-military networks. [30][82] Because of this, the malicious use of legitimate
internal network credential may be extremely difficult to detect or mitigate. In some
cases, network infiltration may not be detected until data begins to be exfiltrated via
the WAN. [12] Furthermore, an APT insider could install software onto internal

network devices to ensure network access even if their employment was terminated.
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Legitimate credentials could be used to escalate privileges locally and move laterally

through a network to the intended target.

Insider attacks usually pose a significant threat to network security and are

generally difficult to detect and prevent.

4.1.3.2 Targeted Malware

Conversely, not all APT attacks rely on skilled attackers performing manual
exploitation. In some well-known cases (e.g.: Stuxnet), APTs have been known to
develop extremely complex malware capable of manoeuvring through an infected

network towards the intended target. [16][31]

This type of highly targeted malware could infect a target network via multiple

infection points. These include:

= Email attachments from seemingly legitimate users (or other types of
related spear phishing attacks)

= Exploiting Internet-facing services at the network perimeter

» Uploading malware to network file servers

= Social engineering users into clicking on links, visiting websites, etc.

* Loading malware on USB drives and leaving them around a business

= Exploiting client machines through watering hole attacks

» Infecting supply chains to jump into the target network

= Infecting remote worker computers

Once the malware has been introduced into the network, it may lay dormant for
a period of time before infecting additional hosts. Over time the malware could
escalate privileges and move laterally throughout the network until the intended
target has been reached. In addition, the malware may connect back to a command

and control server, providing remote access to the target network.
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APT malware may use various techniques to avoid detection and retain network

access. [16][24][31][82] This could be done using:

= Custom packers/crypters/mutators to evade antivirus technologies
= Zero-day exploits to infect other computers

= Stolen certificates to sign its own software (as to appear legitimate)
= Signed drivers to evade antivirus

= Rootkits

= Binders to attach to legitimate software

Modern day malware uses many of these techniques; however, more complex
attacks like stealing signing certificates and using zero-day exploits help
differentiate APT malware attacks due the time and cost associated with such

techniques.

4.1.3.3 Network Infiltration

Lastly, most APT attacks are perpetrated by skilled attackers manually exploiting
a target network. [66] These attackers, sometimes working in large groups (even
thousands, as seen in the case of APT-1 [71]), use various tools at their disposal to
work their way into the target network. This is similar to the attacks discussed at the

beginning of this section.

These types of manual attacks are not uncommon, as seen in the Aurora attack
of 2009 - one of the first well-known APT attacks that targeted a handful of fortune
500 companies, with a focus on stealing trade secrets. [12] The Aurora attacks
started in early 2009 and lasted for most of the year before subsiding. After
collecting statistics and evidence regarding a large number of attacks, Mandiant
determined that social engineering attacks - like spear phishing - were used in most
cases to penetrate target networks. [11] Once inside the network, APTs used lateral

movements to exploit VIP targets and exfiltrate target data. The Aurora attacks
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leveraged zero-day exploits, encryption, and custom exfiltration/obfuscation

techniques to evade detection. [12]

4.1.4 Known Cases of SCADA-Specific APT Attacks

Although the APT cases mentioned so far have primarily targeted corporate
networks, these types of attacks pose a grave threat to every nation’s critical
infrastructure networks as well. Unlike traditional IT networks, SCADA deployments
tend to lack robust security controls, making their exploitation by an APT more
probable. In order to highlight this concern, below are a few well-known cases of

advanced persistent threats attacking SCADA deployments throughout the world.

When considering cyber security incidents pertaining to SCADA networks, three
main events come to mind. First, the Department of Homeland Security’s “Aurora”
simulation; second, the recent state-sponsored Stuxnet attack targeting Iran’s nuclear
facilities; and finally, the disgruntled prospective employee who hacked into a city’s

waste management network in Queensland, Australia. [50][51][52]

To simulate the plausibility of ATP attacks, the Department of Homeland Security
conducted the ‘Aurora’ attack in March 2007 with engineers from Idaho National
Laboratories. This operation aimed to determine the impact cyber intrusions could
have on physical infrastructure. [50][52] The successful execution of a network
attack against a physical asset resulted in the “partial destruction of a $1 million

dollar large diesel-electric generator”. [52]

More recently, the Stuxnet malware attack against Iran’s nuclear facilities
showcased the threat APT malware poses to industrial control systems. According to
Symantec, this attack affected over 100,000 computers (60% of which where in Iran)
and targeted PLC and centrifuge devices. [22] Based on the complexity of the attack,
the small form factor of the code, and insider knowledge required to execute the

attack, some suggest the outbreak was state sponsored. [50][52] This highly
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sophisticated SCADA-specific worm utilized multiple zero-day Windows exploits

coupled with stolen certificates to replicate towards the intended target. [52]

Malware is not the only reason to be concerned about SCADA security, as seen in
the Shire of Maroochy township attack in Queensland, Australia in the year 2000.
Vitek Boden was turned down from a job with the municipality and “hacked into the
city’s wastewater management system. Over the course of to months, Boden
repeatedly drove around the Maroochy Shire Council area issuing radio commands to
sewage equipment and causing over 230,000 gallons of raw sewage to spill into local
parks, rivers, and even onto the grounds of a Hyatt Regency Hotel”. [51] The system
was tampered with approximately 40 times before the attacks were actually

detected. [52] This situation showcased the real risk of insider attacks.

Lastly, although not a cyber security attack, the importance of change
management procedures was showcased in March 2008 in Baxley, Georgia. A nuclear
power plant in Baxley was forced to shutdown when an operator deployed a
software patch to a single computer. This patch caused communications to be

disrupted between two SCADA systems, causing system failure. [36]

4.2 General Mitigation of APT Attacks

The mitigation of highly complex APT attacks appears at first to be an extremely
difficult task - and it is. Currently, little research exists regarding the development of
next-generation security solutions capable of detecting highly sophisticated and
strategically timed attacks. Like protecting against traditional network attacks, one
must focus on mitigating risk through the use of perimeter and interior security

technologies, providing defense in depth for each part of a network. [8][16][30][47]
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4.2.1 Perimeter vs. Interior Network Security

In order to understand the implementation of defense in depth security
strategies, one must first understand the fundamental difference between perimeter
and interior security. Each of these network segments requires specific mitigation

technologies to ensure the protection of the target network.

A network’s perimeter generally refers to its Internet-facing infrastructure. This
could include network components like a DMZ: a special security zone used to host
services like websites, email servers, and databases. Generally speaking, a DMZ is
used to provide some inherent segregation from internal resources. This helps
ensure the exploitation of Internet-facing servers cannot be leveraged to pivot into
the internal network. However, in some cases misconfigured firewalls or DMZ
network configurations may needlessly expose internal services to this type of
attack. Ideally DMZ services would be entirely segregated from internal hosts or, in
cases where this is not possible, should be highly restricted in terms of potential
communication paths. To further protect the DMZ and ensure its isolation,
administrators may rely on network-based intrusion detection systems to detect

and even prevent active attacks against their perimeter.

A network’s interior generally refers to internal hosts and services not intended
to be exposed to the Internet. Such services could include internal email servers,
source code repositories, file shares, etc. Naturally, these internal services may
contain extremely sensitive information, ranging from personal information to trade
secrets. Unlike the network perimeter, the interior is often less guarded against
attacks. [72] Typically, administrators rely on network controls and segregated
/grouped user accounts to isolate access to internal resources. Additionally, host-
based technologies like antivirus and intrusion detection systems may be used to
detect and prevent workstation intrusions. Unfortunately the pliable nature of the

network interior often assists attackers in moving laterally throughout a corporate
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network. This pliability is often difficult to reduce without systematically affecting

legitimate users and the resources they require to complete their jobs.

4.2.2 Defense in depth

As we saw in the previous section, there appears to be a significant difference in
security when comparing the exterior and interior network models. In cases where
the network perimeter is highly secured, APT attackers may resort to exploiting
human weaknesses in order to gain entry into the network. To ensure the overall
security stance of the network is not compromised in this manner, security

professionals must aim to provide defense in depth.

The defense in depth concept generally refers to the deployment and monitoring
of various network and host-based security devices to provide well-rounded
protection for a network. [72] Unlike traditional security controls that focus solely
on perimeter and workstation security, defense in depth must provide equal
protection of infrastructure devices, workstations, and servers throughout the
network. [72] Below are examples of various security mechanisms that, when

combined, can be used to provide this type of protection.

= Protecting the perimeter network:
o Network-based intrusion detection systems (NIDS)
o Host-based intrusion detection systems (HIDS)
o Antivirus on servers
o Server hardening to industry standards
o Use of state-based or application layer firewalls
o Reducing attack surface of servers
o Performing regular assessments and audits
= Reducing the pliability of the interior network:

o Host-based intrusion detection systems
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o Mandatory access control
o Group policy for managing workstations
o Mandatory antivirus installations
o Network access control
o Network-based intrusion detection systems
o Network isolation using VLANs
o Firewalls restricting inter-VLAN communications
= Detecting exfiltration of data:
o Deep packet inspection at the perimeters
o Statistical analysis machines
o Robust and regularly reviewed logging
o Locking down workstations by removing/disabling USB ports, CD-ROM
drives and floppy disk drives
o Restricting protocols allowed to exit to the WAN
o Checking employees when leaving the facility
* Protecting against human manipulation:
o Provide a comprehensive security awareness training program
o Anti-spam and anti-phishing filters to reduce risk of exploitation
o Well-defined consequences for not following security policies
o Acceptable use policies
o Sufficient background screening for new employees
= Physical device protection:
o Physical isolation of datacenter and/or servers
o Man traps
o Biometrics for accessing sensitive areas
o Locks on workstations
o Tamper alarms for opening workstations

o Asset tags for tracking devices

By no means is the list above comprehensive; however, by using various

technologies in conjunction, an administration can provide a sufficient level of
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security for his or her network. This type of defense in depth strategy would make
the exploitation of devices more difficult and could prevent attackers from moving
laterally through a network. These security controls do not ensure the integrity and
security of a network; rather, they aim to reduce the network’s attack surface, while

making the detection of APT attackers more probable. [47][72][82]

4.3 Detecting APT Attacks

Considering the timespan and complexity of APT attacks seen against SCADA
deployments, the detection of advanced attack vectors seems incomprehensible at
times. In order to effectively identify, remediate, and protect against APTs, one must
first understand the strategies used to evade traditional security controls. By
correlating specific evasion techniques with the typical attack lifecycle seen in 4.1.2,
one can break down advanced attacks into components, thus identifying specific

mitigation strategies for each facet of an attack.

4.3.1 Strategies Used to Avoid Detection

Considering the average APT attack duration, it is apparent that the complexity
of such attacks makes detection extremely difficult. As mentioned previously, SCADA
networks tend to avoid integrating high-interaction security controls due to their
effects on network latency and availability. One would assume that lack of
traditional security controls makes APT detection difficult; however, the opposite is
the case. Because of the highly static and predictable nature of SCADA environments,
the introduction of new network devices or communication streams is easily
identified. Below I will discuss the types of strategies that could be used by APT

attackers to evade detection in SCADA networks.
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Generally speaking, in order to evade detection in SCADA networks, APT
attackers need to blend in with normal network operations. [8][30] This could be
done by using legitimate credentials, impersonating devices, or by leveraging highly
targeted zero-day exploits. By attempting to blend in with legitimate network
communication streams, APTs can manipulate devices without being flagged by

security appliances like network intrusion detection systems. [16][47]

4.3.1.1 Use of Legitimate Credentials

Ideally, an APT attacker would attempt to leverage legitimate user or system
credentials in order to avoid detection. In order to gain access to such credentials, an
attacker may perform spear phishing or social engineering attackers, coercing users
to relinquish their credentials. In addition, some SCADA operators do not change
default usernames and passwords shipped with PLCs and other control system
devices. [16][47] Furthermore, the use of shared HMI credentials is more common
than expected within the industry. [16] If an attacker were able to gain legitimate
access to the HMI, SCADA systems could be manipulated in such a subtle way as to

be almost entirely undetectable.

4.3.1.2 Impersonation of Legitimate Devices

Like corporate networks, SCADA infrastructure is also susceptible to highly
sophisticated attacks. Attackers may infiltrate attached corporate networks to gain
access to SCADA infrastructure, or could even be insiders with privileged access and
information. In these cases one must assume the attacker has access to all network
security and infrastructure information. This information would include the number
of SCADA devices (RTUs, MTUs, HMIs, etc.) present on the network, device IP and

MAC addresses, device credentials, protocol-level authentication credentials (if any),
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and user accounts. If an attacker knows this information then one must assume they

are able of perfectly impersonating legitimate devices.

Assuming physical security is present in the SCADA environment, the ability for
an insider to impersonate legitimate devices is extremely frightening. If a rogue
control system device, like a human machine interface (HMI), were introduced into
the network, communications between itself and MTU and RTU devices would
appear perfectly valid and non-malicious. At a high level, such attacks would be hard

to detect.

When legitimate credentials are not accessible to an attacker, he or she may
resort to impersonating legitimate devices or introducing new devices to the SCADA
network. As mentioned earlier, most SCADA protocols (e.g.: Modbus, DNP3) are
easily forged. Because of this, it may be easier for an attacker to impersonate or
replay communications from an HMI instead of attempting to manipulate human
operators. In some ways one could even consider this type of attack extremely
stealthy. Since commands sent to PLCs and other remote devices rarely contain
mutual device authentication mechanisms, the impersonation of an HMI (or similar

control device) would be trivial once an attacker gained access to a network.

4.3.1.3 Leveraging Zero-day Exploits

In cases where human manipulation is not possible or network communications
cannot be easily forged, a skilled and persistent attacker could reasonably procure a
zero-day exploit to assist in network exploitation. These types of zero -day attacks
would be difficult to detect, assuming they do not create a large amount of network

noise.

An attacker could first conduct network reconnaissance to determine the types
of PLC devices and software used within the SCADA environment. Next, the APT

could purchase or illegally acquire the target software or hardware in order to
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perform an offline security audit of the device. This would allow them to potentially
discover a novel exploit for devices or software without resorting to noisy network-
based fuzzing attacks. Considering a multitude of PLC devices have publically
available exploit code, it is not unreasonable to assume the development of zero-day
device and control system software exploits is beyond the capabilities of a skilled

and motivated attacker.

4.3.1.4 Knowledge of Security Mechanisms

Furthermore, information collected during the reconnaissance phase of the APT
lifecycle could be used to identify security mechanisms in place on the target
network. This type of information could be collected by leveraging social
engineering attacks against SCADA operators or through insider attacks. If an
attacker were capable of collecting this type of sensitive information - which they
surely are - it could be leveraged to hone various attacks to avoid detection. This

could include things like:

= Refining network-based attacks to avoid IDS detection

= Manipulating network devices over time to avoid detection

= Not communicating directly with devices that are heavily monitored

= Manipulating remote devices and HMI communication to ensure human

operators are not notified of state changes

4.3.1.5 Use of Covert Channels for Data Exfiltration

Lastly, in some cases internal SCADA information may be significant enough to
justify its exfiltration. Unlike traditional IT networks, SCADA networks are rarely

connected directly to the Internet. Because of this, the exploitation of SCADA
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networks typically occurs by pivoting through attached corporate networks.
[16][47]

In some cases an attacker may be able to exfiltrate sensitive data directly out to
the Internet; however, it is more probable that data exfiltration will occur by
pivoting connections back through a corporate intranet. [12] Once back in the
corporate LAN, an attacker may disguise outbound connections using a variety of

techniques, like:

* Encrypting communication channels

» Uploading data to cloud-based storage sites

» Using email attachments

* Posting to public Internet accounts like Twitter, Gmail, Facebook, etc.
* Hiding data in images and documents using steganography

» Remotely backing data up to a server

4.3.2 Detection of Specific APT Attack Scenarios

After looking at the types of evasive techniques used during APT attacks (as
seen in previous sections), it appears as if detecting such sophisticated techniques is
beyond the realm of existing technologies. In a way this is true - most security
technologies are only capable of detecting a subset of all possible attacks. Stepping
back and seeing the big picture allows one to see that even the most sophisticated

APT attacks follow well-known attack methodologies.

By breaking down the attack lifecycle - and identifying specific techniques used
in SCADA APT attacks - one can create strategies for detecting each phase of
exploitation. Taking all of this into account, the summation of these technologies and
detection strategies can provide detection in depth - a more robust and well-

rounded approach to incident detection.
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4.3.2.1 Network and Device Enumeration Phase

During the exploratory phases of every exploitation attempt, the attacker must
learn about the systems, networks, and environments that are being targeted. This is
referred to as the information gathering phase of an attack. Typically, this
information is not publically available: the attacker must poke and prod at the
network, slowly coercing valuable information out of hardware and software
systems. Without sufficient knowledge of the targeted network, an APT is - at best -
working in the dark. Looking at the average timeline of these attacks, it is clear that

patience and persistence is the key to success.
An attacker can gather infrastructure information in many ways, including:

» Social engineering staff

* (Collecting information through an insider attack

» Actively scanning the network to enumerate devices

» [dentifying software versions by connect to, or using, control software

» Passively listening to network connections and fingerprinting devices using

anomalies in their network stack implementation

These types of information gathering techniques can reveal a plethora of

information about the target network, including:

* Hosts that are online

= DNS names

* QOpen ports and listening services

= (QOperating system versions

* Network layout and depth

» Physical Distance of devices based on their latency

» Likely use of each host

» Location of network gateways and security appliances

» Possible exploits based on network traffic seen (e.g.: SMB, SNMP, etc.)
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Defending against many of these attacks - insider and social engineering attacks
in particular - depends heavily on the development and enforcement of effective
security policies. However, network-based security technologies are capable of
detecting all types of active reconnaissance scans being performed on a network.
This includes actively scanning the network for hosts and other devices, along with
enumerating software running on servers and hosts. These types of reconnaissance
scans tend to be extremely noisy and often rely on brute-force scanning IP ranges
and ports to identify live hosts and services. To a certain extent, these types of scans
tend to get lost in the noise of a typical network, blending in with normal

connections.

Thanks to the static nature of SCADA networks, the detection of these scans
becomes quite trivial. By profiling typical network connections, we can create a
baseline of the network and easily detect anomalous connections. This type of
connection analysis is known as flow-based intrusion detection. The brute-force
nature of many network reconnaissance scans is statistically likely to create a
connection that falls outside of this baseline. Furthermore, the static nature of
SCADA significantly reduces both the false-positive and false negative rate of
incident detection. By coupling SCADA-specific flow-based intrusion detection
systems with traditional IT security technologies capable of detecting information
gathering scans, we can provide a more robust solution for detecting this phase of an

attack.

4.3.2.2 Leveraging Legitimate Credentials

Extremely sophisticated and persistent APT attacks may not always rely on
traditional network reconnaissance scans to detect existing infrastructure and
software. As mentioned previously, it is possible that a patient and cunning attacker
could collect this information through an insider or social engineering attack. In this

case, one must make the assumption that the attacker has an almost perfect
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knowledge of the system: which devices and software are deployed, how everyday
operations are being conducted, where security technologies are deployed on the
network, etc. This type of attacker would leverage legitimate credentials - either
their own, or another’s - to perform system actions by using legitimate control

system software, like an HMIL.

Naturally, this type of attack is the most dangerous and difficult to detect.
Initially it may seem as if the collection of credentials by an attacker would be
difficult, but this is not the case. Legitimate network credentials could be collected

through:

Phishing users (externally or internally)

» Passively or actively sniffing network connections

» Socially engineering users

» Leveraging insider access (use of their own credentials)
» Brute forcing or guessing weak credentials

» Using a software’s default credentials

Some of these attacks seem implausible; however, a large number of SCADA
deployments still use default credentials, exposing their networks needlessly to this
kind of attack. In some cases fear alone - often perpetuated by vendors - is enough
to dissuade network administrators from changing default software and hardware

credentials. [16][47]

The best way to detect an attacker abusing legitimate credentials is to look for
anomalous connections occurring between hosts on the network. Like the strategy
used when detecting the exploratory phase of an attack, one can profile typical
interactions between network software to detect when credentials are being used to
perform actions the control system does not often see. This type of statistical

analysis is capable of detecting both insider and APT attacks.

Furthermore, it is possible to hijack malicious connections part of credential

reuse attacks to collect critical information about the attack and its targets. Hijacking
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suspicious connections and redirecting them to a honeypot can provide insight into
attacks. This will fool the attacker into thinking the action has been successful,
buying an administrator time to respond to an incident and allowing us to collect

forensic and insightful information about an attack.

4.3.2.3 Device Impersonation Attacks

A novel solution for detecting device impersonation attacks involves passively
monitoring devices over the network to generate unique signatures that can be used
to uniquely identify individual devices. Such signatures can be used as a baseline for
comparison when monitoring the network in the future. This approach to intrusion
detection appears to be both simple and effective in the long term; SCADA networks

tend to have a static number of devices that are rarely (if ever) upgraded.

An example of such an attack scenario is when an attacker gains physical access
to a SCADA network running the Modbus protocol. This could be done through
physical intrusion or via any number of network attacks. Once an attacker has
gained access to the SCADA network, he has the ability to inject, modify, or drop any
number of Modbus packets with relative ease. Modbus packets could then be
intercepted via physical or logical man-in-the-middle attacks. This can be seen in

Figure 1.
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Figure 1: A Man-in-the-Middle Attack Between a HMI and PLC

Since most SCADA protocols do not provide mechanisms to verify the integrity
or authenticity of communication streams, communication forging is extremely
trivial. Because of this, an attacker could intercept communications between a HMI
and RTU to modify packet contents and force the remote device to perform an
undesired action. This can be seen in Figure 1. Because the attacker has intercepted
a valid communication stream (merely modifying the packet’s contents), the

communication stream received by the PLC looks perfectly valid.

Another type of attack involves a knowledgeable attacker gaining access to a
SCADA network and introducing a legitimate management or repeater device, like
an HMI or master terminal unit (MTU). The malicious device looks like a legitimate
addition to the network and would be impersonating a device identifier used by a
legitimate network component. By impersonating such an identifier, the malicious
device can interact with other SCADA devices without needing to resort to noisy
network-level man-in-the-middle attacks. These types of attacks are difficult to

detect since the attacker is trying to impersonate a real working device.
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In the case where a new device is added to the network, whether it is
impersonating a real device identifier or not, one can use flow-based intrusion
detection technologies to detect the device on the network. Much like in network
reconnaissance scans, the device will inevitably communicate outside of the
network baseline (likely by creating an IP conflict or introducing itself on a network

segment as a new device), making it detectable.

The same is true in regards to man-in-the-middle attacks: the introduction of the
machine facilitating the attack would be enough alone to detect the attack. If an
exploited network device were used as a starting point for an attack, it is very likely
the communications needed to facilitate a man-in-the-middle attack (e.g.: ARP
poisoning, DNS poisoning, etc.) would have not naturally occurred from that device
in the past. Finally, in many cases traditional intrusion detection systems are easily
capable of detecting such attacks with a high amount of certainty thanks to their
noisy nature. [3][93] By coupling traditional technologies with flow-based intrusion

detection techniques, we can certainly increase the probability of detecting an attack.

If an attacker were to forge communications from a network device, likely using
an existing and exploited intermediary device, it would be significantly more
difficult to detect such connections. In a way, one can almost say that these
connections are perfect by nature: they may conform to a SCADA protocol perfectly,
contain legitimate protocol actions, and may even appear to come from a legitimate
device and IP address. Sometimes these connections may be detectable by flow-
based intrusion detection systems (for example, if the source device doesn’t usually
communicate with the target); however, one must assume the attacker has perfect
knowledge to craft these connections properly. How could one detect a set of forged

packets perfectly conforming to normal communication patterns between devices?

Differences in network-stack implementations on all network devices can
create OSI layer 1, 2, and 3 packet anomalies when forming packets and placing
them on the wire. Often, various protocol options (like TTL, MSS, IP v6 Flow IDs,

etc.) are left up to the underlying operating system after the packet has been formed
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in software. In some cases, these options may never be user-definable (i.e.:
Windows) and may provide some insight into the machine used to create a perfectly
forged connection. By taking these anomalies into account, we can create

fingerprints of network devices and their associated operating systems.
The following metrics can used to generate unique fingerprints for a device:

= [P protocol version
» [nitial TTL value used by the operating system
* Length of [Pv4/IPv6 options parameter
* Maximum segment size
* Window size
*  Window scaling factor
= Explicit end-of-options parameter
= TCP protocol options, like:
o No option
o Timestamp
o Selective ACK
o Window scaling
o Maximum segment size
o Unsupported option IDs
* TCP and IP header vendor implementations, like:
o [IPv6 flow ID
o Don’t fragment bit
o [IPID number
o Must-be-zero field
o Urgent pointer and flag
o PUSH flag
o Explicit congestion notification support
o Sequence number
o ACKnumber

o Window scaling factor
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o Payload size

One of the most popular pieces of network-level fingerprinting software is called
pOf. [45][92] POf is an open-source, entirely passive network-level fingerprinting
tool capable of generating complex, yet accurate, device fingerprints based on TCP
network stack implementation quirks. POf has been shown to be extremely fast and
scalable for network segments of all sizes. In addition it provides API access for
external programs to further streamline its integration with external applications.
When used in TCP/IP environments, p0f “fingerprints the client-originating SYN
packet and the first SYN+ACK response from the server, paying attention to factors
such as the ordering of TCP options, the relation between maximum segment size
and window size, the progression of TCP timestamps, and the state of about a dozen
possible implementation quirks (e.g. non-zero values in ‘must be zero’ fields).” [92]
Furthermore, pOf is capable of using various protocol implementation quirks to
detect remote connection setups (like NAT, modems, connection types, etc.), the
approximate uptime of a device, its distance - in hops - in the network, and even
various firewall technologies on a network. This can all be done without sending a

single packet on the wire.

After the pOf analyzes a packet’s protocol-level anomalies, a fingerprint is

created to identify the device. One example of a device fingerprint is as follows:

*:64:0:*:mss*10,6 : mss,sok,ts,nop,ws : df,id+: 0

Figure 2: An Example Device Fingerprint

During the baseline analysis phased used by flow-based intrusion detection
technologies, one can use these anomalies to create a set of fingerprints for all
network devices. By monitoring and collecting fingerprints for all network

communication streams, we can provide a mechanism for identifying changes in
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these protocol-level quirks, allowing us to detect device forgery attempts. Because
network protocol options and implementations are vendor specific (both at the
hardware and software level), it is sometimes possible to detect perfectly forged
communications based on packet anomalies at layers 1 through 3 of the OSI model.
The specific techniques used to detect these attacks will be elaborated upon in

upcoming chapters.

4.3.2.4 Zero-Day Attacks

Another threat to SCADA networks involves an attacker’s use of novel and
unknown exploits against network services and software. These types of newfangled
exploits are called zero-day attacks. When preparing to defend SCADA networks, one
cannot simply assume that all attacks will be a subset or modification of a known
attack vector. An advanced, persistent, or well-funded attacker could reasonably
identify network devices and software used throughout a SCADA network and could
develop a custom exploit targeting a specific piece of hardware or software.
Although this type of attack may seem implausible at first, the evidence speaks for
itself: the Stuxnet attack alone leveraged multiple zero-day exploits to successfully

exploit the targeted control system. [22][31]

Even if an attacker was not capable of developing a custom zero-day exploit, a
well-funded attacker may opt to purchase such an exploit from criminal networks on
the Internet. Assuming the attacker has already completed the enumeration phase of
the attack, they would then be capable of executing a targeted, efficient, and effective

attack against specific systems with little to no network noise.

Because of the unique nature of such attacks, traditional intrusion detection
controls would be incapable of detecting the attempted or successful exploitation of
targeted devices. In some cases, post-exploitation payloads could be detected by IDS

technologies; however, it is reasonable to assume an APT would be more than
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capable of evading post-exploitation detection through the use of encryption or

other technologies capable of obscuring exploit payloads.

It is still possible to detect these types of attacks by leveraging flow-based
intrusion detection systems. Like many other types of network attacks, zero-day
exploits still require a connection between hosts on the network. Likely, an attacker
using a zero-day exploit would be attempting to pivot through the control system,
slowing working their way towards the intended target. If the connection containing
the exploit were to fall outside the baseline created for the monitored network (in
the case of flow-based IDS), we could detect the attack regardless of the exploit

being used.

In a worst-case scenario, one must assume the attacker has perfect knowledge
of both the system and the security technologies being used to detect attacks. In this
case, an attacker would need to ensure all exploitation attempts conform to typical
network connection baselines. This would significantly hamper their ability to pivot

through the network without raising alarms.

4.3.2.5 Targeted Malware

More in-depth and stealthy APT attacks may rely on the creation and
propagation of customized malware targeting a specific control system. From an
attacker’s perspective, there are many merits to this attack vector: the malware can
be developed offsite without raising alarms pre-attack, the designer can integrate
and automated various exploits to improve the probability of success, and the
attacker can eliminate his presence on the network to reduce the probability of
being caught. From a risk vs. reward perspective, this type of attack makes the most
sense: it creates plausible deniability for both the author and the intentions of the

malware.
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In a way, customized malware follows the same patterns during an attack, albeit
a nosier version. The malware still needs to scan the network for target hosts before
launching an attack against a specific device or service. This initial scanning creates
significant noise on a SCADA network (due to its static nature) and is detectable by
flow-based intrusion detection systems. Furthermore, the exploits used by the
malware to propagate (whether known or novel) require the malware to create
payloads that reach the target. Naturally the spray-and-pray method of viral
propagation would inevitably create an anomalous communication stream within

the monitored network.

In more simple cases, it is fair to assume that both traditional and variants of
known malware could be easily detected and removed using traditional network or
host-based anti-malware technologies; however, customized malware is often
capable of avoiding detection by even the most advanced antivirus and antimalware
software. To adequately protect critical control networks against targeted malware
attacks, we must assume the attacker has sufficient knowledge or resources to

create a piece of malware capable of evading antimalware technologies.

The effective detection of such attacks can only occur when coupling traditional
anti-malware technologies with flow-based intrusion detection systems. This
detection in depth approach to malware detection would significantly reduce the
probability of false negatives when monitoring control networks for malware

attacks.
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4.3.2.6 Exfiltration of Data via Covert Channels

Lastly, in some cases internal SCADA information may be significant enough to
justify its exfiltration. Unlike traditional IT networks, SCADA networks are rarely
connected directly to the Internet. Because of this, the exploitation of SCADA
networks typically occurs by pivoting through attached corporate networks.
[12][16] Thanks to the isolated nature of SCADA networks, the detection of data
exfiltration attempts can be fairly simple. Ideally, communication streams leaving
and entering the network should be highly controlled. Very few legitimate
communications need to leave a SCADA network. Some examples of legitimate data

streams could be:

= Pushing logs or historical data to offsite mirror servers
» Sending relevant information to corporate business logic servers

= Sending alerts to security staff

These types of communications are highly predictable by nature. Because of this,
controlling them would also be simple through the proper deployment of network
perimeter firewalls. If SCADA security deployments tightly restricted
communication channels leaving the network (e.g.: deny all, with limited exceptions),

data exfiltration would be extremely difficult for an attacker.

Furthermore, the detection of attacks that successfully bypass perimeter
controls is possible through the use of flow-based intrusion detection systems. Like
our methods for detecting other types of attacks, flow-based IDS is capable of

detecting anomalous connections anywhere in the network.
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4.3.2.7 Summary of APT Detection Technologies

The following tables summarizes the methods an APT attacker uses to avoid

detection, and indicates which proposed mitigation technologies are most effective

for detecting the appropriate type of attack. [3][8][16][24][30][47][93]

Traditional | Flow-Based Network Stack Honeypots
IDS IDS Fingerprinting
Network and Yes Yes YES Yes
Device
Enumeration
Use of No Yes No Yes
Legitimate
Credentials
Device No No Yes Yes
Impersonation
Zero-day No Yes No Yes
Exploits
Targeted No Yes No Yes
Malware
Data Exfiltration Yes Yes No No

Figure 3: APT Attack Vectors vs. Detection Technologies

As one can see, it is possible to detect the use of each technique using multiple

approaches to intrusion detection. By not relying on a single technology for

intrusion detection, one can increase the probability of successful incident detection

while reducing the rate of false-negatives.
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Chapter 5. Detection in Depth Algorithm and Architecture

Given the reliance on, and the importance of, SCADA infrastructure, the
identification and mitigation of APT threats should be considered paramount.
Current security solutions aiming to mitigate both traditional and APT-style attacks
put a heavy emphasis on the detection and management of a small subset of possible
attack vectors. This limited focus does help increase overall security in specific areas
of a SCADA network; however, it does not provide robust and effective security

controls comparable to those deployed in non-SCADA networks.

Over time the lack of effective and well-rounded security controls for SCADA
networks has created an ever-increasing need for a security solution capable of
providing impactful and reliable security event detection and mitigation. This
chapter presents a novel solution that delivers a SCADA-specific detection in depth
algorithm capable of countering SCADA-specific advanced persistent threats. By
integrating multiple algorithmic approaches to security event detection, one can
create a security solution capable of managing a plethora of attack vectors while

providing simplicity and consolidation during deployment.

5.1 Requirements for Countering SCADA APTs

One must strictly outline both the design goals and detection capabilities of a
SCADA-centric security solution to ensure any proposed algorithm can provide both
detection in depth and effective incident detection while not negatively impacting

network performance.

Fulfilling these requirements requires the development of a solution and security

event detection algorithm that is:
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1. Capable of detecting and alerting on various types of attacks, ranging from
network enumeration to advanced device exploitation

2. Integrating the best parts of various technologies to create a well-rounded
intrusion detection framework

3. Capable of intercepting data streams and collecting forensic information to
assist investigations

4. Efficient while not significantly increasing network latency

Only when these criteria are fulfilled, can one truly provide a detection in depth
security solution suitable for most sensitive SCADA networks. In the following

subsections I will go over these functional requirements in detail.

5.1.1 Providing APT Incident Detection

From an attack detection standpoint, an ideal security event detection solution
should be contained within a single entity capable of detecting and handling various
types of standard and advanced SCADA attack vectors. This solution must be
designed specifically for SCADA environments to increase its overall effectiveness, as
traditional security event detection algorithms often fail in SCADA environments

(see 4.3.2 for more details).

Furthermore, a viable security solution should provide a high level of
effectiveness not through a single technology, but by leveraging many incident
detection strategies to provide detection in depth. If implemented properly, the
solution should be capable of detecting all types of attacks outlined in the following

subsections.
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5.1.1.1 Network and Device Enumeration Phase

The beginning of every network intrusion attempt starts with network and
device enumeration. Often the attacker will poke and prod the network using
various tools and strategies to gather a well-rounded understanding of the network
infrastructure and security devices. These types of enumeration scans are usually

quite noisy and easy to detect.

The proposed inline security event detection solution should be capable of

detecting all kinds of network enumeration attacks, including but not limited to:

= Pingscans

= Portscans

* Vulnerability scans

= Router and network enumeration scans

=  Anomalous network connections

By placing a heavy emphasis on detecting these preliminary scans, one can
provide an early warning system for administrators, allowing them to investigate

the source of exploitation early in the attack lifecycle.

5.1.1.2 Device Impersonation Attacks

One must not solely rely on enumeration phase detection to provide an early
warning system in SCADA networks. Rather, one must make the assumption that all
attackers are capable of detecting network infrastructure devices or security
appliances while staying concealed - likely via passive network monitoring or social

engineering attacks.

At this point one must focus on detecting specific types of attacks while

assuming the attacker has perfect knowledge of the system being monitored.

86



Specifically, the ideal security event detection algorithm should be capable of
identifying APTs impersonating legitimate network devices or intercepting and

modifying packets in transit.

In the case of a man-in-the-middle attack, a viable security solution should be
capable of detecting network packet interception attacks through the use of
signature-based or flow-based IDS algorithms. As mentioned in section 3.5.4, these
types of intrusion detection systems are capable of detecting most man-in-the-

middle attacks with a high level of accuracy.

More importantly, in non-man-in-the-middle attacks, an attacker may attempt to
inject packets into the SCADA network with the hopes of perfectly impersonating an
existing and legitimate SCADA device. A viable security event detection solution
should be capable of detecting such attacks even if application-layer payloads are
perfectly impersonating legitimate communication streams. Detecting such
advanced attacks can be done using both network stack fingerprint techniques (as

outlined in upcoming sections) and flow-based intrusion detection systems.

Combined together, these detection strategies should enable the detection of
packet impersonation, modification, and replay attacks, denial of service conditions,

man-in-the-middle attacks, and active sniffing attempts

5.1.1.3 lllegitimate Credential Use

Continuing to assume the worst-case scenario, there may be times that an
attacker has such perfect knowledge of the SCADA system that they are capable of
collecting and using legitimate network device credentials. This is particularly true

in the case of social engineering attacks.

Although it is almost impossible to detect when legitimate credentials are being

abused, one can still look for anomalous use of credentials to aid in exposing
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potential attacks. This has the benefit of detecting both APT attacks and insider
attacks at the same time. Detection of such attacks can be done using SCADA-specific

flow-based intrusion detection techniques.

5.1.1.4 Zero-Day Exploitation

In cases where a persistent attacker has managed to subvert security controls
capable of detecting network enumeration scans, one must be able to detect highly
targeted - yet novel - security exploitation attempts against remote devices. To
detect such an attack, one must combine traditional IDS mechanisms (like
traditional signature-based IDS) with SCADA-specific security technologies. By
utilizing a flow-based network baseline, we can potentially catch zero-day

exploitation attempts falling outside of typical network communication boundaries.

For example, an attacker may attempt to mass-exploit a set of PLC devices using
a previously unknown exploit. By initiating a parallelized attack of this nature, it is
probable that an attacker will initiate a connection from an infected machine that
would not typically communication with a specific targeted device. Although this
does not indicate a zero-day attack specifically, it would allow us to detect a
potential attack and collect relevant forensic information for a thorough

investigation.

5.1.1.5 Covert Channel Detection

It is possible that a skilled and motivated attacker may be capable of subverting
even the best security event detection algorithms. In this case, it may still be possible
to detect highly advanced attacks by identifying the data-exfiltration phase of an

attack.
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Some attack scenarios may involve the eventual extraction of confidential
information from the target network. Many techniques exist to exfiltrate data from
exploited networks without raising any alarms; however, they still require an
attacker to initiate an outbound connection to an external server capable of storing
extracted data - this type of service would likely exist either on the Internet or on an
exploited computer within the corporate Intranet. In either case, it is possible to
detect data exfiltration attempts by comparing outbound connections with a known

flow-based network baseline.

Although detecting such an event would indicate an attack was almost
completed, it could provide significant forensic information to aid in an investigation.
Furthermore, the detection of a data exfiltration attempt could give us the
opportunity to hijack such a connection to collect additional information about the

attack and attacker.

5.1.2 Intercepting Malicious Connections and Collecting Forensic Data

Some might argue that the detection of events alone is not sufficient for a
security algorithm providing detection in depth. To collect the highest amount of
relevant attack data, the proposed solution must also be capable of hijacking and
monitoring connections that have a high probability of being malicious. This type of
connection hijacking should be transparent to the attacker, while enabling the
collection of relevant forensic information about an attack. Special attention should
be paid to exploratory network connections (i.e.: port scans): these connections
should not be blatantly hijacked or dropped, as to reduce the probability of an
attacker detecting the presence of the security appliance. Rather, exploratory
connections should be handled strategically by mimicking the expected behaviour of

the underlying network.
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Intercepted connections should be sent to a just-in-time honeypot that is
capable of emulating a variety of known and unknown network services. By
intercepting malicious communications, we can learn about the techniques used by
the attacker and also collect extensive attack information in the case of a targeted or

automated attack.

5.1.3 Solution Efficiency

As mentioned previously, low latency in a SCADA environment is paramount.
Traditional IT security appliances deployed inline on a network may introduce
additional latency, causing connections to drop or SCADA information to become
stale. Any type of deployed algorithm should ensure that processing overhead does
not introduce any network latency or reduce link throughput rates, except in the

case of a fully hijacked connection.
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5.2 Architectural Overview

Now that all algorithmic and architectural requirements have been strictly
defined, I can provide some relevant insight into the proposed SCADA-specific
detection in depth algorithm and underlying architecture. Furthermore, one can
show how the proper design and implementation of such a solution can provide the
desired detection in depth functionality while conforming to the requirements set

out in the previous section.

From a logical operations perspective, the proposed security solution consists of
a series of components working together to provide incident detection and

mitigation.
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Figure 4: Logical System Components and Data Flows
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Assuming the solution is implemented as a physical appliance that can be placed
inline on a network segment, the security event detection algorithm software is
capable of intercepting, sorting, analyzing, and redirecting all traffic flowing
between two points on the network. This is done using the following internal

components of the architecture:

1. Network Bridge: Used to tap the network segment and intercept traffic

2. ebtables: A userspace application used to control the Linux Kernel firewall
at OSI layer 2

3. iptables: A userspace application used to control the Linux Kernel firewall
at OSI layers 3-7

4. NFQUEUE: A userspace packet queue allowing user-defined programs to
analyze and accept/drop incoming packets

5. Analysis Engine: A custom application facilitating the analysis and
classification of network packet flows via a custom security event
detection algorithm

6. Honeypot: A just-in-time (JIT) honeypot application capable of
dynamically handing and analyzing malicious connections

7. Connection Monitor: A passive network sniffer used to collect forensic
information about suspicious connections

8. Snort IDS: A lightweight network intrusion detection system

The complete architecture of the security solution, including the internal
components facilitating traffic interception and analysis can be seen in Figure 4.
These internal components work together to provide the main functionalities for
detecting security events. The system’s main functionalities include: intercepting
networking packets, analyzing packets contents and context, handling clean,
malicious and suspicious connections and sending alerts to an external security
event manager. Each of these functional components is described below, while the

security event detection algorithm is presented in section 5.3.
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5.2.1 Intercepting Network Packets

The first step for all security solutions or network monitoring applications is to
actually intercept network traffic. This can be done in one of two ways: using a
passive - and thus, non-invasive - network tap device (either physical or logical), or
by creating a man-in-the-middle condition between two network devices. In our
case, the man-in-the-middle approach works effectively considering the security
appliance is already deployed inline on a network segment. Furthermore, this

approach allows us to modify and hijack packets transparently and on the fly.

Once packets have been intercepted for analysis, the proposed userspace
security event detection algorithm is capable of reading the raw packets from a
queue, analyzing them for security threats, and deciding what should be done with
each packet. If the packet is deemed malicious, the security engine may forward the
packet to the just-in-time-honeypot. Otherwise, the packet may be marked as clean

or suspicious and will be re-introduced into the network.

5.2.2 Analyzing Packet Contents and Context

Once traffic is successfully intercepted, a detailed analysis is performed on every
packet. This is the core aspect of my security event detection algorithm seen in

section 5.3.

Taking queued packets as input, my algorithm first separates each part of the
packet, isolating the IP and Transport layers to ease analysis. Next, the entire packet
is fingerprinted (discussed in detail in section 0) and associated data is stored for

later use.

After the packet has been fingerprinted, the flow-based intrusion detection

portion of my security event detection algorithm comes into play. The methodology
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used for malicious packet detection during this phase will be discussed in detail in
section 5.3.2. The packet is then passed through a series of security checks to classify
the packet as clean, malicious, or suspicious. Once the packet has been classified, the

result is logged and the appliance prepares to handle the packet accordingly.

5.2.3 Handling Clean Connections

If the security algorithm has deemed the packet clean and non-malicious, the
packet is passed back to the underlying system for normal processing. This results in
the packet being sent back to the network tap interface and out through the
corresponding physical network card device, eventually reaching its original

destination.

5.2.4 Handling Malicious Connections

In contrast, if the security analysis process has marked the packet as malicious,
it must prepare to send the packet (and upcoming packets part of the connection) to
the just-in-time honeypot software. This is done by forwarding the packet to a queue,

thus passing the packet entirely to the honeypot software for handling.

Naturally, we must also handle upcoming packets that are part of the same
network stream. To handle this issue, the security appliance injects a custom
firewall rule, sending all new packets part of this network stream to the honeypot
queue before being routed. By injecting this new rule, we can ensure all new packets
that are part of the same network stream are also redirected to the honeypot for
handling. Details about the honeypot’s software, its merits, and capabilities will be

discussed in upcoming sections.
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Lastly, because all network streams eventually terminate or expire, we must
track the connection to ensure we can remove the injected firewall rules once
they’re no longer needed. This is done by sending a track request to the security
appliance’s database and requesting the Connection Monitor component to enforce
the injected rule until the stream’s session expires. Detailed technical information
about the internal Connection Monitor software and just-in-time honeypot will be

provided in later sections.

5.2.5 Handling Suspicious Connections

Finally, there may be conditions that cause a packet to be marked as suspicious
instead of clean or malicious. This may occur, for example, if a connection passed
most security checks but failed others. Because of the sensitive nature of SCADA
networks, we must not hijack or otherwise impede such connections. Rather, the
connection should be allowed to traverse the network link while enabling us to

collect relevant forensic information about a possible attack.

Like the method used to hijack malicious connections, we are able to monitor
suspicious network connections by sending a request to the internal Connection
Monitor, asking it to track and log all packets part of the network stream. This
ensures the connection is not blocked on the network while facilitating full

connection monitoring.

Detailed technical information about the internal Connection Monitor software

will be provided in later sections.

95



5.2.6 Leveraging Traditional Signature-Based IDS Technologies

Lastly, to further reiterate the detection in depth capabilities of my security
event detection algorithm, we must assume that some advanced attacks may evade
the aforementioned security controls. For example, an exploited machine may create
a valid connection to another host and send exploit code over an approved and

unmonitored channel.

In this case, we can provide another layer of detection by integrating traditional
signature-based network intrusion detection software alongside my own security
event detection algorithm. By using a traditional signature-based NIDS alongside my
custom security engine, we can provide additional detection in depth capabilities
with little computational overhead. In the case of a layered and evasive attack,
traditional signature-based IDS systems may provide additional valuable forensic
information about techniques used by an attacker during a security event. Like
details logged by my own security event detection algorithm, these IDS systems are
also capable of pushing real time security event information to a security event

manager (SEM), alerting administrators about events in real time.

5.3  Security Event Detection Algorithm

We will now take an in-depth look at how my security event detection algorithm
(also referred to as the analysis engine) provides detection in depth through the use
of multiple security event detection technologies. To fully understand the algorithm,
we must understand how a network baseline is created, the technologies and
indicators used for passively generating unique device fingerprints, and how
security incidents are identified in real time. By breaking down incident detection
into a series of test cases, we can identify each component of the algorithm and

provide a well-rounded view of its incident detection mechanisms.
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Looking back at previous sections, we can see how my device’s logical
architecture has facilitated the real-time collection and analysis of packets
traversing the network. In this section we will dive in to the strategies and

technologies used within my analysis engine to facilitate security event detection.

My algorithm detects network security events through a combination of three
main technologies: flow-based intrusion detection, passive device fingerprinting,
and a traditional signature-based IDS framework. How these technologies work
together to solve the requirements outlined in section 5.1 will be discussed in the

following subsections.

5.3.1 Creating a Network Baseline

Before actually relying on my security event detection algorithm, we must first
collect relevant data regarding connections and network flows commonly occurring
on the network. Since SCADA networks tend to have a set of static devices and
connections, the collection of very accurate network baseline information is

plausible. To do this, the algorithm software is initially placed in learning mode.

Learning mode allows my algorithm to passively monitor all connections
traversing a network segment. By passively monitoring the monitored link, we can
collect network flow information that accurately reflects the state of all connections
traversing the monitored portion of the network. Since SCADA systems are so
predictable and static by nature, running my algorithm in learning mode for an
extensive period of time - for example, an entire week - will allow us to identify the
set of legitimate network flows occurring on the network, along with associated

device information.

The collection of an accurate and extensive network baseline is crucial for the

proposed security event detection algorithm; this initial network data will be used
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as a baseline for both the flow-based intrusion detection system and fingerprint-

based detection algorithm components of the system.

5.3.1.1 Learning Network Flows

During the baseline creation process, my algorithm monitors all packets
traversing the network link and logs the following data to a centralized database

(integrated within the analysis engine):

1. Layer 3 Source IP Address
2. Layer 3 Destination IP Address

3. Layer 4 Destination Port Number

Although not all of this information is used during each step of my flow-based
intrusion detection implementation, it provides an adequate overview of common
connections occurring in the network. Combining this information with passive
device fingerprints (as seen shortly) can provide us with a well-rounded picture of

how connections typically behave between two devices on the network.

All collected network flow data is stored in a centralized database accessible by
all components of my security event detection algorithm. Due to their commonality,
only IPv4, TCP and UDP connections were monitored and logged throughout this
process. This could easily be expanded to support additional layer 3 and 4 protocols

in the future.
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5.3.1.2 Fingerprinting Devices

As mentioned previously, flow-based intrusion detection is not the only
technology used by my appliance to detect the occurrence of network security
events. Since | aimed to create a security appliance capable of providing detection in
depth, I decided to leverage passive device fingerprinting technologies as well. The
creation of device-specific and pseudo-unique fingerprints capable of passively
identifying network devices provides an additional layer of detection, particularly in

the case of man-in-the-middle and device impersonation attacks.

The generation of network device fingerprints was done using a custom Python
implementation of the p0Of framework. [92] P0Of is an open-source passive network-
level fingerprinting tool capable of generating highly complex, yet accurate, device
fingerprints based on TCP network stack implementations. [92] POf has been shown
to provide extremely fast and scalable device fingerprinting for network segments of
all sizes. [45][92]

When used in TCP/IP environments, p0f “fingerprints the client-originating SYN
packet and the first SYN+ACK response from the server, paying attention to factors
such as the ordering of TCP options, the relation between maximum segment size
and window size, the progression of TCP timestamps, and the state of about a dozen
possible implementation quirks (e.g. non-zero values in ‘must be zero’ fields).”
[45][92] These layer 3-4 features and options are usually implemented on a per-
operating system basis and tend not to conform to industry standards. These are
referred to as implementation quirks and can be exploited to help passively identify
and verify the identities of network devices. Generally speaking, p0f is used to
passively identify device operating system information; however, this is of little use
to us. Rather, the ability to generate reasonably unique fingerprints for all network
devices - regardless of the device’s operating system - proves invaluable in and of

itself.
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A custom implementation of p0f in Python was used to facilitate full integration
with my analysis engine. Furthermore, the creation of a custom p0f implementation
allowed us to streamline the packet examination process and increase device

efficiency.

When a network connection is analyzed to create a unique device fingerprint,
the following TCP protocol implementation quirks and options are extracted and

used to generate a pseudo-unique device fingerprint [92]:

= Layer 3 protocol version (ver)
= TCP initial time-to-live (iTTL)
= Layer 3 options/extension headers (olen)
= TCP maximum segment size (mss)
= TCP window size (wsize)
= TCP window scaling factor (scale)
= TCP options (layout + order):
o Explicit end of options (eol+n)
o No-op option (nop)
o Maximum segment size (mss)
o Window scaling factor (ws)
o Selective ACK permitted (sok)
o Selective ACK (sack)
o Timestamp (ts)
o Other unknown TCP options (?n)
* [mplementation quirks observed in IP headers (quirks):
o [IPv4 don’t fragment bit is set (df)
o IPv4 don’t fragment bit is set but IPID is non-zero (id+)
o [Pv4 don’t fragment bit is not set but IPID is zero (id-)
o Explicit congestion notification is supported (ecn)
o [Pv4 must-be-zero field is non-zero (0+)
o [IPvé6 flow ID is non-zero (flow)

* [mplementation quirks in TCP headers (quirks):
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o Sequence number is zero (seq-)

o ACKflagis not set and ACK number is not zero (ack+)
o ACKflagis set but ACK number is zero (ack-)

o Urgent flag is not set but urgent pointer is non-zero (uptr+)
o Urgent flag is used (urgf+)

o Push flag is used (pushf+)

o Timestamp is zero (ts1-)

o Peer sent non-zero timestamp in SYN (ts2+)

o Non-zero trailing data in options segement (opt+)

o Window scaling factor is excessive (exws)

o TCP options are malformed (bad)

= Payload Size (pclass)

To generate a device’s fingerprint, primary values listed above are strung
together using a colon as a delimiter. In the case of TCP options and TCP/IP
implementation quirks (items 7-9), sub-values are delimited using a comma
between colons. The layout of each fingerprint is as follows (see list above for

parameter short names).

ver : ittl : olen : mss : wsize, scale : olayout : quirks : pclass

Figure 5: Device Fingerprint Layout

As an example, the fingerprint generated by the security appliance’s host

operating system (CentOS 6.4 with Kernel version 2.5.32) is as follows:

*:64:0:*:mss*10,6 : mss,sok,ts,nop,ws : df,id+: 0

Figure 6: Security Appliance Fingerprint Value
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Whereas one of my client test machines (CentOS 6.4 with Kernel version 2.6.32-279)

yielded a slightly different fingerprint value:

*:64:0:*:14480,6 : mss,sok,ts,nop,ws : df : 0

Figure 7: Client Device Fingerprint Value

As we can see, even a minor Kernel revision change has yielded a slightly
different fingerprint while running on the same hardware platform as the security
appliance. In both fingerprints shown above, IPv4 and IPv6 TCP packets were
observed and generated the same fingerprint - this is denoted by the wildcard
operator (*) at the beginning of each fingerprint. Next, both devices had an initial
TTL value of 64 and a normal variable maximum segment size (depending on the

network link’s parameters) - again, denoted by a wildcard operator.

However, similarities start fading away as we look deeper into the fingerprint
itself. In fingerprint one, the TCP window size appears to be 10x the TCP maximum
segment size, whereas fingerprint two has a TCP window size that appears to have
no relation to the TCP maximum segment size. Furthermore, looking at the TCP
options, we can see that fingerprint one has set the TCP don’t fragment bit with a

non-zero IPID. The same could not be said for fingerprint two.

Like the baseline creation process seen in the above section, accurate device
fingerprinting requires a learning process as well. Luckily, this can be done
automatically as my security event detection algorithm analyzes network packets
during its initial baseline learning process. As device fingerprints are learned, they
too are stored in a centralized database accessible to all components of the

algorithm'’s analysis engine.
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Details regarding the effectiveness of device fingerprinting will be outlined in
the upcoming chapter. For now I will presume device fingerprints to be unique

enough to justify their inclusion in my security event detection methodology.

5.3.2 Identifying Security Events

Now that a viable network baseline has been generated, the algorithm is ready
to begin identifying network security events. In this subsection I will logically
traverse all algorithmic components of my security solution, providing details about

each event detection step and associated underlying technologies.

To protect against advanced and highly sophisticated attacks, we must provide
multiple layered mechanisms to increase the probability of security event detection.
To facilitate this layered approach to attack detection, I will combine both passive
device fingerprinting and traditional network intrusion detection systems alongside
my flow-based analysis engine. By using these three combined technologies, we can
provide detection in depth, further increasing the probability of efficiently and

effectively detecting the most sophisticated and harmful attacks on SCADA networks.

Considering the possibility of collisions between device fingerprints - which
becomes apparent in the following chapter - it makes logical sense to first check
network packets and connections using the most effective mechanism for a SCADA
environment. Naturally, this is flow-based intrusion detection - its highly effective
nature in static and predictable networks makes it an ideal candidate for my

primary approach to security event detection.

As mentioned in the previous section, a network baseline of known connections
and device fingerprints was generated to aid the detection of security events
traversing a monitored network link. Leveraging this baseline required us to make

the following assumptions:
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1. The security solution deployment is capable of monitoring all SCADA (and
other) traffic traversing between two infrastructure devices on a network

2. The monitored network is reasonably static by nature

3. The algorithm’s learning period occurred on a network clean of any active
security threats

4. The algorithm’s learning period was long enough to detect and log all

connections that regularly cross the monitored link

Naturally not all of these conditions are always met. In particular, it may be
difficult to ensure a monitored network is clear of all active threats during the
algorithm’s learning period. Like all other security appliances that rely on baseline
analysis to reduce false positives, the timing of an appliance’s learning period should
be considered best effort. Ideally this learning process would occur during the

inception period of the network and would be sustained of a period of weeks.

Once the network baseline has been created and sufficiently populated, can
begin to consider how the collected baseline information could be used to detect the
presence of anomalous network connections. Following the well-mapped history of
flow-based IDS systems, I derived a set of flows outlining various checks needed to
ensure the validity of network connections traversing the monitored link. This can

be seen in Figure 8.
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As new connections are analyzed by my security event detection algorithm, it

performs the following checks by comparing the connection to the known baseline:

Check 1:

1.1
1.2

1.3

Check 2:

Check 3:

3.1

Check 4

Check 5

Check 6

Does the source host ever communicate with the destination host?
Does the destination host exist?

Does the destination host communicate with other hosts using the
connection’s layer 2 and 3 protocols?

Does the destination host provide the requested service to other hosts
(e.g.: Modbus, FTP, HTTP, etc.)?

Does the source host ever communicate with the destination host
using the connection’s layer 2 and 3 protocols?

Does the source host ever communicate with the destination host on
the connection’s destination service (e.g.: Modbus, FTP, HTTP, etc.)?
Does the destination host provide the seen service to other hosts (e.g.:
Modbus, FTP, HTTP, etc.)?

Does the source’s fingerprint match its known baseline fingerprint?
Has the source host recently triggered a security event?

Does the connection pass all traditional network intrusion detection

system checks (via signature-based IDS)?

It is important to mention that it is not sufficient to just compare connections

against the known baseline and drop/allow packets accordingly, as one of the goals

of developing this algorithm was to provide transparent detection in depth while

limiting the ability for an attacker to detect the presence of the security appliance.

To meet these criteria, we must handle connections strategically by impersonating

the destination host when accepting or dropping connection attempts. Additionally,

we must not recklessly impede connections on the network in case of false-positives.

Using the approach to security event detection outlined in Figure 8, we can

strategically handle connections of all types while providing transparent handling of

malicious and suspicious connections.
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In the following subsections I will break down the algorithm seen above into a
series of checks that, when working in unison, are capable of providing a layered

approach to security event detection.

5.3.2.1 Check 1

First, new connections are compared against the baseline to determine if the
source host has ever communicated with the destination host. If both hosts have not
communicated before, we must dive deeper into the packet before classifying the
connection as either malicious or suspicious. To do this, we next check if the
destination host even exists. If it does not, the connection can be dropped (or an
associated ICMP response can be generated). This may indicate an exploratory
attempt by an attacker and should be logged as such. However, if the destination
host does exist, we must next check if the destination host communicates on the
protocols (layer 2 and 3) seen in the captured packet and provides the layer 4
service being requested. If it does not, like in an unrestricted network, the packet
should be rejected/dropped and logged for future analysis. If all checks pass and the
source simply does not usually communicate with the destination host, we can
assume the connection is malicious. The handling of malicious connections will be

described in upcoming sections.

Generally speaking, failing these initial checks could indicate a brute force
exploratory attempt on the network - for example, a port scan or similar device
enumeration scan. Additionally, a new device added to the network will always fail

initial checks due to its non-presence in the network baseline.
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5.3.2.2 Check 2

If initial checks pass and the source and destination hosts are known to
communicate, we must re-check if they do so over the layer 3 and 4 protocols seen
in the monitored connection. If the hosts do not usually communicate using the
observed layer 3 and 4 protocols, the connection should be rejected or dropped as to
not raise alarms. Naturally, the connection should also be logged to the external
security event manager (SEM), as it is suspicious by nature. Generally speaking, this
type of alarm could indicate a strategic network exploration attempt or a network

device being used as a pivot point for an attack.

5.3.2.3 Check 3

Not all packets can be dropped or rejected! If the source and destination are
known to communicate over the observed layer 3 and 4 protocols, we must not
reject packets sent to a layer 4 service legitimately provided by the destination. This
leads us to the next check. If the destination does not provide the requested layer 4
service (e.g.: Modbus, FTP, HTTP, etc.), the connection should be dropped/rejected
and logged to the SEM. However, if the destination does provide the service, the
attacker must have some foreknowledge of the destination system. Since previous
flow-based IDS checks have already failed (i.e.: the hosts don’t usually communicate
via the requested service), we can assume the connection is malicious and handle it
according. Generally speaking, this may occur when an attacker with foreknowledge
of the network performs a targeted attack against a specific host in hopes of evading

flow-based IDS systems.
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5.3.2.4 Check 4

If these initial checks have passed, we are dealing with a connection that has
made its way into the baseline during the security appliance’s learning processes. At

this point, all flow-based IDS checks have occurred and passed.

However, we cannot assume the connection to be clean at this point. What if a
skilled and knowledgeable attacker has perfect knowledge of the network (as may
be the case in insider attacks)? We must assume that they are capable of pivoting
between network systems only using connection sequences conforming to the
network baseline, thus evading all forms of flow-based intrusion detection.
Furthermore, attackers without perfect knowledge of the network may be capable of
evading flow-based IDS by performing man-in-the-middle attacks on the network
and modifying packets on the fly. This too would evade all traditional forms of flow-

based IDS.

To solve these issues, we must couple flow-based IDS with additional

technologies to provide detection in depth.

These leads us back to the device fingerprinting technologies discussed in
section 0. As mentioned previously, during the security appliance’s learning process
we generated one or more fingerprints for each device communicating on the
network. Leveraging this, we can now check if the monitored connection conforms

to the fingerprint baseline created during the learning process.

This device fingerprint check is done by creating a device fingerprint on the fly
as each packet is analyzed for security threats. Once this real-time fingerprint is
generated for the source device, it can be compared to the known baseline
fingerprint value to determine if the host device has changed in any way. If the
fingerprint process passes, we can be reasonably assured that the connection is

clean and can pass it off to the next detection technology. However, if the fingerprint
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process fails, the connection should be considered malicious and should be handled

and logged accordingly.

5.3.2.4 Check 5

If all checks so far have passed, we can look at historical security event data to

determine the probability of the source being malicious.

First, historical security event information is polled to determine if the source
has recently triggered a security event. If a recent security event has occurred -
based on the threshold set by the appliance operator - the connection should be
considered suspicious and should be monitored accordingly. The handling of
suspicious events will be discussed in upcoming sections. If the source has not
recently triggered a security event, the connection is considered clean and is ready
to be passed to a traditional signature-based network intrusion detection system for

further analysis.

5.3.2.6 Check 6

It is quite possible that a skilled attacker with perfect knowledge of the network
could have bypassed all security checks up to this point. For example, an attacker
may have gained access to a network device and performed a perfectly crafted one-
time attack against another network device using known clean communication

streams.

In accordance with my detection in depth approach to security event detection,
we should pass all final connections through a traditional signature-based network
IDS. This intrusion detection system should be capable of checking for known attack

patterns, shellcode and malware embedded in packets, and other common attack
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elements. For this purpose, I chose to integrate Snort as a final detection point
within my architecture. Snort has an extensive history of providing efficient and
effective signature-based detection of network attacks while providing both passive
and reactive technologies capable of handling security events. [13] More details

about my use of Snort will be outlined in 6.1.7.

For our purposes, any traditional signature-based IDS can be used to provide an
additional layer of detection and forensic information within my security event
detection architecture. To ensure potential false positives did not impact the
monitored SCADA network, I decided to disable all reactive components of the
chosen IDS, ensuring it stayed entirely passive. Like the capabilities already
integrated into my appliance, the chosen IDS passed real time information about
potential attacks to a 3" part security event manager (SEM) for analysis, alerting,

and archiving.

5.3.3 Handling Classified Network Traffic

Once connections are classified as malicious, suspicious, or clean, they are
handled accordingly. As are we have seen, some connections should be handled
strategically to mask the presence of my security solution. This is particularly true in

the case of a connection destined for an IP or service that is non-existent.

In the following sections I will present, in detail, strategies used when handling
each type of connection and how proper handling can facilitate the effective and

efficient handling of potential security events.
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5.3.3.1 Dropping Irrelevant Connections

First we must focus on the proper handling of malicious connections destined
for non-existent hosts or services. As seen in Figure 8, these connections would be
dropped as they attempt to traverse the security appliance, due to their potentially
malicious nature. To ensure my security appliance remains fully transparent to an
attacker, dropped connections should be handled in the same way a destination host
would manage them - either through a pure packet drop operation or by sending a
ICMP reject response packet. This can be done by marking the packet with a drop

packet request before sending it back to the underlying operating system.

Finally, all malicious packets destined for a non-existent host or service should

be logged and pushed to a SEM to collect relevant forensic information.

5.3.3.2 Sending Malicious Connections to the Honeypot

In contrast, a malicious host may attempt to connect to an existing host in an
anomalous fashion not conforming to the network baseline. The destination host
may both exist and offer the service being contacted, making the requested
connection look seemingly legitimate. When this occurs, a different strategy should
be used to handle the connection properly: it should be handed off to a honeypot to

help collect valuable information about the attack taking place.

Luckily, handing off connections to the honeypot is provided by the functional
implementation of my algorithm. First, an iptables rule is injected into the Linux
Kernel firewall, forcing all packets part of the connection to be sent to a queue for
processing. This essentially bypasses the connection analysis process, handing all
packets part of the connection directly to the honeypot via NFQUEUE. Like my
analysis engine, the chosen honeypot software continually polls this queue, waiting

for new packets to process.
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When a new malicious connection needs to be intercepted, details about the
connection (source and destination information for layers 2-4) are pushed real-time
to the Connection Monitor database, including a last-seen timestamp. As the
connection’s packets continue to flow through the appliance, the connection’s last
seen timestamp stored in the Connection Monitor database is updated. If the
connection begins to time out (i.e.: no packets are received), the last seen timestamp
begins to drift away from the current time and approaches the maximum timeout
value set by the appliance operator. Once this threshold is exceeded, the appliance

assumes the connection has terminated and removes its associated firewall rule.

Similarly, connections terminated via standard TCP procedures are identified as
such, causing their iptables rule to be automatically removed by the Connection

Monitor.

Now that malicious connections are intercepted and handled properly, handing
them off to the awaiting honeypot service is rudimentary. For the purposes of
transparently hijacking malicious connections and collecting relevant information

about an attack, the ideal honeypot solution needs to be:

1. Low interaction, as to collect the greatest amount of attack information while
exhibiting a great amount of flexibility

2. Capable of handling all types of connections dynamically and without a
detectable service configuration period

3. Capable of interacting with attackers over protocols unknown to the
honeypot

4. Capable of collecting detailed forensic information about attacks, including
packet dumps, connection logging, and automated analysis of attack vectors

and payloads

Based on these requirements, one ideal option was apparent: Honeytrap.
[62][89] Honeytrap is a dynamic meta-honeypot capable of handling and analyzing
all types of network-based attacks directed towards the honeypot. [89] While most
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honeypots aim to collect malware samples in the wild, like Honeypot’s predecessor
Dionaea, Honeytrap is capable of capturing the initial exploit used against a
vulnerable service. [89] This is particularly true when it comes to zero-day
exploitation attempts. Furthermore, Honeytrap provides the ability to dynamically
spawn service handlers as packets reach the honeypot. This just-in-time approach to
honeypot service handling ensures that all incoming connections to the honeypot

will have a valid service listening before the packet arrives.

Comparing Honeytrap to other popular honeypot software shows us just how

versatile and ideal Honeytrap is for our situation.

Honeytrap Dionaea [62] Honeyd [61] Nepenthes [9]
[89]

Interaction Level Low Low Low Low
Catches Malware Yes Yes No Yes
Catches Exploits Yes Yes No Yes
Dynamic Servers Yes No No No
Handles Unknown Yes No No No
Services
Packet Logging Yes Yes Yes Yes
Exploit Payload Yes Yes No Yes
Logging
Antivirus Scanning Yes Yes No Yes
Antimalware Yes Yes No Yes
Scanning
Malware Sandboxing Yes Yes No No
Stream/Payload Yes Yes No Yes
Decoding
3rd Party Integration Yes Yes Yes Yes
Support
Report Generation Yes (34 Party) | Yes (31 Party) Yes (34 Party) Yes (31 Party)

Figure 9: Comparison of Honeypot Software
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As we can see, Honeytrap is the only piece of software that meets the criterion
outlined above while providing the largest set of features. Most importantly,
Honeytrap is the only piece of honeypot software providing the ability to
dynamically spawn service listeners before connection attempts are completed. This
feature is crucial to ensuring attack hijacking goes unnoticed long enough to capture

information about the exploit used or malicious payloads deposited.

From an operational perspective, the Honeytrap software deals with inbound
connections using three main components: a general connection monitor, a set of
one or more service listeners, and an analysis/logging engine. This can be seen in

Figure 10.
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Figure 10: Inner Workings of Honeytrap
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Incoming packets marked as malicious by my security event detection algorithm
are automatically hijacked and queued for processing. As packets enter the queue,
the Honeytrap monitor analyzes the packet’s properties and determines which
endpoint destination and service are being requested (i.e.: layers 3 and 4 connection
information). Once the destination host and service have been identified, a
Honeytrap listener is spawned to handle the incoming connection, which begins
listening on the destination IP and port number. This is all done in real time,
ensuring the process completes before the packet arrives at the honeypot. Because
the destination service is spawned just in time, the connection is completed
successfully (regardless of the service) and the source host begins communicating

with the (virtual) destination service.

While this service listener is spawned and is interacting with the connection
source, Honeytrap’s analysis and logging engine begins to collect connection
information and store raw packet data for offline analysis. In addition, the following
analysis steps are performed against the live connection to collect valuable forensic

information about the attack. Connections are checked for:

= Known exploits and exploit code
= Stream compression (streams are decoded if applicable)
= Payloads and shellcode injected into a potential exploit, which are then:
o Extracted from the data stream
o Unpacked or decrypted (if possible)
o Saved to a file for later analysis
o Scanned in real time using a supported antivirus or antimalware
engine

o Executed in a sandbox to collect behavioural information

Upon the completion of these tasks, a full report is generated with details about the

connection, including:

= Layer 2-7 connection information

= Presence of exploit code or shellcode
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= Presence of malware or related payloads

= Length of connection

* Timestamp of connection

= Name of file storing packet capture of incident

= Name of file storing payloads extracted from the data stream

= 3rd party malware analysis report

Thanks to the versatility of the chosen honeypot software, my security appliance
can simply hand off malicious connections into the queue and rely on the robust and
effective Honeytrap software to dynamically handle connections while collecting

detailed forensic information about the attack taking place.

Naturally, an attacker will eventually figure out that the connection has been
redirected to a honeypot; after all, it is low-interaction by nature. However, this is
irrelevant: attack information has already been caught and logged for future analysis.
In the case of known and popular layer 4 service (e.g.: HTTP, SNMP, FTP, etc.),
Honeytrap is so robust that it is capable of handling an entire connection without
alerting the attacker to its presence - this includes emulating full exploitation, and
even a shell, as possible exploit code is “executed.” Furthermore, the flexibility and
open source nature of Honeytrap enables us to develop additional protocol plugins

to facilitate the full and realistic emulation of SCADA-specific services.

5.3.3.3 Monitoring Suspicious Connections with the Connection Monitor

In contrast, some connections may not be considered entirely malicious by
nature. This is particularly true if a connection has passed all flow-based IDS checks,
has a valid device fingerprint (as per the baseline), but the connection source has
recently triggered a security event. At this point we should assume that previously
triggered security events could have been false positives, thus removing our

justification for blocking the connection. Like most security software deployed in
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SCADA environments, blocking connections should occur only when the probability

of the connection being malicious is very high.

To deal with these ambiguous situations, I chose to implement additional
functionality into the aforementioned Connection Monitor component of my
algorithm - this component provides the capability of passively monitoring and
collecting forensic information about suspicious connections. The monitoring
process is extremely similar to tracking malicious connections and sending them to
the honeypot: connection-specific information is collected and used to identify
packets part of the connection that need to be monitored. This connection-specific
information is then injected real-time into the Connection Monitor’s database,
requesting the component to passively collect forensic information about the

connection. This can be seen in Figure 11.
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Figure 11: Monitoring Suspicious Connections

Forensic information about suspicious connections is collected passively using a
custom traffic monitor (called the proxy monitor service) that is spawned as the
security appliance starts up. The proxy monitor component of the security event
detection algorithm continually polls the Connection Monitor database, updating its

list of connections that need to be captured. As tracked packets begin flowing
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through the bridge device, the proxy monitor spawns a child process to monitor that

specific connection.

This child process then binds to the bridge interface using Scapy and a set of
custom Python software. Scapy is an open source Python library capable of binding
to an interface and intercepting raw packets that match a user-defined Berkeley
Packet Filter expression. [15][55] Once packets part of the suspicious connection are
captured, duplicated, and passed to the appropriate child process, the original
packets continue to traverse to the signature-based IDS component - and eventually

the destination device - with no impedance.

Packets captured by a proxy monitor’s child processes are then logged to a PCAP
file as forensic evidence. By storing all connection information to disk in the
standardized PCAP format, we can provide invaluable forensic information to

administrators regarding connections that may have evaded security controls.
The following forensic information is collected about suspicious connections:

= Layer 2-7 connection information

= Presence of exploit code or shellcode

= Presence of malware or related payloads

= Length of connection

* Timestamp of connection

= Name of file storing packet capture of incident

= Name of file storing payloads extracted from the data stream

= 3rdparty malware analysis report (if applicable)

As you can see, the details extracted from the monitored connection are
extremely similar to those collected by the honeypot software. The malware and
payload analysis component of the proxy monitor is actually supported by
Honeytrap - since connections are logged to a PCAP file for future analysis, the PCAP

file is passed in real time to Honeytrap, requesting it to analyze the captured data
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stream. Naturally, this yields the same forensic information just as if the connection

had gone directly to the honeypot.

5.3.3.4 Re-Injecting Clean Connections

Finally, connections passing all criterion listed above are still required to flow
passively through a traditional IDS to further increase the probability of event
detection. All connections exiting both the Connection Monitor and analysis engine -
regardless of their type, either clean or suspicious - are automatically passed
through Snort for additional analysis before re-entering the network. This final
analysis procedure is entirely passive and occurs when packets are injected back
into the bridge device. Any alerts generated by the traditional signature-based IDS
regarding security incidents missed by my security appliance are sent directly to the

external security event manager (SEM) for handling.

5.3.4 Logging and Data Collection

When a security incident is detected by the security appliance, and determined
to fall outside the baseline, the appliance must log this information and push an alert

to a human operator.
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Figure 12: Out-of-Band Security Event Logging

Since Internet connectivity within a SCADA system should not exist, this alert
will likely be sent to an internal security event manager (SEM). As we can see in
Figure 12, the network appliance contains an out-of-band network connection back
to the infrastructure device intercepting traffic. This communication line should be
isolated from other SCADA traffic - either physically or logically - allowing the

appliance to safely send log information to a centralized server.
Logged information should include the following connection information:

= [P addresses

= Mac addresses

= Protocol information

= Baseline fingerprint value
= Detected fingerprint value

= Timestamp

121



= Packet dump of network packets (if applicable)
= Hash of forged network packet dump (if applicable)

* Honeytrap malware and payload report

This information should be logged for future forensic examination. In addition to
this data being pushed to an external security event manager, a mechanism should
be in place to send real-time alerts to a human operator or security officer. If a
syslog server, for example, is set up to send real time alerts in critical incidents, this

will suffice.

5.4 Summary of Algorithmic and Architectural Capabilities

In the preceding sections I have provided a detailed architectural and
algorithmic overview of my proposed security solution. From an architectural
viewpoint, [ have shown the feasibility of developing a security solution capable of
intercepting, analyzing, handling, and even hijacking connections as they traverse

the monitored network link.

Furthermore, an in-depth analysis of the proposed security event detection
algorithm provided a detailed explanation of the various components and security
checkpoints used to classify connections traversing the network. These technologies
included flow-based intrusion detection systems, device fingerprinting algorithms,

historical security information, and traditional signature-based IDS software.

As my algorithm classified connections, those with a high probability of being
malicious were transparently hijacked by my algorithm and sent to a honeypot for
analysis. | have shown how this honeypot is capable of strategically interacting with
an attacker and collecting valuable forensic information about the ongoing attack.
Conversely, a mechanism was provided for passively monitoring and collecting
forensic information from suspicious connections without impeding packet flow

between the source and destination.
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Finally, I have shown the plausibility of integrating multiple security event
detection processes into a single, aggregated event detection algorithm capable of

providing detection in depth for SCADA-specific APT attacks.
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Chapter 6. Implementation and Performance Evaluation

This chapter describes the process of implementing and testing my security
event detection solution, including its effectiveness and efficiency rates. First, I will
give a brief technical overview of the platform used for implementing my algorithm.
Next, for each type of APT attack the algorithm aims to detect, I will define the
testing scenario deployed followed by an analysis of the experiment’s results. Since a
detection in depth approach is used to provide a well-rounded approach to security
event detection and mitigation for SCADA environments, I must break down the
implemented algorithm into components, highlighting the strengths of each when
detecting particular attack vectors. Finally, I will take a step back and look at the
implementation’s overall performance, highlighting its ability to detect and handle

events without impacting network performance.

6.1 Deployment Architecture

The proposed security solution can be implemented as a physical device -
hereafter refered to as an inline security appliance - with all components required
for attack detection and interception integrated into a set of modular software
loadable on a single computing device. For development and testing purposes, I used
a virtual machine running on traditional server hardware. Leveraging
infrastructure-as-a-service cloud computing (IaaS) allowed us to recreate a real
SCADA environment while placing the security appliance inline between two

network infrastructure devices, as seen in Figure 13.
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Figure 13: Deploying an Inline Security Appliance

Once the device was placed within the simulated SCADA environment, [ could focus
on choosing the underlying operating system and network-level redundancy

technologies needed to make the device truly effective.

In the following sections [ will go over the specific technologies used to develop

my prototype and its security event detection algorithm.
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6.1.1 Hardware

Due to hardware constraints I chose to leverage my access to an existing
infrastructure-as-a-service (laaS) virtualization platform to ease development and

testing of my security appliance.

By leveraging the laaS platform, I was able to easily recreate the SCADA
environment seen in Figure 13 while ensuring my security appliance was able to
both access underlying hardware resources and intercept all communications
between two infrastructure devices. Full hardware virtualization allowed us to
simulate running software on a physical rack-mountable server while the flexibility
of IaaS allowed us to ensure all traffic flowing through the infrastructure switches

was forced to flow through the security appliance.

Furthermore, the underlying hardware settings where chosen to closely mimic a
real 1U or embedded appliance device with access to a decent processor and little
random access memory. By reducing the amount of memory and CPU power
available to the appliance, I was forced to create an application that was extremely

memory efficient and capable of running on limited hardware.
The hardware chosen (and minimum system requirements) is as follows:

= Dual core Intel processor @ 2.53 GHz
= 2GBRAM

= 80 GB hard drive

= 3x1000 MB Intel E1000 NIC

It is possible for the security appliance to also be deployed on small form factor
ARM-based devices, assuming the minimum system requirements above can be met.
Additionally, it is possible to power such an embedded ARM-based device using
existing Power Over Ethernet (PoE) technologies. This can further reduce the

hardware and deployment requirements for the proposed device.
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6.1.2 Network-Level Redundancy

During the development phase I chose not to leverage network-level
redundancy protocols like Link Aggregation Control Protocol (LACP) and Virtual
Link Aggregation Control Protocol (VLACP) thanks to existing redundancy provided

by the underlying infrastructure-as-a-service platform.

If deployed in non-virtualized environments, as will likely be the case for real-
world implementations, ideally each network connection between the security
appliance and an infrastructure device or SEM should be layer 2 redundant. Bonding
pairs of network interface cards using redundancy-centric protocols like LACP and
VLACP can deliver an ideal level of redundancy, while providing additional

throughput.

6.1.3 Network Placement

Since my security event detection algorithm needs to analyze network streams
traversing through the SCADA network, the appliance device should be placed
between two network infrastructure devices. By no means is a single deployment
location ideal - security appliances should be deployed strategically throughout the

network based on the policies and procedures governing the SCADA environment.

Looking at Figure 13, we can see that the inline security appliance is capable of
intercepting and analyzing all network flows between the top set of devices (e.g.: the
HMI) and the endpoint devices located on the second infrastructure switch.
Naturally, in order for the HMI to send requests or responses to the PLCs in this
diagram, communications must traverse the link between the two infrastructure
devices. This results in the communication stream traversing the network link
monitored by my appliance device, subsequently facilitating the analysis and

interception of all packets.
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However, if the HMI device were to push logged data to the data historian, the
network communication stream will not flow across the monitored link. In this case
we would need multiple security appliance deployments to monitor each section of

the network effectively.

6.1.4 Operating System and Analysis Engine

From the start, [ designed my security appliance software to run on a plethora of
Unix-based operating systems. For development and testing purposes I chose
CentOS 6.4 (64-bit) with kernel version 2.5.32, due to familiarity. Any major Linux or
Unix variant is capable of running the security appliance software; however, major
Linux distributions like Debian, Fedora, and CentOS tend to make deployment easier

thanks to their easy to use and well-rounded software package managers.

To assist in the interception, analysis, and hijacking of monitored connections, I
relied upon a set of commonly used and open-source Linux software packages,
primarily: ebtables, iptables, NFQUEUE, Python, various Python libraries, and
Honeytrap. Each of these software packages is free to use and modify, thus providing
us with the freedom to tweak and integrate each component into an optimized and

singular analysis engine.

6.1.6 Just-in-Time Honeypot Component

For the just-in-time honeypot component of my solution, I chose to integrate the
open-source Honeytrap software. [62][89] Honeytrap is a dynamic meta-honeypot
capable of handling and analyzing all types of network-based attacks directed
towards the honeypot on the fly. [62][89] While most honeypots aim to only collect

malware samples in the wild, like Honeytrap’s predecessor dionaea [62], Honeytrap
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is capable of capturing initial exploits used against a vulnerable service. [89] This is
particularly true when it comes to zero-day exploitation attempts. Furthermore,
Honeytrap provides the ability to dynamically spawn service handlers as packets
reach the honeypot. This just-in-time approach to honeypot service handling
ensures that all incoming connections to the honeypot will have a valid service
listening before the packet arrives. Furthermore, Honeytrap provides the ability to
detect, analyze, and report on payloads detected in network streams. This analysis
can be done automatically as the honeypot handles incoming connections, or can be
done by reading stored historical PCAP data. Naturally, this met my implementation

goals and was an ideal fit within my algorithm.

6.1.7 Traditional Signature-Based IDS Component

For the traditional signature-based IDS component of my solution, I chose to use
the open source and robust Snort network intrusion detection system. Snort is a
signature-based network intrusion detection system (NIDS) capable of detecting a
plethora of attacks, ranging from port scanning to post-exploitation payload
injection. [13] It can perform real-time network stream analysis and logging with
little computational complexity. [13] This NIDS was chosen specifically due to its
efficiency and robustness when collecting forensic information about network
connections. Additionally, it ability to passively analyze threats while providing real-

time alerting to an external SEM proved invaluable to my proposed solution.

6.1.8 Out-of-Band SEM Connection

Although my security appliance is capable of handling and logging all security
events internally, it is advantageous to forward some, if not all, security events logs

to an existing remote security event manager (SEM).
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When the security appliance detects a security event and needs to notify a
network administrator, ideally it would communicate with a SEM out-of-band to
stay covert. Even if the communications with a SEM are encrypted, an attacker that
has subverted the network infrastructure can use the presence of these
communications to determine if an attack has triggered a security event. By
communicating with a SEM out-of-band - for example, using a VLAN or dedicated
physical connection - we can facilitate seamless communication between the

security appliance and SEM without risking an attacker detecting alert messages.
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6.2 Security Event Detection and Mitigation Evaluation

My security appliance’s modular nature requires us to break down the security
event detection and mitigation algorithm into a series of testable and measurable
components. In particular, this breakdown needs to show the algorithm’s ability to
detect each APT attack type, as highlighted in my implementation goals (see section
5.1 for more details). In the following subsections I will define the type of attack
being detected, outline the scenario designed to measure the algorithm'’s

performance in said situation, and analyze its effectiveness.

6.2.1 Detecting the Device Enumeration Phase

Looking at the big picture, we can see that the most fundamental portion of any
attack is the device enumeration phase. Since this phase is crucial for all attacks
where perfect knowledge of the system is not known, it can be considered the best
indicator of a developing or ongoing attack. The successful detection of this phase of
an attack serves as an early warning system, allowing network administrators to
collect relevant forensic information from my appliance while crafting the

appropriate incident response strategy.

6.2.1.1 Scenario and Setup

Generally speaking, network reconnaissance attempts occur in one of two ways:
either passively or actively. Naturally, fully passive network reconnaissance attacks
are impossible to detect if the host device has been fully subverted by an attacker.
Luckily, only a limited set of information about network devices can be collected via

a fully passive reconnaissance attack.
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Because of this, attackers common use active network reconnaissance tools to
enumerate network devices, services, vulnerabilities, and network layouts. Typically
this is done using popular security tools like Nmap, Nessus, and the Metasploit
framework. These tools provide a variety of mechanisms for enumerating network
devices and their corresponding services. Depending on their usage, they are also
capable of connecting to hosts and polling services for identity information. This
allows some tools to compare service identities and versions to the exploit

databases to detect the presence of known vulnerabilities.

To assess the capability of my algorithm to detect these types of reconnaissance
attacks, I designed a scenario in which an attacker uses a popular network scanning
tool, Nmap, to enumerate devices and services on a network. In this setup, three
devices were set up on a local subnet: the first, a machine fully compromised by an
attacker; the other two, host machines listening on common SCADA service ports.

The network layout used is seen in Figure 14.
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Figure 14: Device Enumeration Scenario

As we can see, the attacker is located on infrastructure switch number one and

has an IP address of 172.16.0.1. In this network the next contiguous devices are
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located on a different infrastructure switch, simulating the presence of spanning and
geographically sparse VLANs. On infrastructure switch number two, two devices are
connected: a human-machine interface (HMI) at IP 172.16.0.2, and a programmable
logic controller (PLC) at [P 172.16.0.3. The HMI device is providing a web-enabled
HMI control panel on TCP port 80, whereas the PLC device has a listening Modbus

service on TCP port 502 and a web configuration service on TCP port 80.

In this scenario, I created a network baseline where the attacking machine
(172.16.0.1) has only made connections to the PLC device’s Modbus service
(172.16.0.3). This is simulating a network setup where the attacking machine is, say,
a Modbus Master Terminal Unit (MTU) responsible for only polling Modbus PLC
devices on the network. Since its responsibilities are static, as in real SCADA
environments, it should not be observed connecting to the HMI machine, nor the

PLC’s web configuration service.

To simulate a real attacker attempting to enumerate network devices and
services, I used the popular network scanning tool, Nmap. In this scenario, the
attacking machine (172.16.0.1) performs a TCP connect port scan against all 254
possible hosts in the local subnet (172.16.0.0/24). This results in the attacking
machine attempting to perform full TCP handshakes with all hosts on 1001 common
TCP ports. Typically, Nmap scans only attempt to connect to the 1000 most common
TCP services; however, the Modbus service was explicitly added to the list to ensure

the service’s presence was detected.

The following Nmap scan was run from the attacking machine to initiate the

attack:
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$ nmap -3
Starting Hmap 6.48 { http://nmap.org ) at 2814-81-18 14:26 EST
Nmap for 172.16.8.2
Host ’ late ).
open http

Nmap scan report for 172.16.8.3

open http

open Oﬁﬂ—appl—pﬁoto

Nmap done: 254 |P addre (3 hosts up) scanned in 67.16

Figure 15: Scanning for Network Devices

As we can see, the network scan completed and successfully detected the
presence of two live hosts on the network: the HMI and PLC, as expected.
Furthermore, Nmap discovered that the HMI device (172.16.0.2) is hosting a web
server on TCP port 80, and the PCL device (172.16.0.3) is hosting both the Modbus
listener on TCP port 502 and a web service on TCP port 80. These were the only
services configured on each host - both of which were detected easily by the Nmap
utility. From the attacker’s standpoint, two devices were discovered and three
possible vulnerable services were enumerated. This type of preliminary information

is paramount to an attacker during the beginning stages of the attack lifecycle.

6.2.1.2 Observations and Analysis

Now that the network enumeration scan has completed successfully, we are

ready to take a look at the security algorithm’s log entries during the event. Based on
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the scenario outlined above, we should expect that the algorithm has done the

following:

1. Dropped all connections to non-existent hosts

2. Dropped all connections to existing hosts that do not provide services being
requested (e.g.: FTP, SSH, HTTPS, etc.)

3. Forwarded TCP port 80 connections directed at the HMI to the honeypot
instead (since the attacking machine never communicates with the HMI
device previously)

4. Forwarded TCP port 80 connections directed at the PLC to the honeypot
instead (since the attacking machine never communicates with the PLC
device’s service configuration port)

5. Monitored the connection between the attacking machine and the PLC’s
Modbus port (TCP port 502) since a security event has recently taken place

(see above)

Looking at the logs from the security event detection algorithm during the time

of the scan, I saw the following output (snipped for conciseness):
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[snip]
[f1.1][DHNE] tcp:172.16.8
[f1.1][DHNE] tep:172.16.0
[snip]
[f1.1][DHNE] tep:172
[f1.1][0HNE] tecp:172.16.8,
[snip]
[f1.3][0HNS] tep:172.16.08.1->172.16.8.2:2 estination
[f1.3][DHNS] tcp 6.8. .16, nation
[snip]
[f1.4][0HNV] tepal?2 B.
[f1.4][toHD] tecp:172.16.8,
[snip]
[f3.1][0HNS] tep
[f3.11[DHNS] tcp:
snip]
5 s not communicate with destination on target service.

(toHD] tcp:172.16.8.1->172.16.8.3:50 sent to honeypot.
[snip]
[fSI[STSE] tcp:172.16.8.1->172.16.8. 2 - Source has recently triggered a security event.
[f5][toHP] tep:172.16.0.1->172.16.0.3:562 - Connection sent to monitor,
[snip]

Figure 16: Analyzing Security Event Logs

As we can see, the attacking machine attempted to make a variety of
connections to non-existent hosts (as the scan is brute-force by nature).

Connections to non-existent hosts were identified as such and dropped accordingly.

Eventually the scan encounters the HMI device at 172.16.0.2. Connections aimed
at services not hosted by the HMI (e.g.: FTP and SMTP, as seen above) are dropped
and logged. However, once a connection is established on TCP port 80 (HTTP), the
security appliance recognizes an existing service hosted by the destination. This
connection does not conform to the network baseline, causing the appliance to
forward the connection to the honeypot for analysis. The connection is forwarded to
the honeypot just in time, as expected, to ensure the TCP handshake occurs
seamlessly. Looking at the Nmap scan results, we can see that the connection
reaches the honeypot successfully without dropping any packets (else, the port

would show as filtered or closed).
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Next, Nmap begins scanning the PLC device for available services. As mentioned
in the scenario outlined previously, the attacking device is known to communicate
regularly with the Modbus service (TCP port 502) on the destination device. This is
included in the network baseline used by my algorithm when the initial learning
period took place. First, Nmap begins requesting services on the device that do not
exist - these requests are dropped transparently. Next, TCP port 80 is contacted (the
PLC’s service configuration port), triggering the security appliance to forward the
connection to the honeypot for analysis. Finally, TCP port 502 is contacted (note:
this is considered a legitimate communication channel) and the connection is

monitored due to recent security events generated by the attacking device.

Based on the results seen above, the security event detection algorithm handled
all connections as expected: irrelevant connections were dropped, malicious
connections not conforming to the baseline were hijacked and sent to the honeypot,
and suspicious connections were monitored. From these results we can conclude
that the flow-based IDS approach to security event detection has proven effective

during an attacker’s reconnaissance phase.

The detection of such events provides administrators with a first line of defense
- sensing the presence of an attacker poking and prodding the network helps trigger
existing incident response mechanisms, hopefully dealing with an attack before it

develops into something more difficult to manage.

6.2.2 Detecting Device Impersonation Attacks

We should not assume that all attacks begin with a detectable device
reconnaissance scan. This is particularly true when an attacker has detailed or
insider knowledge of the network - perfect knowledge of the system allows the

perfect evasion of flow-based intrusion detection algorithms. If an attacker has such
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knowledge, he can evade these security controls by ensuring all connections

conform to the network baseline.

By conforming all attacks to the network baseline (or a known set of common
connections), an attacker becomes severely limited in the attacks he can perform: all
exploitation attempts must target destination device services that the host has
already contacted. This forces an attacker to pivot strategically through the network,
exploiting and jumping from host to host until the final target it reached. Naturally,

this process is tedious at best.

From the attacker’s perspective, it makes more sense to modify legitimate
packets in transit on the network to inject exploits or values capable of
compromising the targeted system. This can be done easily using man-in-the-middle
and device impersonation attacks. In these attacks, an attacker will attempt to forge
connections to look like they came from a legitimate device - this can be done easily
for all UDP connections or by performing IP or TCP session hijacking attacks.
[16][72] Both session hijacking and man-in-the-middle conditions allow the attacker
to transparently modify or inject data into packets with ease. In either case, network
streams are easily compromised and hijacked to further the goals of an attacker. If
done properly, it may be extremely difficult to detect these types of attacks using

traditional security controls.

Looking back at the security event detection algorithm used by my appliance,
we can see that one main technology is used to combat these types of attacks:
network device fingerprinting. To test the effectiveness of my security appliance’s
fingerprinting algorithm, I designed two scenarios: one to test the overall
uniqueness of fingerprints and another to test the algorithm’s ability to detect IP

hijacking attacks.
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6.2.2.1 Fingerprint Uniqueness Testing Setup

Before diving into the effectiveness of my algorithm, we must step back and
justify the use of device fingerprinting within my security event detection algorithm.
As outlined in pervious sections, there exists a set of IP and TCP related
implementation quirks that can be used to pseudo-uniquely distinguish devices on a
network. Because IP and TCP implementations are both vendor and software-
specific, we can leverage these implementation quirks to generate reasonably

unique fingerprints for network devices. [45][92]

Naturally the variety of implementation quirks is limited at best: there are only
so many possible combinations of IP and TCP header values. Because of this, I felt it
was important to gauge the uniqueness of device fingerprints from a variety of
computing devices. To do this, | developed a Python application capable of initiating
connections with various services on the Internet via web spidering. Because device
fingerprint generation is not reliant on layer 6 and 7 protocols, the most effective
way to harvest fingerprints for a variety of devices was to crawl the Internet,

initiating connections to a variety of web servers.

To test the uniqueness factor of fingerprints, I queried a specified number of
Internet devices (via spidering) and generated a fingerprint for each device. Next,
fingerprints were compared to each other to derive the percentage of unique
fingerprints for each set of hosts. These samples were then retested over a set of
increments to derive an accurate representation of fingerprint uniqueness over a set

of N hosts.
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6.2.2.2 Fingerprint Uniqueness Results

After connecting to and fingerprinting a variety of hosts (totalling 10,050) on
the Internet over a variety of query sizes ranging from 50 to 1000 (increments of

50), I derived the following fingerprint distribution statistics:
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Figure 17: Unique Fingerprint Distribution Over N Hosts

Looking at the collected data we can see an emerging pattern in regards to
unique fingerprint distribution over a set of hosts: the uniqueness factor, regardless
of the sample size, closely follows 40%. However, as the sample sizes increase to
sets of more than 800 hosts, we see a quick tapering off of unique fingerprints. It
appears as if the number of unique fingerprints becomes saturated when sampling
greater than 800 hosts. Looking deeper at the data we can see that this cap equates

to roughly 300 unique fingerprints.

140



After analyzing the data collected above, I concluded that - on average - there
appears to be a 40% uniqueness rate for fingerprints when sampling random
network blocks containing less than 800 hosts. Considering the average network
broadcast domain contains 254 hosts or less, it is fair to assume approximately 40%
of fingerprints are truly unique to a device. Although this seems low initially, this

equates to over 100 potential device fingerprints for a class C network block.

Although fingerprinting devices does not ensure a 100% success rate, there is a
1% chance that an attacker machine will accidentally generate a fingerprint identical
to the host machine being impersonated. This rate is low enough to justify the
inclusion of device fingerprinting technologies within my security event detection
algorithm. Furthermore, as network subnets approach 800 devices per subnet, the

probability of a device fingerprint collision approaches 1/300.

6.2.2.3 Fingerprint Algorithm Testing Scenario

Now that the collision rate between fingerprints has been defined, we are ready
to test my algorithm’s ability to detect real life device impersonation attacks.
Keeping in line with my previous setup, I created a scenario in which an attacker
was capable of performing an IP hijacking attack where he could impersonate a
legitimate MTU device. This can be seen in

Figure 18.
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Figure 18: Device Impersonation Attack via IP Hijacking

As we can see, the attacker has created a feasible IP hijacking condition in which
he can impersonate the MTU device on infrastructure switch number one.
Leveraging this opportunity, the attacker has hijacked the IP address of the MTU
device, claiming it as his own. From the PLC’s (and security appliance’s) perspective,
packets sent from the MTU device appear to be legitimate. Furthermore, by
establishing a connection between the supposed MTU device and PCL device via the
Modbus service (TCP port 502), the attacker has ensured the connection conforms
to the network baseline known to the security appliance. From a flow-based IDS

perspective, this connection passes all security tests and looks 100% legitimate.

To test the accuracy and feasibility of my fingerprinting algorithm, I leveraged
the above scenario where the attacker is using one of two operating systems as his

platform for preforming the attack:

1. Windows XP machine SP3
2. CentOS 6.4 with Kernel Version 2.6.32-279

To simulate the attacker communicating with the PLC device over the Modbus
protocol, a Modbus packet capable of polling one of the PLC device’s registers was
crafted using Scapy. [15] This packet was then injected into the TCP stream to solicit

a response from the PLC device, exactly like in a real Modbus poll request. This was
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done using both attacking host operating systems to test my algorithm’s ability of
detecting both large underlying software changes (Windows XP) and minor

software changes (CentOS).

The PLC device was simulated using a custom piece of Python software running
on CentOS 6.4 with Kernel version 2.5.32. This software was bound to TCP port 502
and listened for Modbus packets containing register read requests. When a read
request is sent to the server, a response is sent back containing an associated
register value. This was done using the pymodbus Python library to ensure all
communications conformed to the Modbus standard. [76] We must note that the
original MTU device used during the creation of the network baseline had the same

operating system platform as the PLC device, for efficiency’s sake.

6.2.2.4 Fingerprint Algorithm Observations and Analysis

During this simulation, connections were initiated between the original device
and the PLC using the two distinct operating systems noted above. In all versions of

the simulation I expected to see the following occur:

1. The connection from the legitimate MTU device passes the fingerprint test
and continued undisturbed

2. The connection from Windows XP failed the fingerprint test and was sent to
the honeypot

3. The connection from CentOS failed the fingerprint test and was sent to the
honeypot, as the operating system’s kernel revision is slightly different than

the real MTU

After running the two simulations and looking at the security event detection

algorithm logs, I saw the following entries (snipped for conciseness):
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Figure 19: Analyzing Fingerprint Algorithm Security Event Logs

At the beginning of this scenario, the original MTU device (172.16.0.1)
connected to the PLC device (172.16.0.3). As we can see in the first log entry above,
the MTU device’s fingerprint conformed to the network device’s baseline fingerprint
value. Because of this, the connection passed all tests and continued on to the

destination without being impeded in any way.

Conversely, in scenario two when the Windows XP machine was used to
impersonate the MTU device, the fingerprint integrity check failed (as seen in the log
above). This is expected, considering the divergence between host operating
systems is significant. Once the appliance detected the device impersonation attack,
the connection was hijacked and forwarded to the honeypot for further analysis.

This was done in real time and totally transparent to the attacking device.

Lastly, in scenario three when the extremely similar CentOS machine was used
to impersonate the MTU device, the fingerprint integrity check also failed. Looking at
the fingerprint values seen in the log shows a variety of similarities in the TCP and IP
stack implementations between slightly different Linux kernel revisions (2.5.32 vs.
2.6.32-279). However, these similarities are undermined by the slight variations

present between each kernel’s network stack implementation. Because of these tiny
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differences, the fingerprint algorithm successfully detected the device

impersonation attack, sending the connection to the honeypot as expected.

Based on these results we can see the effectiveness of detecting device
impersonation attacks using my fingerprinting algorithm. This is true for both major
and minor differences in operating systems used to stage the attack. Although
SCADA environments may exist that have many identical devices deployed, my
fingerprint algorithm creates another layer of detection technology capable of
detecting extremely sophisticated and targeted attacks. Coupling this with other
detection technologies, as per my implementation, allows the fingerprint algorithm

to provide another layer of detection in depth.

6.2.3 Detecting lllegitimate Credential Use

In scenario three I took a look at my algorithm’s ability to detect the illegitimate
use of device credentials. In this scenario, an attacker attempts to connect to a PLC
device’s configuration utility hosted on TCP port 80. No IP hijacking takes place:
rather, a compromised legitimate device (in this case, the MTU at 172.16.0.1) is used
to establish the connection to the PLC device. In this scenario I aimed to mimic a
situation in which an insider with legitimate credentials attempts to bypass security

controls by directly manipulating the PLC device on its configuration service port.

6.2.3.1 Scenario and Setup

Like previous scenarios, the connection between the host device and PLC does
not conform to the network baseline: the MTU device does not regularly
communicate with the PLC device on TCP port 80. To simulate the PLC device’s

service configuration port, I spawned an HTTP webserver on the PLC device that
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required HTTP authentication before allowing a user to modify the PLC’s

configuration values.

Since this scenario assumes the attacker is using a legitimate device to contact
the PLC, I initiated a connection from the MTU device using the built in web browser
on CentOS. This connection contacted the PLC’s webserver, which responded with
an HTTP authentication request asking the user to supply credentials. Normally the
attacker would then input the illegitimate credentials, subsequently gaining access

to the configuration utility.
In this scenario I expect my security appliance to do the following:

1. Identify the connection as anomalous
2. Mark the connection as malicious

3. Hijack the connection and forward it to the honeypot

Furthermore, once the hijacked connection reaches the honeypot, I expect
Honeytrap to mimic the HTTP server being contacted, allowing us to collect the
credentials used by the attacker to gain access to the service. This information is
crucial for identifying the compromised credentials, allowing administrator to

swiftly revoke them.

6.2.3.2 Observations and Analysis

After initiating the connection from the compromised host to the targeted PLC

device, the following showed up in the security appliance’s logs:

SONS] tcp:172.16.8.1->172,16.8.3:88 - Source does not communicate with destination on target service.

3.2][toH0] tep:172.16.0.1->172.16.0.3:808 - Connection sent to honeypot.

Figure 20: Hijacking a Credential Reuse Attack
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As we can see, the flow-based IDS component of my algorithm successfully
identified that the connection did not conform to the network baseline.
Consequently, the connection was hijacked and transparently sent to the honeypot

for analysis.

When analyzing the honeypot logs, I could see the incoming connection
interacting with Honeytrap’s dynamic service component. Next, looking at the
attacking machine’s browser, I could see that the honeypot has successfully hijacked
the connection and prompted the browser to authenticate using HTTP
authentication. After entering credentials into the browser, mimicking a real
attacker, I took a look at the packets captured from the connection via the
honeypot’s logging utility. By opening up the PCAP file logged for forensic purposes,
[ could see the HTTP request made by the attacker’s web browser, including the

plaintext credentials (base64 encoded) used to access the PLC’s configuration utility:

GET /configure.php HTTP/1.1

Host: 172.16.0.3

User-Agent: Mozilla/5.0 (X11; Linux 1i686; rv:22.0) Gecko/20100101 Firefox/22.0 Iceweasel/22.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Authorization: Basic chjYWRtOmFinEyMw=%

Figure 21: Identifying Abused Credentials

As expected, my algorithm has successfully identified the credential reuse attack,
hijacking the connection successfully and collecting relevant information regarding
the attack that took place. Furthermore, the whole process occurred instantaneously
and transparently. Considering this type of attack is extremely plausible in

sophisticated attacks against SCADA infrastructure, [ have shown that even subtle
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attacks like credential reuse can be detected using flow-based IDS technologies. Like
all technologies, this isn’t the silver bullet needed to detect all types of credential
reuse attacks: rather, it is another layered means to increase the probability of

identifying attacks taking place on SCADA networks.

6.2.4 Detecting Zero-Day Vulnerabilities and Targeted Malware

It is possible that some attacks may not require the presence of an attacker
within the targeted network. This is particularly true in the case of targeted malware
attacks, as seen in the Stuxnet incident of 2010. [22][31] Stuxnet, a highly targeted
and complex piece of malware, was used to automatically infiltrate SCADA networks
worldwide. This malware leveraged multiple zero-day exploits to facilitate its

propagation towards the target. [22][31]

Because of the high level of risk associated with zero-day vulnerabilities
combined with targeted malware attacks, it is crucial to measure the effectiveness of
my proposed algorithm against such attacks. Some might say these attacks are the
Achilles heel of many current SCADA security solutions - this is particularly true

with zero-day exploits, considering their novel nature.

6.2.4.1 Scenario and Setup

To gauge the effectiveness of my security event detection algorithm in
circumstances where an attacker has leveraged both zero-day exploits and
customized malware, I decided to combine both attacks into a single attack vector.
Naturally this formulates a worst-case scenario in which to test my security event

detection algorithm. The designed test scenario should highlight my algorithm’s
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ability to both detect the presence of self-propagating malware and the use of novel

exploits.

For this scenario [ designed a situation in which an automated piece of malware
is self-propagating and attacking a single remotely exploitable SCADA service. To
keep things relevant to real-life SCADA deployments, I set up a network host running

the ABB MicroSCADA software on Windows XP SP3.

ABB MicroSCADA is a piece of centralized substation automation software used
to interact, control, and log data from various SCADA devices. [1] This software is
designed to run on Windows systems and provides a listener service on TCP port
12221. ABB MicroSCADA Pro SYS600 version 9.3 has a well-known remote code
execution vulnerability allowing attackers to remotely control the device, including
spawning a remote shell. [69] This vulnerability was discovered in April 2013 and
has been openly published in the OSV database. In addition, a Metasploit framework
module was published, providing attackers with an easy-to-use tool for exploiting

vulnerable hosts.

To emulate a true zero-day vulnerability, I verified that no attack signature
existed in Snort that was capable of detecting this specific exploit. Next, the
MicroSCADA software was set up on a Windows XP SP3 machine at IP address
172.16.0.4. As a platform for mounting the attack, I reused the attacker machine
used in all previous scenarios - this machine was located at 172.16.0.1. To ensure
real working exploit code was injected into the vulnerable service, the Metasploit
framework was installed to assist in the exploitation attempt. Finally, a network
baseline was created in which the attacking machine did not access the vulnerable

host.
In this scenario I expect my security algorithm to:

1. Detect the service identification phase of the attack

2. Drop all packets destined to non-existent hosts
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3. Hijack malicious connections destined toward the vulnerable host and send

them to the honeypot

Once connections are hijacked and sent to the honeypot, I expect the just-in-time
honeypot to interact with the simulated malware, emulating a full successful
exploitation attempt. Logs should then be created that provide detailed information

about the code and techniques used to successfully exploit the target.

6.2.4.2 Observations and Analysis

To simulate the vulnerable service identification portion of the automated
malware attack, I first scanned the local subnet for devices hosting the MicroSCADA
service on TCP port 12221. This was done using the open source Nmap tool. Scan

results can be seen in Figure 22.

$ nmap -sT -p 12221 172.16.8.1-254

Starting Nmap 6.48 { http://nmap.org ) at :

Nmap scan report for 172.16.8.4%

latenc

open unknown

Figure 22: Scanning for Vulnerable Hosts

Upon the completion of the enumeration scan, I can see that Nmap has

successfully identified the vulnerable host at 172.16.0.4. Looking at the security
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algorithm’s logs, I can see that the scan attempted to connect to all hosts in the local

subnet and successfully interacted with the target host. This can be seen in Figure 23.

[DHHE] tep: 12,16,
[DHHE] tl::p:

ot communicate with destination in this manner.
sent to |‘l|:|r|E‘.g[2n:lf..

Figure 23: Viewing Connection Logs

As we can see, probes destined for nonexistent hosts were dropped, as expected.
However, as the scan worked its way through the subnet, it eventually tried to
contact the vulnerable host. Since this type of connection between the attacking host
and vulnerable service is not present in the network baseline, the connection was
hijacked in real time and sent to the honeypot for handling. This conforms to the

expected behaviour of my security algorithm.

Now that the malware has completed its vulnerability scan and accrued a list of
potentially exploitable targets, it will attempt to exploit each target in an automated
fashion. To simulate this type of blind attack, I used the Metasploit framework’s ABB
MicroSCADA exploit module to attack the host machine. After simply specifying the
target IP address and running the module, [ managed to successfully exploit the

target and got a reverse shell. This can be seen in Figure 24.

151



> hand
pPDg

~ progr

~ progr

[, -

Trying to delete
Trying to delet

ft Hindo
(C) Copyright 1

C:%Documents and Settingsh

Figure 24: Successfully Exploiting the Target

Looking at the output above, we can see the exploit code and payload were
uploaded successfully to the target, causing a Windows command line shell to be
sent back to us. In a real-world scenario, a piece of automated malware may
alternatively inject a payload capable of creating a backdoor on the target or
executing a set of malicious commands. In this scenario [ focused on simply gaining a

remote shell.

Now that the exploit has completed successfully, we should expect that the
honeypot has collected a useful set of forensic information about the exploit used.
This information should assist an administrator in recreating the vulnerability and

creating a viable remediation strategy.

Looking at the honeypot logs for this specific event, we can see that the zero-day

exploit and associated payload were captured fully. This can be seen in Figure 25.
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¢ echo ARARRARAAAAARARRARAARAAARRRARARAAAARRRARAARAAARRRRARAAAARRRAARAAARARRARAARARAARARRAAA

Figure 25: Capturing Zero-Day Exploit Code

At first glance it is very apparent what is going on: the exploitable service allows
the use of an Execute command capable of executing arbitrary commands on the
host machine. Likely, this execute command requires some level of authentication

before passing commands to the underlying operating system.

Looking further down the list of captured data confirms this presumption: we
can see that a buffer overflow exploit is taking place, as indicated by excessive
payload padding with the ‘A’ character. This padded payload is then stored to a file
called owQAm.b64. Based on the naming convention and payload content, we can
safely assume that this exploit requires the generation of a payload long enough to
successfully create a buffer overflow condition on the target service. Naturally, this
exploit code is encoded using Base64 to ensure non-printable characters are not

corrupted in the Windows terminal.
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echo data

echo Dim wl, w

Figure 26: Capturing Additional Zero-Day Exploit Code

Continuing on, we can see that the original payload is being decoded on disk and
turned into a Visual Basic Scripting (VBS) executable. Shortly after the malicious VBS
file is executed, a reverse shell connection is initiated and received by a Metasploit
listener. Finally, temporary files are deleted from the target to remove any evidence
of the attack. This attack resulted in the full exploitation of the target machine,
providing us with a limited shell on the target device. This limited shell could then
be escalated into a full System user shell via any number of well-known Windows

privilege escalation exploits.

As we saw in the security event logs above, the connection was successfully
identified as being malicious and was redirected to the honeypot. This fooled the
malware into interacting with the honeypot and attempting to get a shell
Furthermore, the Honeytrap software was able to emulate the target service well
enough to facilitate the collection of detailed forensic information about the attack.
This information was then analyzed, enabling us to reverse engineer the attack and
determine the exploit used. Packet captures from the event could then be used to
generate Snort signatures capable of detecting and blocking attacks using this

previously unknown zero-day attack.
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6.2.5 Detecting Data Exfiltration Attempts

In some cases we must assume that a highly skilled and persistent attacker is
capable of evading even the most complex and layered security technologies. When
this occurs, we can presume that the attacker has successfully manipulated the
SCADA system into conforming to his goals. Furthermore, we can assume that the
attacker may want to exfiltrate sensitive data from compromised hosts to one or
more centralized Internet hosts. This may be of particular concern if an insider has

managed to subvert security controls and gain access to sensitive documents.

This threat should not be ignored, even if the attack has already taken place. The
successful interception of data exfiltration attempts can provide extremely valuable
forensic information about the attacker, documents and files being targeted in the
attack, and Internet-facing servers assisting in the attack. Together this information
helps create a better understanding of a security event when conducting a post-

incident investigation.

Because of this, I will test the effectiveness of my algorithm when data
exfiltration attempts occur on a SCADA network. I expect that my security event

detection algorithm will:

1. Identify the anomalous outbound connections
2. Hijack outbound connections

3. Collect useful forensic information about data exfiltration attempts

My algorithm’s effectiveness will be tested by simulating a compromised host

attempting to exfiltrate a sensitive document to an Internet server.
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6.2.5.1 Scenario and Setup

In this scenario, | have reused the compromised CentOS host used in all previous
simulations. This host, located at 172.16.0.1, has been fully compromised by an
attacker who has managed to download sensitive documents from other exploited
internal hosts. After collecting these documents, the simulated attacker will attempt
to exfiltrate the documents to a webserver under his control on the Internet, located
at [P address 199.212.33.87. File uploads will be handled by the command line Curl
utility, as per typical command-line methods for uploading documents to a

webserver. This was done using the following command:

curl -i -F name=name -F filedata=@Transparency_august.pdf

http://199.212.33.87/asdf.php

Figure 27: Using Curl to Exfiltrate Data

Once the command was executed, the compromised machine attempted to
initiate a connection with the Internet-facing server awaiting file uploads from the

attacker.

6.2.5.2 Observations and Analysis

Looking at the security event detection algorithm’s logs, we can see that this
connection did not conform to the network baseline, naturally, and was successfully

hijacked and sent to the honeypot. This can be seen in Figure 28.
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[snip]
[f1.4][DHNY] tep:172.16.8.1->199 B - Source does not communicate with destination in this manner.

[f1.4
[snip

1[toHD] tep:172.16.8,1->199,7 188 - Connection sent to |'u:|r|egp|:-t.
]

Figure 28Hijacking the Outbound Connection

As expected, the hijacked outbound connection was redirected to the just-in-
time honeypot service listener on TCP port 80. From the command line of the
attacker, the connection and file upload appeared successful. This can be seen in

Figure 29.

HTTP/1.1 100 Continue

HTTP/1.1 200 OK
Date: Tue, 25 Feb 2014 18:50:17 GMT
Server: Apache/2.2.22 (Debian)

X-Powered-By: PHP/5.4.4-14+deb7u7
Vary: Accept-Encoding
Content-Length: 47

Content-Type: text/html

Figure 29: Emulating a Successful File Transfer

At this point the attacker would likely believe that the sensitive document was
exfiltrated successfully to the target server. However, this is not the case! The
connection has been hijacked and sent to the honeypot, fully bypassing the

destination host.

Once the file transfer between the host and honeypot completed successfully, I
opened the packet capture file generated by Honeytrap using the popular packet
analysis tool, Wireshark. Looking at the packets generated, I saw that an HTTP
connection occurred towards an Internet host at 199.212.33.87 (as expected). This

can be seen in Figure 30
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POST /asdf.php HTTP/1.1

User-Agent: curl/7.26.0

Host: 199.212.33.87

Accept: */*

Content-Length: 6957052

Expect: 100-continue

Content-Type: multipart/form-data; boundary=------------------------... 4f852599bfd¢

HTTP/1.1 100 Continue
------------------------------ 4f852590bfd4

Content-Disposition: form-data; name="name"

sooomosononsnen0nseon000E000s 4f852599bf d4
Content-Disposition: form-data; name="filedata"; filename="Transparency_august.pdf"
Content-Type: application/octet-stream

%PDF-1.3
oococooooooac

Figure 30: Analyzing the Exfiltration Attempt

By decoding the HTTP stream using Wireshark, we can see that the attacker
tried to POST a PDF file called Transparency august.pdf to a PHP page at
http://199.212.33.87/asdf.php. Based on the file’s name, we can conclude that the

exfiltrated file was likely an internal and possibly sensitive document. Since the
honeypot software stores a full packet capture of the transfer, it is possible to scrape
the PDF file out of the packet capture, allowing us to open and analyze the

compromised file.

Based on these results, we can see that my security algorithm has successfully
identified the data exfiltration connection, marked it as malicious, and redirected it
to the internal honeypot. The attacker was then fooled into believing the connection
completed successfully. As per my expectations, my algorithm leveraged the
Honeytrap honeypot software to successful collect valuable forensic information
about the data exfiltration attempt. Furthermore, this forensic information provided
enough detailed information to help us identify and extract the compromised

document being exfiltrated.
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6.3  Evaluating Device Efficiency

Now that [ have assessed the viability and effectiveness of my security algorithm
in a variety of attack scenarios, we must step back and look at its overall operational
efficiency. Considering the low-latency and near real-time nature of SCADA
environments, we must ensure that any inline security appliance does not impact

the overall performance of the monitored network link.

6.3.1 Testing Goals

To accurately assess the efficiency of my algorithm and associated software, I
must stress test the monitored link under a variety of scenarios to determine its
throughput before and after placing my device inline. By measuring the device’s
throughput when handling a single type of security event, I can provide accurate
efficiency measurements for all worst-case attack scenarios. This is done by
comparing worst-case scenario throughput measurements against the overall link

throughput capacity between two infrastructure devices.
During the stress testing process, I aimed to measure my device and algorithm’s:

1. Ability to robustly handle all traffic and events without crashing or
encountering other software related exceptions

2. Throughput when handling clean traffic fully saturating the network link

3. Throughput when handing and monitoring suspicious traffic fully saturating
the network link

4. Throughput when hijacking and redirecting malicious traffic to the honeypot
during full link saturation

5. Overall performance in the above three scenarios when handling packets of

various sizes
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6. Overall performance when compared to the network link’s effective

throughput

The measurement of each factor above can help us effectively and accurately assess

the viability of deploying my algorithm in live SCADA environments.

Before continuing with the device efficiency assessment process, we must
remember that my deployment relied on the (relative) inefficiency of the Python
interpreted programming language. Although Python provides some increased
efficiency through precompiled byte code, this optimization process does not
compare to truly compiled language like C and C++. To further increase the
efficiency of my appliance, I should consider porting all code to a language capable of
being fully compiled on the target host. This was not done during the development

of my prototype to save both time and effort.

6.3.2 Data Collection

For each of my testing scenarios, I assumed the monitored network link
between two infrastructure devices had a bandwidth of 100Mbps. Because this link
is point-to-point, network latency and processing delay is negligible, allowing us to
assume an effective link throughput of approximately 100Mbps. This is used as a
baseline to evaluate the true performance of my device. If my implementation is
capable of providing an overall throughput speed greater than or equal to the actual
link throughput, only then can it be considered eligible for a live deployment on a

legacy SCADA network.

As mentioned previously, I decided to measure the performance of my
deployment in three distinct worst-case scenarios: when the link is fully saturated

with:

1. Clean traffic conforming to the network baseline
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2. Suspicious traffic conforming to the network baseline, with the presence of
recent security events

3. Malicious traffic not conforming to the network baseline

Since traffic tends to be variable on a live network, both in packet size and
transmission duration, I decided to measure the three scenarios above with a variety
of transmission durations per connection stream. To do this, each scenario was run
18 times, each time with static sustained connection durations ranging from 100ms
to 1000ms. By doing this, I could observe my device’s capacity for handling
connection streams and individual packets of various sizes. This data was then

plotted to gauge the overall throughput of the device in various scenarios.

To aid in the generation of the scenarios outlined above, I used iPerf, an open
source network performance tool capable of measuring TCP and UDP performance
in a variety of scenarios. [43] In each test two hosts - A and B - were wired directly
to my security appliance, allowing it to fully monitor and control the link. The link
speed used between each device was set to 1000Mbps, as to not cap my device’s
maximum effective throughput. Furthermore, 1 solely relied upon the TCP
throughput efficiency capabilities of iPerf, considering - by design - TCP throughput

performance is always less than UDP due to protocol overhead.

Next, iPerf was installed on host A to act as the client device for each testing
scenario. A short Python script was created to execute iPerf continuously with a
variety of settings conducive to each test. Since I aimed to measure the throughput
performance of my device when handing variable packet sizes and connection
durations, iPerf was executed 16 times per test with a static connection duration
period (measured in milliseconds). This was done by looping through the
connection durations chosen (100ms to 1000ms, steps of 50ms) and calling the

following Python code:
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threads = (threads)
result os.popen( ( + time + + threads + SUM™) . read()
result result.split( )

Figure 31: Stress Testing Using iPerf

Looking at the code above, I can see that my script is asking iPerf to connect to
host B (172.16.0.2) using a connection duration of time and with a thread count of
threads. Naturally, the connection duration is static depending on the test being run,
while the thread count is set high enough (10,000 threads per experiment) to ensure

total link saturation at any point in time.

Next, host B was set up with iPerf in server mode. In this mode, iPerf only listens

for connections and redirects all transferred data to /dev/null.

When iPerf is executed via my testing script, the network link is fully saturated
with connections conforming to the connection duration specified for each test. The
instance of iPerf on host A then measures the overall connection performance and
throughput, saving statistics to disk. Link saturation is continuous until all 10,000

threads execute successfully.

Now that iPerf has been scripted to execute and record data for each test
scenario, | am ready to create and measure the performance of the three worst-case

scenario conditions mentioned above.

In scenario one, clean traffic is generated to fully saturate the link. To create this
scenario, a network baseline was generated on my device in which all connections
between host A and B were whitelisted, regardless of the source or destination ports.
Next, iPerf was run for each connection duration scenario (100ms to 1000ms, step of
50ms) to measure the device’s effective throughput. In this scenario, my algorithm
would execute through all security event detection steps, including the intensive
device fingerprinting process. This scenario most accurately represents the worst-

case efficiency of my device.
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In scenario two, suspicious traffic is generated to fully saturate the link. To create
this scenario, a network baseline was first generated on the device in which all
connections between host A and B were whitelisted, regardless of the source or
destination ports. Next, host A attempted performed a port scan against the network
subnet, creating a series of events not conforming to the network baseline. Naturally
this created a security event pinned to host A. Next, iPerf was run for each
connection duration scenario (100ms to 1000ms, steps of 50ms) to measure the
device’s effective throughput. In this scenario, my algorithm would execute through
all security event detection steps, fully monitoring each connection due to the recent
security event. This test most accurately represents my algorithm’s ability to
passively monitor network connections on the fly while collecting relevant forensic

data about possibly malicious connections.

In scenario three, entirely malicious traffic is generated to fully saturate the link.
To create this scenario, a network baseline was not generated on my device, creating
a condition in which all communications are marked as malicious. Next, iPerf was
run for each connection duration scenario (100ms to 1000ms, steps of 50ms) to
measure the device’s effective throughput. In this scenario, my algorithm would
execute only through the preliminary flow-based security event detection steps,
sending all connections to the honeypot for interception and monitoring. This test
most accurately represents my appliance’s capacity for handing off malicious
connections to the third-party honeypot software. This test also showcases
Honeytrap’s overall efficiency when handling these connections. Since each
connection in this scenario should not reach the destination - as it is hijacked - the
efficiency of Honeytrap only needs to be great enough to ensure its continual

operations during full link saturation.
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6.3.3 Observations and Analysis

After executing the testing scenarios outlined above, I found my deployment to

be surprisingly efficient considering the interpreted nature of the Python language.

In scenario one where all connections were non-malicious, I found my device

had a worst-case effective throughput speed of 380 Mbps during full link saturation

with an average connection duration of 100ms. This can be seen in Figure 32.
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Figure 32: Effective Throughput for Non-Malicious Connections

950

However, as connection durations approached 1000ms, the average effective

throughput also increased before tapering off at around 1200 Mbps. Looking at the

data, I can conclude that under such loads my device would be capable of sustaining

throughput speeds exceeding that of the physical link.

In scenario two where all connections were marked as suspicious, I found my

device had a worst-case effective throughput speed of 290 Mbps when experiencing
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full link saturation with an average connection duration of 100ms. This can be seen

in Figure 33.
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Figure 33: Effective Throughput for Suspicious Connections

However, as connection durations approached 1000ms, average effective
throughput also increased before tapering off at around 1100 Mbps. Looking at the
data, it appears as if the device has some increased computational overhead for
connections of short duration (< 200ms); however, it was still capable of sustaining

throughput speeds exceeding that of the physical link.

In scenario three where all connections were marked as malicious, I found my
device had a worst-case effective throughput speed of 38 Mbps when experiencing
full link saturation with an average connection duration greater than 150ms. This

can be seen in Figure 34.

165



JIT Honeypot
Intercepted Traffic Performance Analysis
300

250+

n

o

o
1

1504

Throughput (Mbps)

1004

504

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950
Milliseconds Per Transmission

Figure 34: Effective Throughput for Malicious Connections

At first the device appears to handle connections extremely efficiently, at a
throughput rate far exceeding the physical link speed of 100Mbps. In this scenario,
all packets are transparently hijacked and handed off to the honeypot for processing.
Before interpreting the results above, I must note that Honeytrap is an entirely
separate application from my algorithm’s software: connections are only hijacked by

my software and queued in NFQUEUE for Honeytrap.

Looking at the data present above, we can see that my appliance’s ability to
intercept and redirect traffic is not the limiting factor for overall performance:
extremely high numbers of connections (due to low connection durations) equate to
a high level of performance. This indicates that my device is efficiently handing off

connections and Honeytrap is efficiently analyzing and logging incoming connections.

Conversely, as connection durations begin to exceed 200ms per packet, overall
throughput decreases quickly before re-sustaining at around 40Mbps. Naturally,
increased connection durations equate to large TCP windows sizes and increased
packet data sizes as well. By looking at the data above, we can logically understand

why throughput performance decreases and sustains at 40Mbps: as packet sizes
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increases, so does the data being logged to disk for forensic usage. It appears as if the
hard disk write times of my system have become the performance bottleneck of the
device. Additionally, it seems as if there is implementation issue within Honeytrap
causing a disk-writing bottleneck; after all, such a bottleneck does not exist when my

software monitors and logs packets in the same fashion.

However, this is not a relevant issue: connections redirected to the honeypot are
not actually being reintroduced into the network. As long as hijacked connections
continue interacting with the attacker, forensic data is continually logged and alerts
are generated. The overall performance cap due to the disk write bottleneck does

not actually impact the effectiveness of my device in this scenario.

After extensive testing I found that my device did not decrease the overall
throughput of the system to a rate lower than the physical link’s effective
throughput, except in the case of malicious connections sent to the honeypot. This

can be seen in Figure 35.
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Figure 35: Overall Device Throughput Rates
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As mentioned in the previous section, throughput loss can only really impact a
SCADA environment when my device creates a processing delay that decreases the
link’s effective throughput speed below the speed of the monitored network link. In
all scenarios tested, I found my device introduced no processing delay capable of
reducing the effective throughput of a physical link with a bandwidth of 100Mbps.
This conforms to all efficiency goals outlined previous while not introducing any

delay or throughput reduction into the monitored SCADA system.

Finally, I have concluded that by porting my code to a more efficient
programming language capable of being compiled for the target system, I could
reasonably increase overall device efficiency enough to potentially handle full link

saturation for 1Gbps links between infrastructure devices.
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Chapter 7. Conclusions and Future Work

At first glance SCADA networks appear to be similar to IT networks; however,
this is not the case. Traditionally SCADA networks were physically isolated,
providing some inherent level of security; yet, as SCADA networks slowly converged
with both corporate intranets and the Internet, their security continually eroded.
The gradual evolution of SCADA systems introduced many novel and previously

unknown security risks.

During the advent of SCADA technologies, a heavy focus was put on providing
system robustness, safety, and reliability. Because of this initial focus, widely
deployed SCADA protocols like DNP3 and Modbus provide no inherent security
controls. This makes managing security inherently difficult. Additionally, due to the
unique nature of ICS networks, traditional IT security protection and mitigation

mechanisms prove to be ineffective.

Ideally these insecure protocols would be replaced with newer, more secure
variations; however, the need for backwards compatibility and high availability

impedes the adoption of newer protocols.

Furthermore, the advent of advanced persistent threats in recent years has
showcased the vulnerable nature of SCADA systems deployed throughout the world.
These attackers, often highly skilled, persistent, and resourceful, highlighted the

relative ineffectiveness of existing SCADA-centric security solutions.

Throughout this thesis | have outlined common attack vectors used by advanced
persistent threats to subvert the few security controls deployed in SCADA networks.
These vectors include: customized malware, zero-day exploits, illegitimate
credential use, man-in-the-middle attacks, device impersonation attempts, brute-
force network scans, and even insider attacks. Each of these attack vectors requires

a specific approach to event detection and mitigation. Unfortunately, a catchall
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solution capable of providing robust security event detection in depth specifically

for SCADA networks does not currently exist.

In response to this need, I have identified various algorithmic strategies for
detecting and mitigating these common APT attack vectors, pertaining specifically to
SCADA networks. Primarily, the integration of flow-based intrusion detection
systems, passive device fingerprinting, and traditional signature-based IDS
technologies provides a highly effective capacity for detecting all common attack

vectors used by APTs.

After extensive testing, it was shown how the integration of these technologies
into a single security solution has provided a verifiably robust and effective solution
to the problem at hand. Furthermore, the deployment of this unified security event
detection algorithm was shown to provide detection in depth without negatively
impacting network throughput or latency - a problem plagued by most types of

SCADA-specific security controls.

Future work should aim to optimize the current platform by porting it to a more
efficient programming language and underlying platform. This type of optimization
could increase the solution’s traffic analysis capacity enough to sufficiently handle
network speeds exceeding 1Gbps. Furthermore, a hardware-based deployment
should be placed within multiple live SCADA networks to measure the real-world

effectiveness of my solution.

Although industrial control systems still have a long way to go before being
considered extremely secure, this should not dissuade us. Cyber warfare has become
an integral component of modern warfare; this can be seen in the recent supposed
‘state-sponsored’ attacks against Iran’s nuclear facilities. For years, countries like
China and North Korea have been openly training technology experts in preparation
for cyber attacks. This fundamental shift towards state-sponsored hacking cannot be
ignored. In order to ensure the pervasive security of our nation’s critical

infrastructure, we must work towards providing simple, secure, and robust

170



mitigating security controls. After all, compensating controls only delay our system’s

inevitable exploitation. These issues must not be ignored.
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