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ABSTRACT 
 

Using closed-loop inspection systems to modify coordinate metrology tasks for specific 

engineering applications has been a demanding research subject over the last decade. 

The objective of this thesis is to develop an Integrated Inspection System (IIS) that uses 

these tasks for applications in systems combining additive and subtractive manufacturing 

technologies, commonly referred to as hybrid manufacturing. Hybrid manufacturing has 

opened a new and innovative avenue in product development, and also in product repair 

and maintenance.  One of the areas where it can excel is in the repair of dies and moulds. 

This is due to the ability to add material to worn out areas, then subtract the excess 

material to return to the ideal geometry without affecting a large area of the piece. 

Previously developed coordinate metrology techniques can be modified to aid in the 

minimization of the cost of repair. A method using skin modelling techniques and 

weighted total least squares was utilized to determine the geometry of the repaired zone. 

These methods were combined to create the developed system which minimizes the 

repair cost. The best result of this method was then used as an initial condition for an 

optimization algorithm resulting in the optimal solution. The developed system produced 

cost reductions in all tested circumstances, with the best results found in surfaces with 

large, non-uniform errors. The developed system can be implemented and customized 

for various hybrid manufacturing applications in the pursuit of lower repair costs. 
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1. INTRODUCTION 
 

Coordinate metrology is the process of taking a manufactured piece, and verifying that it 

was made to conform to standards. In coordinate metrology, manufactured parts are 

measured and analyzed to ensure they have been manufactured to tolerance.  This 

process involves three major tasks: Point Measurement Planning (PMP), Substitute 

Geometry Evaluation (SGE) and Deviation Zone Estimation (DZE). PMP involves 

determining the location of data points on a surface. SGE is the fitting of the ideal CAD 

model to the data points found in PMP. DZE is using the differences between the data 

points and the ideal surface to determine the overall error in the part. Using these tasks, 

the choice to either dispose of the part or perform error compensation techniques, such 

as re-machining or additive repair can be made. In general, these processes are 

performed sequentially, and data in a future process is not used to refine past processes. 

This can be seen in Figure 1-1. 

As computing power has increased, it has become possible to integrate the coordinate 

metrology tasks. This integration allows the different steps of the process to inform each 

other, with results of one section feeding into another. The processes need to be modified 

so that they can take in new data and modify the original results.  Some work has already 

been done to achieve the integration of these tasks. The cost and feasibility of repair is 

also something that needs to be considered with these processes.  



2 
 

Desired 
Geometry

Process 
Begins

PMP

Discrete 
3D Points

SGE

Geometric 
Deviations 
of Sample 

Points

DZE

Skin 
Model

Process 
Terminates  

FIGURE 1-1 TRADITIONAL METHOD OF COORDINATE METROLOGY 

 

Repair cost is a large factor when determining whether or not a part needs to be repaired 

or replaced. By minimizing the cost of repair, it becomes a more attractive option. This 

minimization can also be used in the manufacturing process if something goes wrong. 

With traditional techniques, material could only be removed when an error was 

introduced into a part. This limited the ability to minimize the cost of repair. For example, 

in the undercut situation, where material had been left over after a pass that should have 

been removed, it would be fairly trivial to remove the excess material. However, if the 
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overcut situation occurred, and too much material had been removed, there was no easy 

and cost effective way to repair the error. With the advent of hybrid manufacturing, that 

is manufacturing systems that incorporate both additive and subtractive processes, a 

paradigm shift has begun to occur. Now, in the overcut condition, you can simply add 

more material and then remove it to return to tolerance. With the ability to quickly switch 

between adding and subtracting material, the way parts are manufactured is changing. 

This also means that how parts are repaired is changed. Whenever there is shift as drastic 

as this in a well used and long lasting system, other systems designed to support it have 

to change also. Therefore, a new system to minimize the cost of repair using hybrid 

manufacturing technologies is proposed. 

In order to accomplish this minimization, several processes will need to be integrated with 

one another. PMP methods will be used to get a sample set that accurately represents 

the part to be repaired. A DZE method will be used to take the sample set and convert it 

into a representative geometry that can be analyzed in greater detail. SGE will be used to 

determine where a plane needs to be fit in order to minimize the cost of repair. By 

combining all of these processes, an integrated system will be created. The end goal of 

this thesis is to have a developed framework that can be used to minimize the cost of 

repair for a planar surface. An example of this modified system can be seen in Figure 1-2. 
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FIGURE 1-2 PROPOSED REVISION OF COORDINATE METROLOGY TASKS 

 

This thesis will proceed as follows. First, a review of the work done in the fields of 

coordinate metrology and additive repair will be conducted. The methodologies that will 

be used to develop the integrated process will then be created and explained. The 

integrated system will then be developed. The created processes will then be validated 

using some basic data sets. Then, various case studies will be conducted using the 
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developed system, and the results will be examined and discussed. Finally, proposals for 

the improvement of the system will be examined. 

2. LITERATURE REVIEW 
 

In this section, a review of existing literature related to this thesis will be conducted. First, 

different aspects of coordinate metrology will be discussed. Then, different methods of 

additive repair will be discussed 

2.1. SOURCES OF COMPUTATIONAL UNCERTAINTY IN COORDINATE 

METROLOGY 

Reducing uncertainty is the goal of coordinate metrology. By creating knowledge 

corresponding to the geometric and dimensional features of a work piece, the uncertainty 

of the manufacturing processes used to create it can be reduced. Because all 

measurement devices, such as tactile probes and high density laser scanners, are 

imperfect, there are also uncertainties introduced through measuring a work piece. The 

sources of inspection uncertainties are well described in a paper by Barari et al. [1]. This 

includes errors due to the kinematics of the coordinate measuring machine (CMM), the 

effects of the probing sensor, operator error, and incorrect datum selection, 

environmental effects including temperature, vibration, and light, as well as 

computational error. The effects of computation errors have been underestimated by 

researchers.  
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In 2011, Barari [2] showed that the uncertainty due to computational tasks can be as large 

as the total uncertainty caused by all other physical sources. This shows a need for greater 

research into minimizing the effects of computational uncertainty. 

Operator skill also plays an important role in inspection, and how they decide to inspect 

a part can lead to large changes in the final results. There are several major parameters 

that need to be decided by the operator: the number of sample points, the location of 

sample points, fitting criteria, and the method for representing the deviation zone. In an 

integrated inspection system (IIS), the link between the traditional computational tasks 

allows selection of these parameters using data that would otherwise go unused in 

common practice. Upstream activities should be used to determine the optimum settings 

of these tasks. For example, the information from the manufacturing process should be a 

factor in determining the number and density of sampled points. This would require CAM 

data alongside the model or CAD information of the part, as shown in [3]–[6]. It was also 

shown that a feedback system can be an effective way to share useful data between the 

computational tasks [7], [8].  

Previous researchers have reported several very important closed loops between DZE-

PMP, SGE-PMP, and DZE-SGE. Examples of closed loops between SGE and PMP can be 

seen in [9]–[11]. In [9], capturing a new sample point or rejecting an already captured 

sample point was dynamically decided based on progress in the fitting process which 

eventually became a guided search for sampling. The information required for sampling 

was generated and revised dynamically by estimating the probability density function of 

geometric deviations using the Parzen-window method. A similar approach was adopted 
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in [11] but instead of trying to recognize the real probability density function of the 

geometric deviations through the process, it was assumed that the probability density 

function has a Gaussian distribution. [10] and [12] used a virtual sampling technique to 

analyze high density laser scan data and combine PMP and SGE. Instead of using a PDF, 

sites were chosen using pre-existing sampling strategies, then the average of all the 

samples in the neighbourhood were chosen as a representative point. These new points 

were then used to fit a plane, and sampling was redone until the method converged. 

2.2. POINT MEASUREMENT PLANNING 
 

In 1935, Van der Corput [13]  developed a sampling method in one dimension that 

minimized discrepancy. This method was expanded on by Roth [14] in 1954 to incorporate 

two dimensional data sets, and was then expanded upon again by Hammersley [15] in 

1960 for n dimensions. Wang et. al [16] showed that the Hammersley distribution could 

be used to reduce the number of sampled points required to achieve a level of acceptable 

accuracy quadratically. These expansions managed to keep discrepancy low, but were 

very strict and systematic in their implementations. Halton and Zaremba [17] developed 

an easier to implement method, but was restricted in that the number of points sampled 

had to be a power of two. These methods were tested to show results were consistent 

and followed a normal distribution [18]. Another developed sampling strategy involved 

both systematic and random components. As shown by Cochran [19], this stratified 

random method was discussed. It breaks down the entire sampling area into different 

“windows”, and then samples an equal number of points randomly within these windows. 
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This causes an increase in surface coverage of the sampled points, which might be missed 

in a systematic approach, while minimizing the inconsistencies of results due to random 

sampling. 

In 1993, Woo and Liang [20] were one of the first groups to determine the efficacy of 

using a low discrepancy sample set in PMP. They applied the Hammersley 

distribution[15], shown in Figure 2-1 standard test surfaces with known errors. Then they 

compared the results against standard uniform sampling methods. They found that the 

Hammersley distribution could achieve the same accuracy as uniform sampling methods. 

The reduction in sample size was up to the square root of the original sample size.  

 

FIGURE 2-1 HAMMERSLEY DISTRIBUTION FOR 20 POINTS 

In 1997, Lee et al. [21] did further testing focused on the Hammersley distribution. Instead 

of utilizing flat surfaces with known errors, they introduced measured features as well to 
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test the effects of added dimensionality. Their tests used random and uniform sampling 

methods on a hemisphere and cone. They combined Hammersley and other methods to 

determine if there was a benefit of doing so. The results showed that the Hammersley 

distribution was still able to reduce the number of sample points. There were also 

improvements when Hammersley was combined with a stratified technique that 

separated. 

In 1995, Woo et al. [22] did further testing on different low discrepancy sequences, 

comparing them to random and structured sample sets. They used both Hammersley and 

the newer Halton-Zaremba sequence. They found that there was significant improvement 

when using the low discrepancy methods in the majority of cases. The Halton-Zaremba 

sequence was also found to be limited to sample sizes that were powers of two.  

In 1997, Chan, King and Stout [23] showed the effects of using different sampling 

strategies on the same piece, comparing results between each one. They focused on the 

sampling of circular features, and utilized both systematic techniques and random 

techniques. Their data showed that the sampling technique chosen would affect the 

results of sampling, but this effect was also dependent on the measurement machine 

used, and the software used as well.  

In 1998, Edgeworth and Wilhelm [24] began looking at iterative processes for determining 

the location of sample points. Instead of a static selection of points, they proposed a 

method for fitting to an original set of data points, then selecting a new set of data points 

based on this new fit. This model allowed for easy identification of manufacturing errors. 
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Instead of the usual static models, their proposed method looked at the surface normals 

of the part to find any continuous errors. 

In 2003, Badar et al. [25] proposed the use of search algorithms to locate points on surface 

geometry. This involved a completely different approach than the standard static models 

in use. Their proposed method involved using various search algorithms in conjunction 

with a CNC controlled coordinate measuring machine. By choosing a set of starting sample 

points, a search would look for either local minima or maxima. This provided a more 

accurate view of the form error, and could better show errors in the piece. Where a static 

model could miss irregularities not contained in the predefined fit area, these new 

methods could search around their starting points to determine where errors were.  

In 2006, Collins et al. [26] introduced some new sampling methods that were more 

focused on 3D models. These new methods attempted to consider the type of machining 

used when choosing points. As they were focusing on flat and revolved surfaces, they 

were looking for methods that could more accurately represent the origin of a part. They 

used the Spiral method, based on the Archimedes spiral, and the HamSpi method, which 

is the Hammersley and the Spiral method combined. The time-efficiency of the methods 

was comparable to the Hammersley distribution, but they focused on the origin of the 

part. This was important due to increased deviations in parts made with the techniques 

analyzed. The need for these methods highlights the weaknesses of the Hammersley and 

other static methods. 
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In 2016, Tao et. al [27] looked at minimizing the amount of sample points required to 

accurately represent splines. Taking a high density scan, they utilized bi-Akima spline 

interpolation to determine the connections between points. This allows for a smaller 

sample set to accurately represent the curve, showing that data set reduction is possible 

without a reduction in accuracy. 

 

 

FIGURE 2-2 SPIRAL METHOD FOR POINT SELECTION [26] 
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FIGURE 2-3 HAMSPI METHOD FOR POINT SELECTION [26] 

In 2017, Lin et. al [28] looked at a least square fitting algorithm for circular cams. They 

compared the conventional method of breaking the cam into individual segments and 

comparing each segment to its corresponding parametric function, and their proposed 

method which looked at the cam as a whole using a least squares analysis. This allowed 

for the profile to be closed and continuous, and provided higher accuracy evaluations of 

the profile. 
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In 2017, Wang et. al [29] examined adaptive sampling techniques, and utilized simulated 

sampling to determine the efficiency of their methods. They managed to increase the 

efficiency of sampling of structured surfaces while reducing the time it took to sample the 

surface. 

The uncertainty of coordinate metrology results drastically changes by any change in 

sampling data sets. It is shown in [20], [21] how any change in sampling strategy affects 

inspection results in flatness evaluation. From the sensitivity of this simple problem to 

changes in sampling strategy, it can be assumed that for more complex geometries the 

effect is even more significant. This sensitivity analysis has been under investigation by 

many experiments in [10] when [10] showed the effects of different sampling strategies 

on the inspection results.  

There has been a lot of work done in the field of sampling strategy and point 

measurement planning. A lot of this work has occurred in trying to find the optimal static 

strategy to encompass most cases. However, there have been attempts to change from a 

static model, either to a quasi-static model or to a completely adaptive model. 

2.3. SUBSTITUTE GEOMETRY EVALUATION 
 

In 1968, Williamson[32] least squares fitting was used extensively to fit lines to data sets. 

For a line, this involves minimizing the vertical distance of each point to the line. This was 

the standard method for many years as it allowed a y value to be estimated given a set of 

x values. Williamson showed that the method was fast and accurate. Another important 

characteristic was its constant convergence, whereas other methods at the time, such as 
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least squares cubic, would sometimes fail to converge. So, least squares fitting was shown 

to provide consistent results. 

van Huffel [33] conducted a review in errors in variables modeling techniques. While the 

book focused on the mathematical fitting strategies, there were also papers on the fitting 

of idealized geometry to point clouds for coordinate metrology. Zwick [34]  did a 

comparison between total least squares, linear least squares, and minimax fitting. He 

showed that linear least squares and minimax fitting had efficient solutions in two-

dimensional space, but had inefficient solutions in three-dimensional space. Total least 

squares, however, had efficient solutions in both spaces. This meant that it was more 

applicable for a wider variety of problems, especially when computing power was limited. 

Zwick did note that linear least squares and minimax fitting were gaining interest again 

due to the properties of the techniques, linear least squares being less aggressive and 

minimax fitting being very aggressive. This led to different results after fitting that could 

affect how a part is treated. 

Nielsen [35] introduced a refinement to the least squares estimation using Lagrange 

multipliers. During this time, the least squares problem was still an optimization problem, 

and Nielsen wanted to determine a way to solve both linear and nonlinear constrained 

problems. The Lagrange optimization algorithm he proposed allowed for these solutions 

without affecting the results of the estimation.  

Nassef and ElMaraghy [36] conducted a comparison between total least squares and 

minimax fitting with a focus on point selection for different feature geometries. Their 
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main concern was the effect of the sampling strategy on the error found by the fitting 

algorithm. They initially discussed the differences of TLS and minimax fitting, and go over 

some past criticisms. The major criticism of TLS fitting was its apparent overestimation of 

the geometric deviations and so, minimax fitting gained popularity because of its more 

aggressive approach. However, after further research they determined TLS fitting was 

reporting deviation values closer to the true values than minimax fitting. Nassef and 

ElMaraghy found that the geometric features of the part should determine the sampling 

method used. 

Krystek and Anton [37] proposed a TLS method involving weighted points in two 

dimensions. They tested their method against known datasets and determined that it 

functioned similarly to other TLS methods. The main advantage over other 

implementations was the ability to perform regression on all data sets. Before this, TLS 

suffered when the result was a vertical line as there were discontinuities in the equation. 

This made TLS fitting more robust while maintaining the same quality of results found in 

other studies. 

Malengo and Pennecchi [38] extended the weighted total least squares algorithm to 

curves as well as straight lines. They also wanted to incorporate straight-line fitting so 

that one package would be able to solve for both curves and straight lines. The algorithm 

they developed was good at dealing with both uncertain and correlated variables while 

minimizing uncertainties in the measurements. They verified their results against a Monte 

Carlo method and determined their algorithm maintained much lower uncertainty values 
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while the Monte Carlo method had increased uncertainty as the models’ nonlinearity 

increased.  

Shakarji and Srinivasan [39] looked at tolerance standards involving TLS fitting of lines, 

planes and parallel planes. Their goal was to provide algorithms for each of the 

geometries that were simple and easy to implement, and did not need optimization 

algorithms to solve. They presented and proved these algorithms, and verified that the 

algorithms gave the same or better results than the traditional method of solving TLS fits.  

Shakarji and Srinivasan showed that the iterative method was no longer necessary and 

instead, by solving a few equations, you could find the TLS fit.  

Shakarji et al. [40] produced a review of TLS fitting and its role in coordinate metrology. 

They discuss why TLS fitting has remained an attractive option over the years, the ease of 

use of the algorithm, and its applications for nonlinear problems.  One of their main points 

is that ISO standards are beginning to use TLS fits, which means they will need to be used 

to check for standards. Near the end of the paper, they look at the uses of weighted total 

least squares in fitting. They state that by weighting points in low-density areas higher 

than those in high-density areas, the discrepancy of data sets will be removed as a source 

of error.  

Considering fitting to a tolerance zone instead of fitting to an ideal geometry was 

introduced in [1], [41].  This consideration increases the nonlinearity of the optimization 

problem during the SGE process, however the results of this fitting can be much more 

practical and efficient to avoid rejecting an acceptable part. Complexity resulting from 
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nonlinearity of the objective function in the fitting process can cause trapping in local 

minima which produces false results for inspection. [42] Presents an iterative approach 

for SGE that avoids this issue by re-energizing the current solution to check for other 

minima in the area.  

The use and development of TLS fitting over the past 50 years is well documented and it 

has been shown to be useful in many cases in two and three dimensions for several 

different objectives. With the advent of weighted total least squares, it is possible to 

modify the TLS results without modifying the original data set. This can be applied to 

coordinate metrology, as well to change the substitute geometry to optimize for different 

cases.  

2.4. DEVIATION ZONE ESTIMATION 
 

Skin models were introduced in the field of tolerance analysis [43]. In order to conform 

to ISO standards, parts must be within certain tolerances. To verify if a part conforms, the 

differences between the substitute geometry and the measured data are analyzed. 

Therefore, a detailed model of the geometric deviations is developed. This model is a non-

ideal representation of the geometric deviations and is called a skin model. 

Jamiolahmadi and Barari [44] utilized a finite difference method approach to develop the 

deviation zone. They tested their method on several different data sets where known 

errors occurred and evaluated the efficiency and accuracy of their method. The number 

of points needed to accurately define the geometric deviations of a surface was 

minimized using their developed method without introducing extra uncertainty. 
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FIGURE 2-4 EXAMPLE OF A SKIN MODEL [44] 

Barari et al. [4] modeled the geometric deviations of different manufactured surfaces 

using NURBs surfaces. They achieved this by partitioning a machines workspace into 

sections with quasistatic errors, so that a set of linear transformations that represent the 

error are obtained. When these linear transformations are applied to the ideal geometry, 

an estimation of the geometric deviations can be obtained. 

Inspection results typically are presented by evaluating a zone for geometric deviations 

on the measured part. Detailed deviation zone also referred to as a skin model is the most 

accurate way to represent this result. The skin model presents a continuous function for 

geometric deviations of the entire surface including the geometric deviation of a limited 

number of points that are sampled and the geometric deviation of infinite number of 

points that were never sampled. Having such a comprehensive model allows precise 

planning for any downstream activities including finishing operations, functionality 
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analysis, assembly planning, manufacturing process control, and manufacturing error 

compensation which is the objective of this thesis. Estimation of the detailed deviation 

zone for inspected surfaces is performed by using a Delaunay triangulation approach in 

[45] which is based on a bilinear interpolation of geometric deviations corresponding to 

sampled points. Some of the other works are using a finite difference approach to model 

the detailed deviation zone including [44], [46]–[48]. A more accurate method to develop 

the detailed deviation zone was recently presented in [49]. In this research, a finite 

element method is utilized to develop the skin model of the part. In this thesis, in order 

to develop our desired IIS this latest approach is adopted. 

2.5. COST OF REPAIR – REASONING FOR INTEGRATIVE 
 

The two most prevalent technologies that are currently used in die and mould repair are 

tungsten inert gas (TIG) welding and gas metal arc welding (GMAW). Both processes have 

been used for decades, but have a couple of flaws. First, when the part defects are 

relatively small, the bead thickness of these techniques will be too large to repair just the 

defect. This can require extra time machining out the defect so that the resulting hole is 

large enough for the technique to work. The other major issue is that these processes are 

very heat-intensive. To make sure the weld material fuses to the base material, constant 

intense heat is needed over a large area. This intense heat can cause the base material, 

which is usually a high alloyed tool steel, to be subjected to heat cracking or to form alloys 

with the weld material that have undesirable properties[50]. Other options have been 

investigated because of these undesirable effects. 
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The main set of processes are directed energy deposition (DED) methods. These 

processes involved taking some weld material, introducing it into the defect, and applying 

a large amount of energy to a very small area to cause the new material to bond to the 

base material. This solves both issues presented by the traditional methods because the 

small melt area allows the weld material to be inserted into smaller cracks, and the small 

heated zone allows heat to dissipate quickly into the base material without it becoming 

overly hot.  

Powder bed fusion has also been considered a useful method. However, it is known more 

for part creation than part repair and has only been considered useful a handful of times. 

Another option would be standard material extrusion, though currently there are no 

direct extrusion devices capable of extruding the material required to repair dies and 

molds. Most extrusion devices are focused on the extrusion of metals with melting 

temperatures lower than 300C. 

2.6. DIRECTED ENERGY DEPOSITION 
 

This section will look at techniques involving Directed Energy Deposition methods. 

These are methods that deploy material directly to the area that needs it, and then 

cures or sets the material in-situ. 

2.6.1. LASER METAL DEPOSITION (LMD) 
 

LMD is one of the most researched technologies when it comes to DED processes. This is 

due primarily to lasers being readily available in the late 90’s when deficiencies in TIG and 
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GMAW were realized. These deficiencies lead to further research in LMD technologies 

and is currently one of the standard methods of repair. 

Vedani et al. [51] looked into the difficulties of LMD when applied to both nitride and 

chrome plated 1.2738 steel samples. They found that if a surface is treated in any way 

that changes the surface chemistry dramatically it could cause many errors after the 

repair. In the case of chrome plating, the weld metal was over-alloyed by the dissolution 

of the chrome-plated layers causing hot cracking in the interface zone. The chrome layer 

also experienced cracking outside of the repair area, which was likely caused by welding 

stress. It was determined that repair of chrome-plated surfaces through LMD was 

unfeasible. For nitrided surfaces, the main issue was the increased porosity caused by the 

release of nitrogen gas during the welding process. To counteract the porosity they used 

a laser to re-melt the area that was going to be repaired to release the gas before the 

welding occurred. This destroyed the nitrided layer, but this was determined to be a small 

cost to pay when up against replacing the entire mold. 

Pinkerton et al., [50] looked at some of the downsides of LMD and also looked at the 

effects of slot geometry as it related to reparability. They stated that porosity was one of 

the major issues affecting LMD as it is a powder-based method. The higher the porosity, 

the lower the strength of a repair, and thus reduced life for the mould. They also looked 

at the interface zone in detail. As can be seen in Figure 2-5, the interface zone, which is 

where the weld material and base material mix, has very little porosity and is fairly 

uniform. This shows off a good feature of LMD, its “self-quenching” property. This 

property occurs because the melt zone, despite having extremely high temperatures, has 
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a very small area and so the heat can be conducted away easily leading the part to cool 

rapidly. They also found that the repair was hardest in the interface zone. Finally, they 

looked at the effects of slot geometry on LMD. They found that for optimal results a slot 

would need to have sloped walls so the flow of powder is not blocked and to allow direct 

laser irradiation. However, the lowest vertex in a V-slot also provides issues as porosity is 

increased in the area, likely due to bead size of the powder. 

 

FIGURE 2-5: MICROGRAPHS OF CROSS-SECTIONS THROUGH SELECTED SAMPLES [50] 

Schmidt et al. [52] also looked at slot geometry, but instead focused on stainless steel and 

titanium alloys. They found that while slot geometry was important, the only thing that 

had to be ensured was that the powder jet could access the slot. Although better results 

were achieved in situations where the laser path and the wall of the slot were not parallel, 

acceptable results were achieved in those situations where the powder jet had ample 

access. They also determined that titanium alloys did not require a trailing argon nozzle if 

low heat was used. 
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Pleterski et al. [53] looked at how repairs needed to be prepped to ensure long part life 

after repair. They concluded that better repairs were achieved with larger material 

removal to prep the part. They also found that the cleaner the surface, the more likely a 

repair was going to be successful. This was likely due to removing contaminants from the 

surface that could modify the alloy chemistry, and removing oxidation layers that could 

prevent proper bonding. 

Borrego et al., [54] showed that LMD allows for repair of dies and molds with relatively 

small changes of material composition in the repaired zone when the same material was 

used as filler. In their case, they used H13 and P20 steels. They found that after repair, 

there were still defects that affected the nominal stress in the piece. This meant that the 

fatigue resistance was diminished in the repaired piece when compared to a new piece. 

However, these stresses were close to parallel of the loading axis, and the effect was 

minimized because of this. Figure 2-6 shows the hardness levels in a repaired piece when 

subjected to multiple laser powers.   (a) shows the hardness generated when the laser 

power was 104.4 W and with a diameter 0.5 mm, (b) at power of 106.6 W and a diameter 

of 0.5mm, (c) at a power of 111.6 W and diameter of 0.6 mm and (d) a power of 113.4 W 

at a diameter of 0.6 mm. The increase in hardness at the interface zone is likely due to 

microstructure changes in the zone. 

Guijun et al., [55] looked at the software and process control side of LMD. They 

implemented a closed loop controller to modulate laser power, which was controlled by 

an IR sensor. The IR sensor constantly monitored the weld pool to maintain a steady 

temperature. They were attempting to repair the knife-edge on a turbine blade. They 
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found that without proper control of the weld pool, excess material was deposited at the 

edges of the blade and severely impacted their dimensional accuracy.  In any location 

where deceleration was required, the laser was held in position for a longer time, causing 

the temperature of the weld pool to increase. This, combined with the excess material 

deposition, caused cracking in the final piece. When closed loop control was used, the 

laser power was decreased during the deceleration of the table. This allowed for 

consistent material deposition along the length of the knife-edge, and allowed a constant 

temperature to be used throughout each layer. This resulted in an increase in dimensional 

accuracy, and eliminated hot cracking. They concluded that the weld pool temperature 

was a very important aspect to control, if hot cracking was to be eliminated in LMD. 

Leunda et al. [56] looked at LMD as a surface coating method. They found that preheating 

the substrate prevented hot cracking when performing LMD, as there was reduced 

thermal shock. However, it was important to keep the temperature low as high 

temperatures could induce cracking as residual tensile stresses in the substrate were 

released. They also found that the coating area could be subjected to a post-deposition 

heat-treatment, if the temperature was controlled to not allow the substrate hardness to 

be affected. 
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FIGURE 2-6 HARDNESS PROFILES IN LASER WELDS [54] 

Rombouts et al. [57] looked at the surface finish of repaired LMD parts. They found that 

the surface quality of LMD repaired parts, like that of fused deposition modelling parts, 

suffered from the “staircase effect”. While previously these surfaces went through 

machining to have these effects reduced, they proposed a new re-melting process. When 

testing, the re-melting process provided substantial improvements in surface roughness 

and surface uniformity, if a high enough laser power was utilized to penetrate the surface 

of the weld area. 

Nie et al. [58] looked at the effects of wire-fed LMD systems against powder-jet systems. 

They found that wire-fed systems had far reduced porosity because the material was solid 

as it was being melted, as opposed to the bead nature of powder fed systems. However, 

wire-fed systems presented their own challenges because proper wire feed speeds and 
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temperatures had to be maintained. They found that if the weld material was too cold it 

would not fuse to the base metal, If the weld material was too hot it would liquefy before 

coming into contact with the base metal and be affected by gravity and atmospheric 

conditions, which would lead to asymmetric weld paths. Another downside is wire-fed 

systems can only use ductile metals to deposit, only powder-fed can handle more brittle 

materials thus far. 

2.6.2. ELECTROSPARK DEPOSITION 
 

Electrospark deposition is fairly new and untouched by research. In ED, a very high current 

is pulsed very quickly through an electrode and into the workpiece. This generates 

extremely high temperatures and causes part of the electrode to be deposited onto the 

workpiece. The extremely high temperature, but small work time, causes the part to self-

quench on every pass. So, very little of the heat is passed to the base metal. This is 

beneficial because it means the base metal has little to no changes.[59] 

Tusek et al. [60] examined some of these properties. They found you must use an inert 

gas for this process. For both the electrode and the melted surface to ensure proper 

bonding, stellite 6 provided the highest quality deposits with regard to porosity, with the 

surface roughness of the deposits ranging between 0.8 and 5.5 µm. They concluded by 

saying many portions of the process had not yet been examined scientifically. 

2.6.3. MICRO PLASMA TRANSFERRED ARC 
 

Plasma transferred arc welding is a relatively new technique for welding. It involves a non-

consumable electrode that is used to create a plasma arc between itself and the work 
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piece. The plasma arc creates a melt pool that a filler material is introduced to. A couple 

of benefits of this technique is it requires a very low amount of power to work, and it has 

a lower cost to buy initially. It also has the ability to work with wire-fed systems and 

powder-fed systems.[61] 

Jhavar et al. [61] first proposed the micro plasma transferred arc method for die and 

mould remanufacturing. They first determined the deposition parameters needed for a 

successful single bead and then they progressed to multi bead tests. Mechanical property 

tests showed that the results were equivalent to results derived from LMD and ED. It also 

had low heat transference to the base metal. They determined that this method would 

require further study to ensure its effectiveness as a repair process. 

2.6.4. POWDER BED FUSION 
 

Powder bed fusion is a technique mainly used to produce new parts through selective 

laser sintering (SLS). However, it has been used successfully a handful of times to repair 

existing parts but it is not usually considered for repairs. This is because of the complex 

set up required which restricts SLS from completing repairs on complex geometries. 

However, one team has managed to use it to build onto existing cut down parts. 

Andersson et al.[62] looked at using SLS to repair burner nozzles. They examined the 

process from beginning to end, including personal user safety and end result compliance. 

To achieve their results, they cut the burner nozzle off of the piece and then placed the 

remaining part into the SLS machine. Through an optical system, they lined up the CAD 

model with the remaining piece, and then printed a new nozzle through with SLS. When 



28 
 

subjected to fatigue tests, it was found that the part failed in the base metal, far below 

the interface zone, and thus was unlikely to have been an effect of the repair. The parts 

were also found to be serviceable, being near equivalent to a new piece in dimensional 

accuracy, heat transfer characteristics, and lifespan. 

2.7. POSSIBLE PATHS GOING FORWARD 
 

With these technologies, there are many paths forward. With LMD, the major topic to be 

examined is closed loop control, and this applies to all the techniques listed above. Barring 

a fully closed loop manufacturing system that integrates additive, subtractive, and 

verification technology, adding closed loop control to pre-existing additive systems looks 

to be a promising way of increasing the quality. 

There are also paths forward in the newer repair technologies such as ED and µPTA. Both 

technologies need to be put through the rigorous testing as LMD was put through before 

it was accepted by the industry. µPTA seems to be the lowest cost option. 

An interesting topic would be adapting SLS to part repair. Due to its current very rigid 

nature, requiring a vat of metal powder and a wiper, it would be difficult to achieve 

repairs on complex geometry. However, the work by Andersson et al. has shown that 

when used correctly, the results can often be better than other repair methods. 
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3. METHODOLOGY 

In this section, the proposed integrated inspection process will be developed. The 

adapted method used for sampling will be explained. Then, the theory behind the fitting 

algorithm will be developed. The modifications made to the skin modelling code that was 

adapted for use in this project will then be discussed. Finally, the method of integrating 

each part into one cohesive system will be explained. 

3.1. ADAPTIVE SAMPLING TOWARDS PMP 
 

The adaptive sampling method being used to trim down the number of points in each 

data set, while still maintaining accuracy, was adapted from a paper by Lalehpour et al 

[12]. In this method, points were selected using an algorithm called Neighbourhood 

Search for Representative (NSR). In this algorithm, a stratified random sampling strategy 

was masked over the full data set. This entailed separating out the full range of the data 

set into separate “windows” and then choosing a point at random within each window. 

The points selected from this mask became sites. These sites then had their 

neighbourhood, an area around the site with a radius related to the full length of the 

data set, examined for points. The mean of these points became the “representative” 

point of that area. 

3.2. WEIGHTED TOTAL LEAST SQUARES FITTING TOWARD SGE 
 

Total least squares fitting takes a plane and fits it to a set of points to minimize the square 

of the orthogonal distance from each point to the plane. To do this, the plane and point 
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set will be defined. The plane will be represented by Π(α,β, γ, r) where α β and γ are the 

principal angles defining the plane, and r is the orthogonal distance from the plane to the 

origin. The point set will be 𝑃𝑃(𝑥𝑥,𝑦𝑦, 𝑧𝑧), where x, y and z are the coordinates of each point.  

Once these are defined, the objective function to minimize is as follows: 

𝑋𝑋2(Π,𝑃𝑃) =  �𝑑𝑑⊥
2

𝑛𝑛

𝑖𝑖=1

(3-1) 

 

where 𝑑𝑑⊥ is the orthogonal distance of a point to a plane, as shown in equation 3-2:  

𝑑𝑑⊥ = 𝑥𝑥𝑖𝑖 ∗ cos𝛼𝛼 + 𝑦𝑦𝑖𝑖 ∗ cos𝛽𝛽 + 𝑧𝑧𝑖𝑖 ∗ cos 𝛾𝛾 − 𝑟𝑟 (3-2) 

 

where xi, yi, and zi are the coordinates of a single point. Substituting this equation into 

Equation 3-1, the minimization problem becomes Equation 3-3: 

𝑋𝑋2(Π,𝑃𝑃) =  �(𝑥𝑥𝑖𝑖 ∗ cos𝛼𝛼 + 𝑦𝑦𝑖𝑖 ∗ cos𝛽𝛽 + 𝑧𝑧𝑖𝑖 ∗ cos 𝛾𝛾 − 𝑟𝑟)2
𝑛𝑛

𝑖𝑖=1

(3-3) 

 

As this is a minimization problem, the first derivative of the equation is taken and set to 

zero. This is used to determine the point where the function is smallest. The second 

derivative of the equation is also found in order to determine if the function has global 

minima or maxima. 

𝜕𝜕𝑋𝑋2

𝜕𝜕𝑟𝑟
=
𝜕𝜕∑ (𝑥𝑥𝑖𝑖 ∗ cos𝛼𝛼 + 𝑦𝑦𝑖𝑖 ∗ cos𝛽𝛽 + 𝑧𝑧𝑖𝑖 ∗ cos 𝛾𝛾 − 𝑟𝑟)2𝑛𝑛

𝑖𝑖=1

𝜕𝜕𝑟𝑟
= 0 (3-4) 

 

𝜕𝜕𝑋𝑋2

𝜕𝜕𝑟𝑟
= −2�𝑥𝑥𝑖𝑖 ∗ cos𝛼𝛼 + 𝑦𝑦𝑖𝑖 ∗ cos𝛽𝛽 + 𝑧𝑧𝑖𝑖 ∗ cos 𝛾𝛾 − 𝑟𝑟

𝑛𝑛

𝑖𝑖=1

= 0 (3-5) 
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𝜕𝜕2𝑋𝑋2

𝜕𝜕𝑟𝑟2
= 2 (3-6) 

 

The second derivative is a positive constant, so the function is always convex. This 

guarantees that there is a minimum value. Now, r is isolated so that it can be replaced in 

the minimization function: 

0 =  cos𝛼𝛼 ∗�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ cos𝛽𝛽 ∗�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ cos 𝛾𝛾 ∗�𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−�𝑟𝑟
𝑛𝑛

𝑖𝑖=1

(3-7) 

 

0 =  cos𝛼𝛼 ∗�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ cos𝛽𝛽 ∗�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ cos 𝛾𝛾 ∗�𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− 𝑛𝑛𝑟𝑟 (3-8) 

 

𝑟𝑟 =  cos𝛼𝛼 ∗
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
+ cos𝛽𝛽 ∗

∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
+ cos 𝛾𝛾 ∗

∑ 𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
(3-9) 

 

𝑟𝑟 =  cos𝛼𝛼 ∗ �̅�𝑥 + cos𝛽𝛽 ∗ 𝑦𝑦� + cos 𝛾𝛾 ∗ 𝑧𝑧̅ (3-10) 

 

where �̅�𝑥, 𝑦𝑦�, and 𝑧𝑧̅ are values the represent the average x, y, and z values for the whole 

data set.  At this point, a simple partial differential equation cannot be done to determine 

the minimum values of the three principal angles of the plane. Instead, the minimization 

problem is redefined it is as follows: 

𝐹𝐹(𝜋𝜋) =  ��𝜋𝜋 ∙ (𝑝𝑝𝑖𝑖 − 𝑃𝑃�)�2
𝑛𝑛

𝑖𝑖=1

= ‖𝑀𝑀𝑝𝑝‖2 (3-11) 
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where π is the plane, 𝑝𝑝𝑖𝑖 is a vector containing the coordinates of the current point, and 𝑃𝑃� 

represents the centroid. To determine the minimum of this function, the Lagrange 

multiplier method is used. For this, 𝐹𝐹(𝜋𝜋) subject to 𝐺𝐺(𝜋𝜋) = 0, where 𝐺𝐺(𝜋𝜋) =  |𝜋𝜋|2 − 1 

is set, which becomes Equation 3-12: 

∇𝐹𝐹(𝜋𝜋) = 𝜆𝜆∇𝐺𝐺(𝜋𝜋) (3-12) 

 

where ∇𝐹𝐹(𝜋𝜋)  is the gradient of 𝐹𝐹(𝜋𝜋)  and 𝜆𝜆  is a stationary point that minimizes the 

function. This breaks down into Equations 3-13 to 3-16: 

∇𝐹𝐹 =  
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,∇𝐺𝐺 = 2𝜋𝜋 (3-13) 

∇𝐹𝐹 = 2 
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= 2𝑀𝑀𝑇𝑇𝑀𝑀𝜋𝜋 (3-14) 

 

𝑀𝑀𝑇𝑇𝑀𝑀 =  
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⎢
⎢
⎡ �(𝑥𝑥𝑖𝑖 − �̅�𝑥)2
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𝑖𝑖=1

�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑥𝑥𝑖𝑖 − �̅�𝑥)
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𝑖𝑖=1
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𝑛𝑛

𝑖𝑖=1

(𝑥𝑥𝑖𝑖 − �̅�𝑥)

�(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑛𝑛

𝑖𝑖=1

�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1

�(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑛𝑛

𝑖𝑖=1

�(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)
𝑛𝑛

𝑖𝑖=1

�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)
𝑛𝑛

𝑖𝑖=1

�(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)2
𝑛𝑛

𝑖𝑖=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(3-15) 
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𝑀𝑀𝑇𝑇𝑀𝑀𝜋𝜋 = 𝜆𝜆𝜋𝜋 (3-16) 

 

Equation 3-16  shows that the vector that minimizes the function is the smallest 

eigenvector of 𝑀𝑀𝑇𝑇𝑀𝑀. Weighted total least squares follows this pattern almost exactly, 

with a few modifications. The minimization problem is defined again, however, a weight 

factor is added. 

𝑋𝑋2(Π,𝑃𝑃) =  �𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 ∗ cos𝛼𝛼 + 𝑦𝑦𝑖𝑖 ∗ cos𝛽𝛽 + 𝑧𝑧𝑖𝑖 ∗ cos 𝛾𝛾 − 𝑟𝑟)2
𝑛𝑛

𝑖𝑖=1

(3-17) 

 

Here, 𝑤𝑤𝑖𝑖 is a set of weights, each associated with a point, where each weight is a positive 

value. The partial derivative is then taken with respect to r in order to determine whether 

the centroid is still a required point on the TLS plane.  

𝜕𝜕𝑋𝑋2

𝜕𝜕𝑟𝑟
=
𝜕𝜕∑ 𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 ∗ cos𝛼𝛼 + 𝑦𝑦𝑖𝑖 ∗ cos𝛽𝛽 + 𝑧𝑧𝑖𝑖 ∗ cos 𝛾𝛾 − 𝑟𝑟)2𝑛𝑛

𝑖𝑖=1

𝜕𝜕𝑟𝑟
= 0 (3-18) 

 

𝜕𝜕𝑋𝑋2

𝜕𝜕𝑟𝑟
= −2�𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 ∗ cos𝛼𝛼 + 𝑦𝑦𝑖𝑖 ∗ cos𝛽𝛽 + 𝑧𝑧𝑖𝑖 ∗ cos 𝛾𝛾 − 𝑟𝑟)

𝑛𝑛

𝑖𝑖=1

= 0 (3-19) 

 

0 =  cos𝛼𝛼 ∗�𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ cos𝛽𝛽 ∗�𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ cos 𝛾𝛾 ∗�𝑤𝑤𝑖𝑖𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−�𝑤𝑤𝑖𝑖𝑟𝑟
𝑛𝑛

𝑖𝑖=1

(3-20) 
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𝑟𝑟 =  cos𝛼𝛼 ∗
∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

+ cos𝛽𝛽 ∗
∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

+ cos 𝛾𝛾 ∗
∑ 𝑤𝑤𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

(3-21) 

 

Equation 3-21 shows that the weighted centroid is a point on the fit plane. The rest of 

the solution follows the same path as the non-weighted version, however, the value of 

𝑀𝑀𝑇𝑇𝑀𝑀 needs to be determined. Equation 3-22 also represents the minimization problem 

as redefined in Equation 3-11, but with added weights: 

𝐹𝐹(𝜋𝜋) =  �𝑤𝑤𝑖𝑖�𝜋𝜋 ∙ (𝑝𝑝𝑖𝑖 − 𝑃𝑃�)�2
𝑛𝑛

𝑖𝑖=1

= ‖𝑀𝑀𝑝𝑝‖2 (3-22) 

 

where 𝑝𝑝 is the vector that defines the principal angles of the plane. M then becomes the 

Equation 3-23: 

𝑀𝑀 =  

⎣
⎢
⎢
⎢
⎡�𝑤𝑤1(𝑥𝑥1 − �̅�𝑥)

�𝑤𝑤2(𝑥𝑥2 − �̅�𝑥)
⋮

�𝑤𝑤𝑛𝑛(𝑥𝑥𝑛𝑛 − �̅�𝑥)

�𝑤𝑤1(𝑦𝑦1 − 𝑦𝑦�)

�𝑤𝑤2(𝑦𝑦2 − 𝑦𝑦�)
⋮

�𝑤𝑤𝑛𝑛(𝑦𝑦𝑛𝑛 − 𝑦𝑦�)

�𝑤𝑤1(𝑧𝑧1 − 𝑧𝑧̅)

�𝑤𝑤2(𝑧𝑧2 − 𝑧𝑧̅)
⋮

�𝑤𝑤𝑛𝑛(𝑧𝑧𝑛𝑛 − 𝑧𝑧̅)⎦
⎥
⎥
⎥
⎤

(3-23) 

 

If we use this to find the new 𝑀𝑀𝑇𝑇𝑀𝑀 we get, it becomes Equation 3-24: 

𝑀𝑀𝑇𝑇𝑀𝑀 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 − �̅�𝑥)2

𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑥𝑥𝑖𝑖 − �̅�𝑥)
𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑖𝑖(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)
𝑛𝑛

𝑖𝑖=1

(𝑥𝑥𝑖𝑖 − �̅�𝑥)

�𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑖𝑖(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)
𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)
𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑖𝑖(𝑧𝑧𝑖𝑖 − 𝑧𝑧̅)2
𝑛𝑛

𝑖𝑖=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(3-24) 
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Solving for the smallest eigenvector of 𝑀𝑀𝑇𝑇𝑀𝑀 provides the orientation of the fit plane. 

However, this problem can be solved without having to calculate 𝑀𝑀𝑇𝑇𝑀𝑀. The singular value 

decomposition of any mxn matrix A is Equation 3-25: 

𝐴𝐴 = 𝑈𝑈𝑈𝑈𝑈𝑈 (3-25) 

 

therefore, the Equation 3-26 can be found: 

 

𝐴𝐴𝑇𝑇𝐴𝐴 = 𝑈𝑈(𝑈𝑈𝑇𝑇𝑈𝑈)𝑈𝑈𝑇𝑇 (3-26) 

 

where V is the right singular vectors of A, U is the left singular vectors of A and S is the 

singular values of A. The eigendecompostion of a matrix K that is an nxn square matrix 

with n linearly independent variables is Equation 3-27: 

𝐾𝐾 = 𝑄𝑄Λ𝑄𝑄−1 (3-27) 

 

where Q contains the eigenvectors of K and Λ contains the corresponding eigenvalues of 

K. If 𝐾𝐾 = 𝐴𝐴𝑇𝑇𝐴𝐴 is set, when K is a symmetric positive definite matrix, equations 3-26 and 

3-27 are equal, and V is equal to Q. Thus, because V contains the eigenvectors of A, we 

can simply choose the vector associated with the smallest singular value, and this will be 

the vector that determines the principal angles for the fit plane. By removing the need for 

a transpose and multiplication, the numerical accuracy of the method is increased. 
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3.2.1. VOLUME CALCULATION 
 

The volume contained between a triangle making up the skin model and the current fit 

plane is used to calculate the weight of each point in the skin model. As the skin model 

can contain a large number of triangles, it was necessary to determine a quick way of 

calculating the volume. To do this, the full volume was first separated into two distinct 

volumes with the separation plane being a plane parallel to the fit plane, translated along 

the z axis to be at the level of the lowest vertex in the triangle. This results in Figure 3-1. 

 

FIGURE 3-1 EXAMPLE CASE FOR VOLUME CALCULATION 
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The top volume becomes an irregular pyramid and the bottom volume becomes a 

triangular prism. Therefore the total volume, 𝑈𝑈𝑇𝑇, can be calculated using Equation 3-28: 

𝑈𝑈𝑇𝑇 = 𝑈𝑈𝑝𝑝𝑝𝑝 + 𝑈𝑈𝑝𝑝𝑝𝑝 (3-28) 

 

where 𝑈𝑈𝑝𝑝𝑝𝑝 is the volume of the prism and 𝑈𝑈𝑝𝑝𝑝𝑝 is the volume of the pyramid. The volume 

of the prism is calculated using the projected area of the triangle to the fit plane, 

multiplied by the height of the prism, in this case the distance from the lowest vertex, z1, 

to the fit plane, which in this case has a height of zero. 

𝑈𝑈𝑝𝑝𝑝𝑝 =  𝐴𝐴𝑇𝑇 ∙ 𝑧𝑧1 (3-29) 

 

where 𝐴𝐴𝑇𝑇 is the area of the projected triangle and is equivalent to Equation 3-30: 

𝐴𝐴𝑇𝑇 =
�𝐵𝐵2𝐵𝐵3���������⃑ � ∙ h

2
(3-30) 

 

where �𝐵𝐵2𝐵𝐵3���������⃑ � is the length of the vector connecting B2 and B3, and h is the height of the 

projected triangle. The volume of any pyramid is given by the area of its base, multiplied 

by its height and divided by three: 

𝑈𝑈𝑝𝑝𝑝𝑝 =
𝐴𝐴𝑏𝑏 ∙ ℎ

3
(3-31) 

 

where 𝐴𝐴𝑏𝑏 is the base of the pyramid and ℎ is the height. The base of the pyramid in this 

case is made up of two projected lines, a plane parallel to the projected plane, and an 

edge of the original triangle. The two projected lines are parallel to one another and 
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perpendicular to the projected plane. In Figure 3-2, the base of the pyramid of the 

example in Figure 3-1 is shown. 

 

FIGURE 3-2 BASE OF PYRAMID FOR VOLUME CALCULATION 

This arrangement causes the base of the pyramid to be a right trapezoid, and thus the 

area of the base can be calculated via Equation 3-32: 

𝐴𝐴𝑏𝑏 =
1
2
𝜕𝜕(ℎ1 + ℎ2) (3-32) 

 

𝐴𝐴𝑏𝑏 =
1
2
�𝐵𝐵2𝐵𝐵3���������⃑ ��(𝑧𝑧2 − 𝑧𝑧1) + (𝑧𝑧3 − 𝑧𝑧1)� (3-33) 

 

where each z value is the height of its corresponding point. As the triangular prism and 

the pyramid share the face containing the height of both the projected triangle and the 

pyramid, Equation 3-30 can be rearranged to get the height of the pyramid: 

ℎ =
2𝐴𝐴𝑇𝑇
�𝐵𝐵2𝐵𝐵3���������⃑ �

(3-34) 

 

making Equation 3-31 become Equation 3-35: 
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𝑈𝑈𝑝𝑝𝑝𝑝 =
𝐴𝐴𝑏𝑏 ∙

2𝐴𝐴𝑇𝑇
�𝐵𝐵2𝐵𝐵3���������⃑ �
3

(3-35)
 

 

Subbing in Equation 3-33, the formula becomes Equation 3-36: 

𝑈𝑈𝑝𝑝𝑝𝑝 =

1
2 �𝐵𝐵2𝐵𝐵3
���������⃑ � ∙ �(𝑧𝑧2 − 𝑧𝑧1) + (𝑧𝑧3 − 𝑧𝑧1)� ∙ 2𝐴𝐴𝑇𝑇

�𝐵𝐵2𝐵𝐵3���������⃑ �
3

(3-36)
 

 

Which when simplified, becomes Equation 3-37 

𝑈𝑈𝑝𝑝𝑝𝑝 =
�(𝑧𝑧2 − 𝑧𝑧1) + (𝑧𝑧3 − 𝑧𝑧1)� ∙ 𝐴𝐴𝑇𝑇

3
(3-37) 

 

Taking this equation and Equation 3-30 and putting them both into Equation 3-28, the 

total volume of the example can be found using Equations 3-38 to 3-40: 

𝑈𝑈𝑇𝑇 = 𝐴𝐴𝑇𝑇 ∙ 𝑧𝑧1 +
�(𝑧𝑧2 − 𝑧𝑧1) + (𝑧𝑧3 − 𝑧𝑧1)� ∙ 𝐴𝐴𝑇𝑇

3
(3-38) 

𝑈𝑈𝑇𝑇 =
3𝐴𝐴𝑇𝑇 ∙ 𝑧𝑧1

3
+
�(𝑧𝑧2 − 𝑧𝑧1) + (𝑧𝑧3 − 𝑧𝑧1)� ∙ 𝐴𝐴𝑇𝑇

3
(3-39) 

 

𝑈𝑈𝑇𝑇 = 𝐴𝐴𝑇𝑇 �
𝑧𝑧1 + 𝑧𝑧2 + 𝑧𝑧3

3 � (3-40) 

 

This shows that the volume between any triangle and plane can be determined via the 

projected area of the triangle to the plane, and the height of the centroid of the triangle. 

In the case where a triangle is intersected with the plane, this process still finds the total 

volume contained between the triangle and the plane. However, this volume is the 
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summation of the positive volume above the plane and the negative volume below the 

plane. This value is sufficient for determining the weights to be applied for weighted total 

least squares, however it does not account for the cost of repair. To do this, the individual 

volumes need to be determined. First, the intersection points of the line and the plane 

need to be determined. The side of the plane each point lies on is determined by checking 

the sign of the z coordinate as the fit plane is assumed to have a height of 0. Vectors are 

created from points with opposite signs, and the intersection points are found using 

parametric interpolation. The parameter t is found using the z coordinates of two points 

on either side of the plane, and the height of the plate itself: 

𝑡𝑡 =  
𝑧𝑧1 − 𝑧𝑧0
𝑧𝑧1 − 𝑧𝑧2

(3-41) 

 

where z0 is the height of the fit plane, and z1 and z2 are the heights of the two points that 

make up the vector. In this case, 𝑧𝑧0  will always be 0, as the dataset is rigid body 

transformed so that the fit plane is the XY plane. With this parameter, the intersection 

point can be determined via the Equation 3-42: 

𝑃𝑃𝐼𝐼 = (1 − 𝑡𝑡) ∗ 𝑃𝑃1 + 𝑡𝑡 ∗ 𝑃𝑃2 (3-42) 

 

where P1 and P2 are points of the triangle. Using these intersection points and the vertices 

of the original triangle, three new triangles are formed. With these triangles, the 

appropriate positive and negative volumes can be quickly determined and stored. The 

method as written assumes the fit plane has a z height of zero. This works due to the rigid 

body transformation that takes place on the data set to transform it to the fit plane during 
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the skin modelling step. As this process is also repeated during each refitting of the 

weighted data set, a z-height of zero can be assumed for each iteration. 

3.3. CALIBRATION OF SKIN MODELLING TOWARDS DZE 

 

The skin model, using finite element methods, was developed by Barari et. al [44]. In this 

method, a subset of the given data set is chosen to be processed.  

A plane is then fit to this data set using standard TLS methods. The rotation matrix 

associated with a transformation of the fit plane to base plane is found, and the data set 

is rigid body transformed to the new base plane. We define the axes of this coordinate 

system as u-v-d, where u and v represent the two major axes of the data set, and d 

represents the geometric deviations of each point from the fit plane. The u-v plane is then 

separated into a number of windows equal to the square root of the number of points in 

the reduced sample size.  Once these points are located within their windows, a search is 

run to find the values with the largest deviations from the u-v plane. These points become 

the boundary conditions for a Delaunay triangulation. A grid with twice the number of 

windows is then overlaid, and extra points are added around the rectangular boundary of 

the fine grid. The Delaunay triangulation is then carried out, and any triangle large then a 

threshold defined by the function is further subdivided by making the centroid of the large 

triangle a new site for the Delaunay triangulation. This is repeated until all triangles are 

smaller than the threshold value. When this is complete, the FEM analysis is begun. The 

in depth proof of this method can be found in the paper by Barari et al. [44]. The main 

equation that governs how the skin model is as follows: 
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𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝐾𝐾𝑢𝑢𝑢𝑢
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕�

+
𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝐾𝐾𝑣𝑣𝑣𝑣
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕�

+ 𝐸𝐸 = 0 (3-43) 

 

Where Kuu and Kvv are pre-set error propagation values. In the original paper, these values 

were both set to one for the sake of problem simplification. However, this can lead to an 

increased amount of error as the data sets are changed. To solve this, error modeling was 

conducted to determine how the function reacted to changing K values, and an 

optimization algorithm was used to find the best K values for each data set.To conduct 

the error modelling, tests were run on various data sets with the K values being set over 

a range encompassing both negative and positive values. There was a uniform step 

between each K value. The results for one data set are shown in Figure 3-3. 

 

FIGURE 3-3 ERROR GRAPH FOR SKIN MODELLING WITH UNFILTERED RESULTS 

The graph shows there is some degree of symmetry to the error, but when the signs of 

Kuu and Kvv are not the same, large error is introduced into the system. By removing the K 

values that cause excess error, the useful area of the graph is brought out. 
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FIGURE 3-4 ERROR GRAPH FOR SKIN MODELLING WITH FILTERED RESULTS 

In Figure 3-4, there are a few things that aid in choosing and directing an optimization 

algorithm. First, it can be seen that the error values are mirrored about the Kuu and Kvv 

axes. This means that the optimization algorithm can be told to ignore any non-positive 

values. It can also be seen that the areas where the K values differ greatly from one 

another cause large amounts of error. This allows the algorithm to start away from those 

areas, causing the computation time to decrease. With this information, a particle swarm 

optimization algorithm was chosen. With a particle swarm optimization, the function to 

be optimized does not need to be continuous. This allows the optimization to take place 

without the need for derivation, which would be difficult to implement with the way the 

skin model is developed. The chosen algorithm is the firefly optimization algorithm [63]. 

This algorithm mimics the behaviour of fireflies in the wild, with each individual’s 



44 
 

brightness being determined by the value it outputs. In this case, smaller values induce 

higher brightness in an individual. This attracts other individuals more heavily to the 

better result. Each individual goes through an attraction phase, where they are moved 

around the solution area using Equation 3-44: 

𝑞𝑞𝑖𝑖 = 𝑞𝑞𝑖𝑖 + 𝜂𝜂𝑒𝑒−Γ𝑔𝑔𝑖𝑖𝑖𝑖
2
�𝑞𝑞𝑗𝑗 − 𝑞𝑞𝑖𝑖� + α𝜖𝜖𝑖𝑖 (3-44) 

 

where qi represents the solution of the current candidate, η represents the attractiveness 

of another candidate, qj, gij represents the distance between the two candidates, Γ is a 

light absorption coefficient that dictates the amount of light “absorbed” by the medium, 

and αϵ i is a randomization parameter drawn from a Gaussian distribution.  After a set 

number of iterations, the current values of each individual is checked, and the K values 

associated with the lowest error are used. This can be allowed to run for as many 

iterations as desired, but after experimentation, 10 iterations was determined to provide 

adequate results.  

3.4. INTEGRATED PROCESS 

With all the processes defined, combining them into one process can be done. The 

flowchart in Figure 3-5 details the process in order. 
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FIGURE 3-5 INTEGRATED PROCESS FLOWCHART 

 

In the revised process, each of the traditional coordinate metrology steps is replaced with 

the corresponding modified version. First, the discrete 3D data points are retrieved by a 
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high density laser scanner. This provides several hundreds of thousands to millions of 

points, depending on the part in question. These data points are then passed to the 

adaptive sampling method discussed in 3.1. This reduces the number of sample points 

while maintaining the accuracy of the sample. With this smaller data set, the computation 

time for the remaining steps is drastically reduced. The reduced data set is then passed 

to a TLS fitting algorithm. This algorithm fits a baseline optimum fit plane. With this plane, 

the skin model can be calculated, creating a discretized triangulated surface. With this 

skin model and the TLS fit plane, the initial cost of repair can be calculated. This provides 

a baseline to compare the results of the added weighting process described in section 

3.4.1. This process calculates a weight for each vertex of the skin model, which is itself a 

point from the reduced data set. These weights are then used to create a new fit plane 

using Weighted Total Least Squares. Using this new fit plane, a new set of costs for each 

segment of the skin model is calculated, and the modified total cost of repair is found. 

This process then repeats until a termination condition is met. This termination condition 

is discussed in section 3.4.2.  

3.4.1. WEIGHTING PROCESS 
 

The only piece of this process that has not yet been described is the weights that are used 

in weighted total least squares. In order to determine the weights, each of the parts needs 

to be used. Using the triangulated surface created by the skin model code and the fit 

plane from the weighted total least squares code, the volume encapsulated by each 

section of the surface can be calculated. In order to modify the fit plane, the weights of 
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the points need to be changed every iteration. By using the volume of the triangle as a 

factor in the weight calculation, this criteria is met. Ideally, by continually fitting and 

reweighting the data set, an optimal solution will arise. Four weighting methods were 

used in this study.  

The first, and simplest of the methods, which will be called the Net Volume Method 

(NVM), used the net volume of each triangle and multiplied this value by a cost multiplier. 

This cost multiplier was associated with either the additive or subtractive repair method 

and was dependent on the position of the centroid of the triangle. This calculation for 

cost is shown in Equation 3-45. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 =  𝐴𝐴𝑡𝑡 ∙ 𝑧𝑧𝑐𝑐 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 𝐹𝐹𝜕𝜕𝜕𝜕𝑡𝑡𝐶𝐶𝑟𝑟 (3-45) 

 

Where 𝐴𝐴𝑡𝑡 is the projected area of the triangle to the plane, 𝑧𝑧𝑐𝑐 is the height of the centroid 

of the triangle, and the cost factor is a positive scalar value representing the per volume 

cost of a method of repair. This cost value was then split equally between each node of 

the triangle.  

The second method was similar to the first, however, instead of using the net volume of 

the triangle and applying a single cost factor, both cost factors were applied. This will be 

referred to as the Absolute Volume Method (AVM). Depending on the location of all three 

nodes, this method takes into account volumes on either side of the plane, and does not 

assume that any triangle must be repaired either by additive or subtractive methods, but 

never both. Using Equation 3-46 accounts for all scenarios. 
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𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑈𝑈𝑝𝑝 ∙ 𝑈𝑈𝜕𝜕𝜕𝜕.𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 𝐹𝐹𝜕𝜕𝜕𝜕𝑡𝑡𝐶𝐶𝑟𝑟 +  |𝑈𝑈𝑛𝑛 ∙ 𝐴𝐴𝑑𝑑𝑑𝑑.𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 𝐹𝐹𝜕𝜕𝜕𝜕𝑡𝑡𝐶𝐶𝑟𝑟| (3-46) 

 

Where 𝑈𝑈𝑝𝑝  is the positive volume of the triangle, and 𝑈𝑈𝑛𝑛  is the negative volume of the 

triangle. This equation accounts for both styles of repair in each triangle, and in the case 

that one method is unnecessary as all points exist above or below the plane, the opposing 

volume drops to zero, removing it from the weight. When the cost is calculated, it is 

divided evenly among the vertices of the triangle. 

The third method involved each vertex receiving a fraction of its associated volume. It will 

be referred to as Volume Dependent Weighting (VDW). This method takes into account 

the type of volume that is being worked on, and also the position of the associated 

vertexes. For example, if there were two points above the fit plane and one point below, 

then the points above the fit plane would share the weight associated with the positive 

volume, and the point below the plane would solely get the weight associated with the 

negative volume. 

The final method utilized the centroid of each triangle as opposed to the vertices and will 

be referred to as the Centroid Method (CM). For this method, the triangulation was still 

carried out, however, instead of refitting the WTLS plane to the data set, it was refit to 

the centroids of the triangles forming the skin model. These were weighted using 

Equation 3-44.  

For each weighting method, the data set used was the two offset planes used previously 

to validate the volume calculation code, shown in Figure 4-2. Two cases for this data set 

will be examined. In one case, the difference between the two costs of repair will be small, 
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with additive repair having a cost of 5 per volume of material, and subtractive having a 

cost of 2. The second case will have a large difference between the two values, with 

additive being increased to 50. 

First, the small discrepancy test will be carried out. In the Figures Figure 3-6 through 

Figure 3-9, the total cost will be plotted against the iteration of the method. The methods 

will be presented in the order they were introduced. 

 

FIGURE 3-6 NET VOLUME METHOD – SMALL DISCREPANCY TEST RESULTS 
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FIGURE 3-7 ABSOLUTE VOLUME METHOD – SMALL DISCREPANCY TEST RESULTS 

 

FIGURE 3-8 VOLUME DEPENDENT WEIGHTING – SMALL DISCREPANCY TEST 
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FIGURE 3-9 CENTROID METHOD – SMALL DISCREPANCY RESULTS 

In all cases, oscillatory patterns are found. While the NVM and AVM oscillate around a 

fixed point, VDW and CM have changing patterns. VDW and CM both also have very high 

peaks, with CM being larger at its height by more than 400. In Table 3-1, values from these 

figures are compared. 

TABLE 3-1 COMPARISON OF SMALL DISCREPANCY TESTS 

Weight Method Lowest Value Highest Value Average Value Peak to Peak 
Percent Variation 

NVM - Figure 3-6 45.94 67.50 56.30 47% 
AVM - Figure 3-7 46.02 71.21 58.80 55% 
VDW - Figure 3-8 46.26 120.52 80.06 161% 
CM - Figure 3-9 59.05 25539 8175 43147% 
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The results show that NVM finds the lowest result and also has the lowest variation 

iteration to iteration. All methods except CM find a suitably small value for total cost. The 

next test will compare this methods when the cost factors have a large amount of 

discrepancy between them. 

 

FIGURE 3-10 NET VOLUME METHOD – LARGE DISCREPANCY TEST RESULTS 
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FIGURE 3-11 ABSOLUTE VOLUME METHOD – LARGE DISCREPANCY TEST RESULTS 

 

FIGURE 3-12 VOLUME DEPENDENT WEIGHTING – LARGE DISCREPANCY TEST 
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FIGURE 3-13 CENTROID METHOD – LARGE DISCREPANCY TEST 

The results after the large discrepancy test are much different from the previous test. 

While CM, VDW and NVM exhibit similar behavior to the previous test, AVM shows 

marked improvement. Table 3-2 Comparison of Large Discrepancy Tests compares the 

results of these tests. 

TABLE 3-2 COMPARISON OF LARGE DISCREPANCY TESTS 

Weight Method Lowest Value Highest Value Average Value Peak to Peak 
Percent Variation 

NVM - Figure 3-10 146.55 438.69 241.10 199% 
AVM - Figure 3-11 145.14 438.69 160.06 202% 
VDW - Figure 3-12 68.10 931.10 348.77 1267% 
CM - Figure 3-13 265.10 313690 61438 118230% 

 

AVM now has a lower value than NVM, however, the difference is still minimal. They also 

both never have a higher result than the initial TLS fitting. VDW and CM still have issues 
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with this, and way overshoot the result. From these results, AVM has been chosen to be 

used for the process. While NVM has marginally lower results when there is small 

discrepancy between the different costs of repair, it does not take into account the actual 

cost of repair when calculating weight. 

3.4.2. BUMP CODE FOR OSCILLATIONS 
 

 To deal with the constant oscillations, if a repeating pattern is detected in the results, a 

randomized bump is introduced into the orientation vector. This causes large fluctuations 

in the cost, but they are quickly compensated for. This causes the optimization to be 

bumped out of any local minima it may be trapped and allow it to possibly find the global 

minimum. The result of this method can be seen in Figure 3-14. 

 

FIGURE 3-14 OPTIMIZATION RESULTS FOR TWO OFFSET PLATES 
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The bump code was triggered seven times in Figure 3-14. When triggered, the total cost 

was immediately raised to extraordinary levels. This value then drops rapidly on the next 

iteration. While the patterns after each bump were similar, after the sixth bump, a 

difference in the response is seen. This indicates that the method found a different result 

and was bumped out of a local minima. 

3.5. HEURISTIC OPTIMIZATION 
 

Due to the inability of the WTLS method to converge on a solution, a heuristic 

optimization method was used to determine if the WTLS method was finding a result close 

to the minimum value. In order to validate this, after the WTLS method had finished, the 

best result was taken and used as the initial condition for the MATLAB function 

fminsearch. This function uses the Nelder-Mead method for optimization. Using the 

functions already developed, this method is given the orientation vectors of the best fit 

plane from WTLS as its initial guess. In Figure 3-15, the results of the two offset planes 

with the optimization in use is shown. 
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FIGURE 3-15 TWO OFFSET PLANES WITH FMINSEARCH RESULTS 

 

The asterisk value is the best point found from WTLS, and the line below the WTLS results 

is the results given by fminsearch. Table 3-3 Results of optimization for two offset planes 

compares the best values of both methods. 

 

TABLE 3-3 RESULTS OF OPTIMIZATION FOR TWO OFFSET PLANES 

Piece TLS WTLS Fminsearch 
WTLS over 

TLS 
improvement 

Fminsearch 
over WTLS 

Improvement 
Two Offset 
Planes 73.52 56.29 55.89 23.44% 0.71% 
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The values show that WTLS, in this instance, found a result close to a minimum value. 

However, there was still improvement over the WTLS results. Therefore, the optimization 

algorithm will be used alongside the WTLS method to find the best fit plane. 

 

4. IMPLEMENTATION AND RESULTS 
 

This section will deal with the validation and results of the developed method. The first 

section will look at a test case used to verify that each portion of the method is working 

correctly. Then, the results of 5 different case studies will be examined. 

 

4.1. VALIDATION 

 

In order to test the developed methodology, a test platform was created and different 

test cases were used to determine the validity of the developed method.  The sample sets 

used were a perfect plane and two equally sized planes offset from one another in space. 

With the plane data set, the method was being checked for any added error. During each 

subsequent fitting and reweighting, minimal changes in the orientation of the fit plane 

and the total cost of repair for the part should be noticed. These small fluctuations would 

be caused by errors induced by successive calculations and floating point error, and 
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should be so small as to not have a large effect on the fitting process. In Figure 4-1, the 

cost of repair is plotted against the number of iterations. 

 

 

 

FIGURE 4-1 RESULTS OF INTEGRATED PROCESS ON IDEAL PLANE 

From this figure, it can be seen that the total cost of repair does not change even after 

200 iterations, which is the expected result. This shows that the method is not adding in 

extra error during its operation in the most trivial case. 

In order to validate with the two offset planes, seen in Figure 4-2, two different methods 

were undertaken to have a comparison.  
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FIGURE 4-2 TWO OFFSET PLANES 

One method used a CAD program, and the other relied on trigonometry. The main thing 

to be examined was the total volume determined via each method, with a focus on 

determining the sum of both the positive and negative volumes. The results for these 

methods can be compared to determine if the implemented volume calculation method 

functions correctly. For all methods, the fit plane was first determined via TLS fitting, and 

the data set was rigid body transformed so that the normal distance to the fit plane could 

be easily determined. Then, some defining features of the plane were found, namely the 

distance and location of the extreme points of the plane, and the areas where the plane 
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intersected with the data set. With this data, the trigonometric solution could be found. 

The data was used to create Figure 4-3. 

 

FIGURE 4-3 TRIGONOMETRIC MODEL FOR VOLUME CALCULATION VALIDATION 

In this figure, the value of a is found through the fitting algorithm and the value of c+d is 

set parametrically. In order to determine the volumes, the value of c and d need to be 

determined trigonometrically. As ac and bd form similar triangles, the value of c can be 

found using the Equations 4-1 and 4-2. 

𝜕𝜕 + 𝜕𝜕
𝜕𝜕

=
𝜕𝜕 + 𝑑𝑑
𝜕𝜕

(4-1) 

 

𝜕𝜕 =
𝜕𝜕 + 𝑑𝑑

�𝜕𝜕 + 𝜕𝜕
𝜕𝜕 �

(4-2) 

 

With this value, the volume of both ac and bd can be determined using the width of the 

plane, c+d, which is set in the code. This provides a partial representation of what will be 

calculated by the code as the skin model not account for gaps in the data set. Therefore, 

it will bridge the gap, and calculate the volume of the space encompassed by the gap. To 
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determine the volume across the gap, the length of b is reused, and the length of the 

hypotenuse is found. To do this, the length of the gap is calculated using Equation 4-3. 

𝑙𝑙 =  �𝜕𝜕2 + (𝑦𝑦 − 2𝑗𝑗)2 (4-3) 

 

Where l is the Euclidean distance of one edge of the gap to the other. Half of the length 

of the gap is then the hypotenuse of the triangles formed by b and the plane. Then, 

Pythagorean’s theorem can be used to determine the height of the triangle, and the area 

calculated.  

𝑒𝑒 =  ��
𝑙𝑙
2�

2

− 𝜕𝜕2 (4-4) 

 

Where e is half the length of the gap, parallel to the fit plane. With the area, the volume 

of the gap portion can be calculated with the width of the planes.  

As an example, a planar width, y, of 10, length, j, of 2.5, and a z offset, u, of 2. Therefore, 

Equation 3-46, using values substituted from the fit plane can be used to find the value 

of c. 

𝜕𝜕 =
2.5

�0.2762 + 0.3461
0.2762 �

= 1.1096 (4-5) 

Then, the value of e needs to be determined to find the volume encompassed by the gap.  

𝑙𝑙 = �22 + �10 − 2(2.5)�2 = 5.385 (4-6) 
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𝑒𝑒 =  ��
5.4
2 �

2

− 0.34612 = 2.67 (4-7) 

 

With c determined, the total volume of either the volume above or below the plane will 

be the summation of those sections. The equation to calculate the volume of either 

section is detailed in Equation 4-8, with the total volume in this case being twice the 

volume determined. 

𝑈𝑈 = �
𝜕𝜕 ∗ √𝜕𝜕2 − 𝜕𝜕2

2
+
𝜕𝜕 ∗ �(𝑗𝑗 − 𝜕𝜕)2 − 𝜕𝜕2

2
+
𝜕𝜕 ∗ 𝑒𝑒

2 � ∗ 𝑦𝑦 (4-8) 

 

Where y is the width of the plane. Using the example values above, the value of either 

the positive or negative volumes is found. 

𝑈𝑈 =  �0.2762∗1.1096
2

+ 1.3904∗0.3461
2

+ 0.3461∗2.67
2

� ∗ 10 = 8.4353 (4-9)

The data used to develop the planes trigonometrically is also used to find the solution in 

the CAD software. In Figure 4-4, the original data and the fit plane are represented in the 

CAD program. This allowed the test case to be validated using pre-existing and proven 

methods. The volume value shown in the figure is representative of the volume between 

the offset planes data set and the TLS fit plane. The white segments are those volumes 

above the fit plane, and the black segments are the volumes below the fit plane. 
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FIGURE 4-4 RESULTS FOR VOLUME CALCULATION VERIFICATION 

The results of the method described above were 8.4363 mm^3. This is in line with both 

of the validation methods, barring any rounding or calculation error inherent in the 

equations or programs.  

Another piece of the program that requires validation is the weighted total least squares 

fitting. As the weights allow the fit plane to be reoriented and translated in space, it is 

important to verify that the process works correctly and in an expected way. To test this, 

the impact of volumes on the fitting process will be removed, and weights will be 

determined by the side of the plane a point happens to rest on. By varying the weight 

each side gets, a change in the plane should be noticed. To begin with, equal weights were 

given to points on either side of the plane. In essence, this would mean that none of the 

points would be given any extra importance, and therefore the plane should not move 
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from its initial location. This should essentially provide the same results as traditional total 

least squares. In Figure 4-5, the data set and fit planes after twenty iterations are shown. 

 

FIGURE 4-5 PLANE ORIENTATION WHEN WEIGHTS ARE EQUAL 

The blue line emerging from the plane represents the normal vector of the plane. In this 

case, it can be seen that there is no movement of the fit plane, and it is behaving as 

expected. The weight value of all points under the plane is then increased exponentially 
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to determine the effect. Figures Figure 4-6Figure 4-9 show the plane shift when the 

weight is 4, 8, 16, and 32. 

 

FIGURE 4-6 PLANE ORIENTATION FOR ADDITIVE COST OF 4, SUBTRACTIVE COST OF 2 

 

FIGURE 4-7 PLANE ORIENTATION FOR ADDITIVE COST OF 8, SUBTRACTIVE COST OF 2 
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FIGURE 4-8 PLANE ORIENTATION FOR ADDITIVE COST OF 16, SUBTRACTIVE COST OF 2 

 

FIGURE 4-9 PLANE ORIENTATION FOR ADDITIVE COST OF 32, SUBTRACTIVE COST OF 2 

In these figures, as the weight of the points under that plane increases, there is a definite 

increasing translation of the plane. This shows that the weighted total least squares 

technique is working for basic cases, and shows expected behavior for this test. 
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4.2. RESULTS 
 

Five different case studies will be examined. In each case, some form of damage has been 

applied to a planar surface.  Each case will be allowed to run for 200 iterations, after which 

the total cost of repair determined from Total Least Square Fitting and Weighted Total 

Least square fitting will be examined. This number of iterations was used as it was greater 

than the maximum number of iterations that fminsearch took to reach its termination 

condition, and also generally allowed the code to “bump”, meaning stabilization of the 

results had occurred. The additive and subtractive cost of repair per unit volume will be 5 

and 2 respectively. These costs are unitless, and are simply used to drive the algorithm. 

For real world application, a currency and unit of measurement would need to be defined 

to get accurate real world costs. 

 

4.2.1. 3D PRINTED SURFACE 
 

The first surface will be a flat 3D printed surface. In the configuration this part was printed 

in, the errors on the surface should be minimal. However, as 3D printing is a layer based 

process, there are divots in the surface where each layer connected. Also, there are extra 

pieces of plastic left over from the printing process. Currently, these defects would be 

covered using some form of post-processing, such as the acetone vapour bath technique 

used on ABS pieces. In a hybrid process, these errors would be removed after the additive 

process using a milling head. The part used is shown in Figure 4-10. 
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FIGURE 4-10 3D PRINTED FLAT SURFACE 

 

In the Figure 4-11 and Figure 4-12, the developed skin model and results of the method 

are shown. The data used to develop the skin model was found using a high density laser 

scanner. Figure 4-13 shows the results found using fminsearch. 
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FIGURE 4-11 SKIN MODEL FOR 3D PRINTED SURFACE 

 

FIGURE 4-12 REPAIR COST FOR 3D PRINTED SURFACE 
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FIGURE 4-13 3D PRINTED SURFACE – FMINSEARCH RESULTS 

 

In Figure 4-12, the oscillatory nature of the method can still be seen. However, because 

of the curving edges of the surface, it does not quickly find a stable point. The results are 

damped, and the cost begins to arrive at a value before destabilizing again. As stable 

oscillations were not achieved, the “bump” code was never triggered. Also, because the 

results were damped, the minimum value from WTLS was found very quickly. 
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4.2.2. GOUGED WAX PIECE 
 

 

FIGURE 4-14 GOUGED WAX SURFACE 

 

In Figure 4-14, a wax piece with several gouges is shown. This mimics extreme damage to 

a planar surface. This would be a typical use case for the developed process. The data 

from this model was collected using a high density laser scanner. Figure 4-15 shows the 

skin model created from this data. 
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FIGURE 4-15 GOUGED WAX – SKIN MODEL 

 

FIGURE 4-16 GOUGED WAX – REPAIR COST 
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FIGURE 4-17 GOUGED WAX – FMINSEARCH RESULTS 

 

In Figure 4-15Figure 4-16 the skin model and repair costs found using the developed 

method are seen. The skin model is mainly planar, unlike the 3D printed surface, and there 

are only cuts into the model. In Figure 4-16, there is a similar patter as in Figure 4-12. 

Instead of immediately entering stable oscillation, the program instead acts like a damped 

system. In this case however, it is damped enough that the bump code triggers around 

iteration 165. After the bump, the repair cost immediately drops to below the level of the 

first iteration, and the minimum value from WTLS is found. It then begins oscillating again. 

Figure 4-17 shows the results from fminsearch. 
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4.2.3. METAL PIECE WITH TWO HOLES 
 

The third case is a traditionally manufactured aluminum piece. It is planar, with two 

through holes. On the surface, typical machining errors can be seen. The piece is shown 

in Figure 4-18. 

 

FIGURE 4-18 METAL PIECE WITH TWO HOLES 

 

Figures Figure 4-19Figure 4-20 show the skin model and optimization results for this 

piece. Of note, it can be seen that the skin model formed over the holes, however, the 

mesh has low density in these areas. While the data was collected using a high density 
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laser scanner, no data was collected in these areas. The extra data is due to how the skin 

model code generates vertices. 

 

FIGURE 4-19 METAL PIECE WITH 2 HOLES – SKIN MODEL 

 

FIGURE 4-20 METAL PIECE WITH 2 HOLES – REPAIR COST. 
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FIGURE 4-21 METAL, TWO HOLES – FMINSEARCH RESULTS 

 

As is seen in Figure 4-20, this model behaves very similarly to the previous one. The 

oscillations are damped and stabilize slowly. When the bump code is triggered in this 

instance, the next iteration has a value very close to that gained from pure TLS fitting. 

However, despite similarities with the previous results, the minimum value for this piece 

is found very quickly and before the bump code is triggered.  

4.2.4. NURBS SURFACE 
 

The following piece is an exaggeration of a planar surface’s defects to determine the 

efficacy of the method at a larger scale. The surface is 3D printed, and the individual layers 

can be clearly seen in Figure 4-22. 
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FIGURE 4-22 NURBS SURFACE 

 

The skin model developed for the NURBS surface is seen in Figure 4-23. The data used to 

develop this skin model was collected using a high density laser scanner. 
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FIGURE 4-23 NURBS SURFACE – SKIN MODEL 

 

FIGURE 4-24 NURBS SURFACE – REPAIR COST 
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FIGURE 4-25 NURBS SURFACE – FMINSEARCH RESULTS 

 

The results for this model are far different than the results for the previous two. The bump 

code is triggered multiple times, which can be seen in Figure 4-24, and the values after 

bump are not always consistent. Another interesting thing to note is that the minimum 

value from WTLS is found just before a bump, not just after like with the previous two 

models.  

4.2.5. STAIRCASE MODEL 
 

The final piece is a 3D printed piece that has five differently angled surfaces. Each surface 

increases in angle 15 degrees, for a range of 15 to 75 degrees. The purpose of this is to 

analyze the “staircase effect” inherent in 3D printed pieces. The lower the angle from the 
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horizontal, the rougher a 3D printed surface is. This would be a typical problem in a hybrid 

manufacturing system. Figure 4-26 shows the piece. 

 

FIGURE 4-26 STAIRCASE PIECE 

 

Figures Figure 4-27Figure 4-31 show the skin models developed for each of the angled 
surfaces. 



82 
 

 

FIGURE 4-27 STAIRCASE PIECE, 15 DEGREES – SKIN MODEL 

 

FIGURE 4-28 STAIRCASE PIECE, 30 DEGREES – SKIN MODEL 
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FIGURE 4-29 STAIRCASE PIECE, 45 DEGREES – SKIN MODEL 

 

FIGURE 4-30 STAIRCASE PIECE, 60 DEGREES – SKIN MODEL 
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FIGURE 4-31 STAIRCASE PIECE, 75 DEGREES – SKIN MODEL 

 

The deviations in each of the skin models in Figures Figure 4-27Figure 4-31 is very small, 

as is consistent with the layer height of each piece. However, these deviations are very 

important to the results. In Figures Figure 4-32 through Figure 4-36, the results of 

optimization for each of the developed skin models are shown.  
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FIGURE 4-32 STAIRCASE PIECE, 15 DEGREES – REPAIR COST 

 

FIGURE 4-33 STAIRCASE PIECE, 30 DEGREES – REPAIR COST 
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FIGURE 4-34 STAIRCASE PIECE, 45 DEGREES – REPAIR COST 

 

FIGURE 4-35 STAIRCASE PIECE, 60 DEGREES – REPAIR COST 
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FIGURE 4-36 STAIRCASE PIECE, 75 DEGREES – REPAIR COST 

 

In Figures Figure 4-32Figure 4-36, the patterns vary wildly. Despite all the surfaces being 

very similar, the shift in the layers greatly affects the results. In the 15 degree case, 

multiple patterns are shown. After the first two bumps, similar patterns are settled in to, 

indicating similar local minima. However, after the third bump, the pattern shifts, 

indicating a new local minima. This is also reflected in the 30 and 45 degree cases, but 

despite having very similar geometries, the results are vastly different. Finally, in the 60 

and 75 degree cases, both of which would be the “smoothest”, there is a return to 

repeated patterns, indicating similar local minima that are found repeatedly. This seems 

to indicate that this method finds better results for data sets that are less planar. 
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FIGURE 4-37 STAIRCASE, 15 DEGREES – FMINSEARCH RESULTS 

 

FIGURE 4-38 STAIRCASE, 30 DEGREES – FMINSEARCH RESULTS 
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FIGURE 4-39 STAIRCASE, 45 DEGREES – FMINSEARCH RESULTS 

 

FIGURE 4-40 STAIRCASE, 60 DEGREES – FMINSEARCH RESULTS 
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FIGURE 4-41 STAIRCASE, 75 DEGREES – FMINSEARCH RESULTS 

 

Figure 4-37 Figure 4-41 show the results for fminsearch for each of the staircase results. 

In each case, the improvement was minimal because of the relatively planar nature of 

each case. 
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4.2.6. RESULTS COMPARISON 
 

TABLE 4-1 FINAL RESULTS FOR EACH CASE 

Piece TLS WTLS Fminsearch 
WTLS over 

TLS 
improvement 

Fminsearch 
over WTLS 

improvement 

3D Printed 
Surface 7251.25 7180.35 7060.64 0.98% 1.67% 

Gouged Wax 1982.34 1926.57 1869.97 2.81% 2.94% 

Metal, Two 
Hole 300.677 269.596 235.067 10.34% 12.81% 

NURBS 
Surface 16214.4 13950.4 12952.9 13.96% 7.15% 

Staircase, 15 
Degrees 33.49 26.74 26.468 20.16% 1.02% 

Staircase, 30 
Degrees 67.32 58.63 57.077 12.91% 2.65% 

Staircase, 45 
Degrees 100.91 81.75 81.275 18.99% 0.58% 

Staircase, 60 
Degrees 101.539 88.54 86.26 12.80% 2.58% 

Staircase, 75 
Degrees 100.527 90.82 86.81 9.66% 4.42% 

 

In Table 4-1, the results of each case study is shown. The results after TLS fitting, the WTLS 

process, and fminsearch are shown. The cost savings of each method are then compared, 

WTLS being compared to TLS, and fminsearch being compared with WTLS, to see the 

amount of improvement found in each case. In almost all cases, fminsearch improves less 
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over WTLS than WTLS over TLS. The best results are found in the surfaces that have the 

least amount of smoothness initially.  

5. CONCLUSIONS AND RECOMMENDATIONS 
 

In this thesis, a method to minimize the repair cost of a planar manufactured part through 

a modification of the fit plane was developed. The results of the developed method are 

discussed, along with viable use cases and methods for improving and adding more 

functionality to the developed method.  

5.1. CONCLUSIONS 
 

This thesis presents a method that could be used to minimize the cost of repair for planar 

surfaces which had been rendered unusable either by manufacturing defect or by marring 

that had occurred through use. The developed method involved traditional methods, 

such as total least squares fitting and heuristic optimization algorithms, and non-

traditional methods, such as skin modelling and weighted total least squares fitting. 

Various algorithms were developed and utilized to determine the volumes that would 

need to be added or subtracted in order to repair a piece. These values were then used 

to weight the points of the original data set toward changing the fit plane for the sake of 

minimizing cost. The best result from this method was then used in a heuristic 

optimization algorithm as the initial condition to determine the best result. Each method 

was validated analytically and experimentally. Cost savings in excess of 10% were found 

in most cases with the developed method. This method worked best in situations where 
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there were a large number of irregularities on a part. In pieces where the majority of the 

surface was unharmed and planar, the cost savings were minimal. These results show that 

the developed method could be used and refined to aid in the repair and fabrication of 

parts using hybrid manufacturing. It also has shown that weighted total least squares 

fitting can be used to intelligently determine an initial starting point for an optimization 

algorithm, and can, in some instances, find a value close to the optimal result.  

5.2. RECOMMENDATIONS 
 

An improvement to the developed method is the expansion of the method to include non-

planar surfaces. By adapting the developed for use on sculptured surfaces and 3D 

features, it would possibly provide a simple way of minimizing cost on hybrid 

manufacturing techniques. Another improvement would be to take into account the 

topology of the errors being analyzed. While this is less of a factor for subtractive repair, 

this is a large problem in additive repair. The surface topology directly affects the cost of 

this method, and it cannot be assumed to be static. By incorporating topographical 

analysis, this process could account for more additive techniques and their intricacies.   
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