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We present an analysis of battery consumption to predict the average consumption rate of any 

given application. We explain the process and techniques used to gather the data, and present 

over 25000 readings collected over 3 months. We then use iterative proportional fitting to predict 

the consumptions rates, discuss the issues with the collected data, and highlight the attempts 

made to alleviate the problems. Lastly, we discuss the limitations and challenges of this 

approach, and suggest changes that may be required in order to produce more accurate results. 
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1. Introduction 

The rapid development of technology has led to a shift in how we communicate with the 

world. Computers themselves have also changed significantly since their inception, from 

analogue machines, to large electromechanical computers and transistor computers. Nowadays, 

many people own personal computers, varying from desktops to laptops. In addition, they are 

also using smaller, portable computers such as tablets and smartphones. Each iteration of devices 

enabled us to accomplish tasks that were previously not possible.  The rise of smartphones has 

enabled us to remain connected with everything, regardless of our location. They are capable of 

accessing the internet, with applications ranging from social media networks to banking services. 

With over 3 billion users as of June 2014 [1], this technology has affected a significant portion of 

the world. However, the smartphone itself was also developed through a series of iterations. 

Initially, smartphones were large, bulky, expensive, and only used in enterprise settings. 

One of the first multipurpose phones was the IBM Simon, released in 1993 [1]. The purpose of 

this device was to create a “Swiss Army Knife” phone that combined many features. It 

functioned as a mobile phone, a PDA and a fax machine.  The device was much larger than the 

modern-day smartphone and costed $899 USD, the equivalent of approximately $1500 USD in 

2017.  

Development of smartphones continued, with devices such as the Nokia 9110, 

Blackberry 5810, and the Palm Treo 600. Each device introduced functions that would become 

standard features on modern smartphones, such as keyboards, e-mail, web browsing, and 

coloured screens. Another notable inclusion is the Palm Pilot, a personal digital assistance device 

(PDA). While the Palm Pilot was not a phone, it offered many smartphone features such as 
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calendars, contact lists, e-mail and web browsing. These devices were then used in conjunction 

with the cellphones of that time. 

The major shift into modern smartphones came from Apple in 2007, when the iPhone 

was released [1].  The Apple Smartphone featured a 3.5-inch capacitive touch screen, and 

combined the aspects of a phone, an iPod, and internet access. It also removed features such as 

keyboards and stylus’ in favour of touchscreen interaction. The following year, the Android 

operating system was released on the HTC Dream. Android is an open source mobile operating 

system. While the initial adoption of Android was slow, as of 2016 it represents 81.7% of the 

smartphone market.  

 

Figure 1: Older smartphones from 1993-2003 [1].  
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The smartphone can be viewed as an extension of the computer, allowing us to perform 

the same tasks on a pocket-sized device. Developers have embraced this medium and created 

accessible mobile equivalents of the online services that we use. In addition, they are also 

creating new, unique applications by leveraging the variety of sensors on the device. However, 

they must compensate for the lack of resources in comparison to traditional computers.  

Despite the rapid growth of this technology, this service has not been perfected and has 

substantial room for improvement. A large amount of research has led to the current state of 

smartphones, and much more is required to tackle the outstanding issues that remain. One of the 

biggest issues that researchers face is the limitations due to battery life. While smartphones are 

capable of many tasks, their battery dictates how much they can accomplish. This problem can 

be addressed in a few ways. Developing energy efficient applications would reduce the strain on 

the battery. This could be accomplished by creating best practices and encouraging developer 

adherence. However, the challenge of this approach is enforcing these practices upon the 

community. As applications can be created by anyone, it would be impossible to ensure that all 

applications meet strict, energy-related guidelines. Instead of monitoring how applications are 

created, a more viable alternative would be to monitor how applications are run. By examining 

how energy is consumed on a device, feedback can be given to the user on how to extend their 

usage. 

The research question to answer is can an application monitor a user’s device to 

determine the average consumption rate of every application? The proposed solution would track 

the active applications and remaining battery percentage on a user’s device, also known as the 

state of charge (SOC). These readings would then be analyzed in order to determine how much 

battery life each application consumes. This information is currently unavailable to developers 
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programmatically due to limitations of the Android API. Access to this information can provide 

a foundation for predictive methods that manage battery consumption based on user behaviour. 

Examining battery life is an important component of smartphone progression, as it is the power 

source of the device. The small nature of mobile devices limits the size of the battery, therefore 

energy conservation and consumption optimization play an integral part in addressing this issue. 

As user expectations of smartphone functionality increases, a greater strain will be placed on its 

battery. Therefore, it is important to examine areas of battery conservation to ensure a user can 

complete their tasks before their battery is depleted.  

While battery saving applications and other conservation techniques exist, battery life 

continues to be an issue, meaning current implementations are insufficient. The majority of 

battery saving applications approach the problem by suppressing and limiting the user’s 

functions. They provide a convenient hub to toggle the resource-heavy functionality of the 

device. However, this approach limits the user experience, as they must manually alter and 

manage their levels of consumption. In addition, this is also a tedious process that users can 

forget to do during their daily routine.  

My contributions to the topic are as follows: Designed an application that reads in user 

battery information and saves it to a server, analysed the data in order to predict the consumption 

rates of each application, discussed the limitations of this approach and changes that may be 

required, and created a set of sample data lasting 3 months for future use. 
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2. Literature Review 

The idea of using prediction with battery saving applications originates from examining 

how prediction was used in other applications. In many cases, prediction was used to reduce wait 

times and preserve battery life. However, these were part of larger projects, where battery life 

was not the primary objective. The repeated mention of battery life in many articles was a clear 

indicator of its importance to mobile applications, leading to the combination of both concepts. 

2.1. Battery Life 

One of the most prominent issues with smartphones is battery life, with 37% of user 

stating it is their biggest problem [2]. As more powerful smartphones are developed, concerns 

with battery life increase. Users should be able to utilize their device as they wish for a full day 

before a recharge is required. However, this is often not the case, leading to a change in our 

activities to preserve battery life. This concern was not evident on desktop computers, as they 

have a constant source of power. With the rise of smartphone services, it is one of the biggest 

challenges faced by developers. While research into more efficient batteries is possible, another 

area of research focuses on improving the efficiency of applications.  

 

For software developers, the solution to preserving battery life is dependent on the 

efficiency of the application. Each application may have different shortcomings that cause this, 

varying for each case. However, a consistent problem that can affect many applications are no-

sleep energy bugs. Pathak et al. [3] define no-sleep bugs as energy consuming errors that stem 

from mismanagement of power control APIs. The components of a smartphone are either off or 

idle, unless an application explicitly instructs it to remain on. The resulting process requires 
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developers to constantly enable and disable components when developing their applications. This 

ultimately leads to errors when a component should be disabled but is not turned off. The 

smartphone’s battery will be depleted at an increased rate, unnecessarily powering a component.  

A variety of no-sleep bugs have been recorded and categorized into three groups. Pathak 

et al. note that their list is not definitive, and more bugs can exist. No-sleep code paths define 

code paths in an application that wake the component, but do not release it after use. This 

represents the majority of known no-sleep bugs from the findings of Pathak et al. No-sleep race 

condition occurs in multi-threaded applications, where one thread switches the component on, 

and another switches it off. Lastly, no-sleep dilation bugs occur when the awoken component is 

intended to be put to sleep, but the time required to do so is unnecessarily long. 

The solution proposed by Pathak et al. [3] is to create a compile-time dataflow analysis 

solution that can detect no-sleep energy bugs. Dataflow analysis is defined as a set of techniques 

that analyze the effects of program properties throughout a given program, managed within a 

control flow graph. Their solution focuses on the sections where smartphone component power is 

managed. If all of those sections have end points that turn off the components, the program is 

free of no-sleep bugs. To test their application, they ran their analysis on 86 different android 

applications. In addition to the 12 known energy bugs detected, 30 new types of bugs were 

discovered. Pathak et al. note that this area of research is relatively new, and they are making the 

first advances towards understanding and detecting no sleep bugs.   

Focusing on a specific type of application, Xu et al. [4] examined the built-in email 

clients of Windows Phone and Android to determine areas of improvement. Windows phone 

uses Microsoft Exchange, while Android uses Gmail. Gmail is one of the most popular 
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applications on a mobile device, with over 50 million users per month [5]. With such a large user 

base, it is important that Gmail and other email applications are optimized for functionality, 

accessibility, and power consumption. Unfortunately, functionality and power consumption can 

be contradicting. Functionality requires the application to be constantly checking for new 

messages, but continually syncing is extremely resource intensive. Finding a balance between 

these two concerns is not only limited to email, and can be practical for other applications.  

Xu et al.’s findings outlined five distinct areas that required improvement. The first 

improvement was reducing the 3G tail time. The tail time is a standby period during data 

transmission where the device waits for more data before ending a connection. The purpose of 

tail time is to avoid ending and restarting a connection, which is energy inefficient. However, 

events received by email are so infrequent, that this process ends up using more energy on 

average. The second improvement was to decouple data transmission from data processing. The 

current method will process the current data before receiving the next transmission. Network 

communication remains open during this time, leading to a waste of energy alongside the 3G tail 

effect. While this is not an easy process, retrieving all of the transmissions first and closing the 

connection eliminates the stated problems. The third improvement is to batch data processing 

requests. As multiple small writes to flash storage is slow and energy inefficient, it is beneficial 

to batch these requests and process them together. The fourth improvement is to reuse existing 

network connections to receive emails. Current implementations make it easy and natural to 

create a new connection for each new email received, but the energy costs are not negligible. The 

fifth improvement is partitioning the inbox. The energy cost of receiving an email increases 

when the inbox is larger, and can be attributed to the time is takes to update the metadata. The 

proposed solution is to partition the inbox into two parts: a small inbox for recently received 
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emails, and a large one for the remainder. As most new messages will interact with recent 

messages, there is no need to search through old emails. Xu et al. implemented these changes 

and proceeded to observe the change in energy consumption. Their findings indicated an average 

energy reduction of 49.9%. 

 

Figure 2: Energy saving with different email sizes (left) and energy saving with different inbox sizes (right). 

Figure provided by Xu et al. [4]. 

Beyond applications, web browsing can also have a large impact on energy consumption. 

Most modern webpages are populated with a variety of detail beyond traditional text. Pictures, 

videos, and animations are placed throughout the site, which require significantly more resources 

to generate in terms of both bandwidth and energy. This is evident in [6], a study on the energy 

and bandwidth costs of web advertisements on smartphones. Another study [7] examines and 

characterizes resource usage for web browsing as a whole.  

While users generally dislike advertisements distracting them from a webpage, the study 

of Albasir et al. [6] gives users another reason to detest them. As shown in Figure 3, the energy 

consumption of advertisements was measured by examining a number of news websites under 

two conditions. The first condition used the built-in web browser on the device to access 
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websites, measuring the amount of energy and bandwidth consumed. In the second scenario, the 

same websites were revisited on a different browser designed to display the webpage without ad 

traffic.  The results indicated that advertisements can take up to 50% of the traffic required to 

load the page. In addition, the energy consumption of ad generation represented approximately 6 

– 18% of the total energy from web browsing. While this study only examined a small number of 

news websites, it highlights an opportunity to improve battery life for mobile users.  

 

Figure 3: Outline of ad blocking test scenario. Figure provided by Albasir et al. [6]. 

 The study of Qian et al. [7] also examines resource usage, but their area of focus is 

broader, focusing on the 500 most popular websites. Instead of targeting a specific component, 

they are examining the entire web browsing process such as protocol overhead, TCP connection 
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management, web page content, traffic timing dynamics, caching efficiency, and compression 

usage. The objective is to measure these components in order to characterize how energy and 

bandwidth is consumed, allowing them to pinpoint areas of improvement.  

Their process begins by collecting data from the landing pages of the 500 most popular 

websites. To analyze these websites, they have created a measurement tool called UbiDump. 

UbiDump runs on mobile devices and is able to accurately reconstruct all web transfers made. 

After this information is collected, Qian et al. perform statistical analysis on the information 

based on the previous processes stated. This section is extremely detailed as it explains each 

component, how it is measured, and provides “what if” scenarios that propose changes to the 

current implementation and describe the outcome. Based on their findings, they provide a list of 

recommendations that can improve the inefficiencies they discovered. Some of their suggested 

changes are similar to the work of Xu et al. [4], such as reusing connections and caching.  

Woo et al. [8] examine caching in their study, as minimal work has been done to optimize 

the content caching in cellular networks. The increasing number of high speed base stations has 

made network accessibility more convenient for users. However, the problem surfacing with 

cellular networks is that all user traffic has to pass a limited number of gateways at core 

networks before reaching the wired internet. Simply increasing the physical backhaul bandwidth 

is not feasible for centralized architectures such as this. To circumvent this, optimization 

strategies must be considered. Their study focuses on three types of caching: conventional web 

caching, prefix-based web caching, and TCP-level redundancy elimination. Conventional web 

caching places information at the Digital Unit Aggregation (DUA) component of the cellular 

network architecture. However, this approach suffers from two problems. The first problem is 

that it “…cannot suppress duplicate objects that are uncacheable or that have different URLs 
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(i.e., aliases)”. Secondly, it is difficult to handle handovers from the mobile device to the DUA 

while the content is being delivered. Prefix-based web caching can overcome the first problem 

that web caching has, suppressing the duplicate and aliased objects. The drawback of this 

approach is that it’s efficiency and rate of false positives was initially unknown, but is addressed 

by Woo et al. later in the study. Lastly, TCP redundancy elimination can also handle the issues of 

traditional web caching, but suffers from a complex implementation and high computational 

overhead. 

The first part of the study was to analyze the TCP and application-level characteristics of 

the traffic, while the second part was comparing the effectiveness of the three types of web 

caching. Based on the results, 59.4% of the traffic is redundant with TCP-level redundancy 

elimination if we have infinite cache. In regards to caching options, standard web caching only 

achieved 21.0-27.1% bandwidth savings with infinite cache, while prefix-based web caching 

produced 22.4-34.0% bandwidth savings with infinite cache. In addition, TCP-RE achieved the 

highest bandwidth savings of 26.9-42.0% with only 512 GB of memory cache.  

Li et al. [9] perform an analysis of energy consumption on android smartphones, focusing 

on how the device is used as opposed to the applications running. To maintain consistency, an 

additional battery with a fixed voltage source is attached to a smartphone instead of using the 

traditional lithium-ion battery. A series of test cases are then performed on three different 

Android devices, and the electric current is measured with a multimeter. In each device’s test 

case, the smartphone was set to 50% brightness, and all applications were closed. 
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Test Case 

50% brightness screen 

Opening GPS 

Opening Wi-Fi 

Wi-Fi Download (2.55 

Mpbs) 

GSM Download 

(35kpbs) 

Opening Bluetooth 

Bluetooth Searching 

Devices 

Bluetooth sending data 

CPU Single thread 

CPU multithreads 

CPU stress condition 

Opening terminal 

Calling 

Incoming call 

Sending a message 

Taking a picture 

Playing music 

Playing video 
 

Table 1: List of test cases performed by each device. Power consumption values for each scenario are 

collected. 

 

The power consumption of each test case is recorded, and the results are analysed. In 

addition, additional test cases are performed with varying screen brightness. With the data 

collected, energy consumption models for screen brightness are provided. However, models for 

the other test case modules such as CPU, GPS, Wi-Fi and Bluetooth were unable to be 

determined. As each module has a variety of states which were rapidly changing, an accurate 

model could not be calculated for each case. Instead a general function is provided to 

approximate the power consumption of any given state. 
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Hoque at al. [10] present an analysis of the battery in order to examine charging 

mechanisms, state of charge estimation techniques, battery properties, and the charging 

behaviour of both devices and users, using data collected from the Carat [11] application. Carat 

is an application that tracks the applications you’re using, but does not measure energy 

consumption directly. The first analysis examines the charging techniques of smartphones and 

the charging rates. The charging mechanisms, battery voltage and charging rates of the devices 

are outlined. In addition, two additional charging mechanisms that are variants of the established 

CC-CV and DLC methods are identified. The second part of the analysis examines battery 

properties such as the changes in its capacity, temperature when charging, and battery health. 

The results indicated a linear relationship between the remaining battery capacity and final 

voltage, and a decrease in battery temperature over time as the device charged. In addition, the 

health of the battery did not indicate increases in battery temperature. 

Kim et al. [12] discuss the differences between battery and energy consumption, 

explaining how they are not always equal. When the battery discharges, portions of the stored 

energy become unavailable. Energy-saving techniques do not take this measurement into 

account, leading to incorrect calculations. Kim et al. propose that battery consumption should be 

the metric considered when proposing a savings plan. They design an application to calculate 

battery consumption, and evaluate their model with a series of test cases. The test cases include 

many power hungry applications, but their consumptions rates and periods of activity differ. The 

analysis examines the relationship between the systemwide power consumption and unavailable 

energy. In the initial trial, an increase in power consumption also increased the unavailable 

energy, and in some cases reduced the actual delivered energy by over 50%. When applying the 

measurement technique to the test cases with scaling governors that manage CPU frequency and 
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voltage, certain scenarios even indicated battery consumption can decrease when energy 

consumption increases.  

Lee et al. [13] focus specifically on battery aging, and the importance of quantifying the 

process. They propose an online scheme that tracks battery degradation without the use of any 

external equipment. The scheme functions by logging the amount of time required to charge the 

battery, comparing its results to the duration of charging a new battery. A set of different lithium-

ion batteries with different ages are measured to set a baseline charge time. The focus on the 

analysis is based on the middle region, charge levels approximately between 40%-80%. This is 

due to the linear charge rate in the given period. To calculate the battery efficiency, the scheme 

predicts the middle region of the battery, the theoretical charge time of the region, and uses the 

actual charging time of the given range. The accuracy of the efficiency measurements were 0.94 

+/- 0.05 with a range from 0.82 to 0.99.  

2.2. Prediction 

Many people may be familiar with smartphone prediction due to its use on their 

keyboard. However, the applications of prediction extend well beyond such a simple use. The 

primary benefit of prediction is speed, and a reduced wait time is always welcomed by users. 

Higgins et al. [14] examine prediction on smartphones and illustrate how and when it can be 

used. They have designed an API that leverages the uncertainty level in their prediction before 

making a decision. The API can use three different methods when determining the predictive 

error rate, each with a different drawback. Their API is used and tested on two applications: a 

network selection, and a speech recognition application. The network selection application is 

used to determine if the smartphone should transmit data over cellular, WiFi or both mediums, 



20 
 

based on latency, bandwidth, dwell time, and energy usage. In the speech recognition system, the 

API is used to determine if the recognition should be performed on the device, the remote server, 

or both, based on latency, bandwidth, dwell time, application compute time, and energy usage. 

For both applications, a scenario to use both options exists because Higgins et al. consider the 

benefits of redundant strategies, as they understand the uncertainty of predictive approaches. 

Their results for the network selection application resulted in a 21% reduced wait time over 

cellular-only strategies, and 44% for Wi-Fi preferred and adaptive strategies. For speech 

recognition, there were varying results depending on the energy usage. Redundant strategies are 

still beneficial for low to mid-energy cost scenarios, but prove to be too energy consuming for 

high-cost scenarios. In addition, their API reduced recognition delay in the no-cost energy 

scenario by 23%. While their study showcases the benefits of prediction, it fails to illustrate 

where and how it can be used. Other research into the topic provides better examples of its 

practicality. 

 One notable example of prediction use is in mobile exercise applications. Kotsev et al. 

[15] have begun using prediction to determine when users will exercise. They believe that users 

have exercise patterns that are affected by a variety of factors such as the season, weather, and 

even their mentality such as New Year’s Resolutions. By predicting a pattern, researchers can 

develop a better understand of what motivates users to exercise, allowing them to create better 

tools to increase motivation. Their work begins with analyzing a dataset generated from over 

10000 users, with the goal of identifying as many different factors as possible. The dataset 

provided information such as the type of activity performed, the country the user is from, their 

social connectivity, when they exercise, and how long their exercise for. While their research is 

inconclusive, they identify the top 10 features that can be used to predict future behaviour, which 
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are runs per week, mean runs per week, max runs per week, min runs per week, average runs per 

week, 2 elapsed hours, min distance, min elapsed hours, mean speed, and max speed. 

 Bulut et al. [16] have also utilized prediction in a unique way, creating a crowdsourced 

line wait-time monitoring system with smartphones. Its implementation at grocery stores, 

DMV’s and banks would allow users to make informed choices in time-sensitive environments. 

Known as LineKing, it has been tested at a coffee shop at the State University of New York at 

Buffalo. Customers who enter the shop will establish a connection with the service, where any 

connection lasting longer than 2 minutes but less than 20 is deemed a customer. The wait-time 

calculation is completed on the server side of the application, taking the time of the day, the day 

of the week, and seasonality into account. The estimated wait times are accurate within 2-3 

minutes.  

LineKing is comprised of two components, a client-side and a server-side. The client side 

is comprised of three subcomponents: phone-state-receiver, wait-time-detection, and data-

uploader. The phone-state-receiver is comprised of a variety of receivers registered to monitor 

various events for the application. The most notable event is the device entering and exiting the 

shop. The wait-time-detection component can use either location sensing or WiFi sensing to 

detect the user’s presence at the shop. In order to preserve battery life, the component begins 

monitoring the device under two conditions: if the user opens the application to check the wait-

time or if the user is physically close to the shop. Once a condition is triggered, the application 

begins to monitor the user’s location. For location sensing, if the user is within a specific range 

of the shop, the application will set a proximity alert to register the timestamp of entering the 

shop. If they are outside of the specified range, the application will estimate the arrival time of 

the user, and recheck their location at that time. If the user does not travel towards the shop after 
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a certain amount of time, the monitoring will cease. In the Wi-Fi sensing approach, the 

application will monitor Wi-Fi beacons periodically to determine when the user enters and leaves 

the shop. Their calculation in this approach takes into account the time delay of the scanning 

period. Lastly, the data-uploader component is responsible for uploading the wait-times to the 

estimation system. 

 The server-side component is the service that calculates the wait-time, and is comprised 

of four components: the web service, pre-processor, model-builder, and wait-time forecaster. The 

web service is the interface between the smartphone and the server, accepting wait-times from 

the smartphone and delivering wait-time estimations. The pre-processor model receives wait 

times from the web service, and is mainly responsible for removing outliers within the data. The 

model builder builds a model from the collected data, which the wait-time forecaster uses to 

estimate future wait times. The wait-time forecaster is a novel solution that takes multiple factors 

into consideration such as the time of the day, weekday vs. weekend, and seasonality of the 

business to generate an estimated wait-time. The process begins with a nearest neighbour 

estimation (NNE), which attempts to predict the wait-time by comparing the current situation to 

the collected data of wait-times. This process is then further improved by using a statistical time-

series forecasting method referred to as the Holt-Winters method. While Bulut et al. state that 

their implementation received positive user feedback, the section is rather vague and does not 

provide any statistical data to support this. 

 The next case of prediction aims to fix the disconnecting nature of smartphone usage. 

Mobile cloud computing has become a popular approach to application design, giving 

smartphones even more utility. However, the unreliable nature of wireless communication 

hinders an otherwise effective method. To address this problem, Gordon et al. [17] present a 
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concept to maintain full or partial utility during offline periods by predicting when they will 

occur. This is accomplished by observing the user’s behaviour over time, based on the motion 

sensor signals on the smartphone. The signals retrieved can be categorized into six motion 

classes: standing, sitting, walking, climbing stairs, running, and ‘other’. In addition to user 

behaviour, network connectivity states are also monitored. By observing the user’s behaviour in 

parallel to network connectivity states, patterns leading to transitions in network connectivity can 

be discovered. Once an offline prediction has been made, this information is sent to relevant 

applications. The applications are then assessed to determine the threshold of connectivity 

required to maintain the current user experience. Certain applications may only require low 

speeds and bandwidth, whereas video or music streaming applications will require much more. 

Once the level of connectivity is established, the applications will decide which resources to 

prefetch and cache in preparation for the offline period. This decision is similarly dependent on 

assessing what is required for optimal performance. 

To explain their concept Gordon et al. use an example of a student going for a run vs. 

going to school. When the student travels, he uses a music streaming service. The beginning of 

both trips are the same, and but the paths diverge when the student runs through a park with 

limited reception. As this is part of an ongoing routine, a repeat of those signals will indicate that 

offline caching is required. The objective of this concept is to predict the behaviour early enough 

that the user’s experience is uninterrupted. In this case, the runner will be able to jog through the 

park while still listening to his music. In their study, they were able to successfully predict 100% 

of the disconnection events approximately 8 minutes before they occurred. However, Gordon et 

al. discloses that the data set used was from one person, and that results can vary. 
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A few studies focused specifically on using prediction to study battery life. Li et al. [18] 

frame their research question in a unique approach, opting to determine how close to one week a 

user’s smartphone can survive on one charge. The analysis began by developing a prediction 

model that calculates how long the battery life can be extended, taking into account the type of 

hardware and user behaviour. The hardware considered are the CPU, display brightness, the 

radio, and Wi-Fi, while user behaviour is based on an application’s running time. The prediction 

model is then evaluated through a series of test cases, comparing the prediction results to the 

measured power from established power models. The average application power error of the 

prediction model is 7.31%.  

The next component examined user behaviour based on application usage. With their 

own data set and using Fuzzy C-Means clustering algorithm, 6 different user classification types 

are established. The classification types are based on the types of applications they used: utilities, 

news and magazines, email, games, media, photography, browser, social-networking, weather, 

phone call, SMS, and sleep mode. The results indicated the battery life for users using only one 

specific category are difficult to increase, sleep mode was the biggest contributor to a battery’s 

lifetime, and that battery life can be extended up to 40% by adjusting application usage. For 

users who barely use their device, limiting themselves to only phone calls and SMS would 

extend their battery from 66.28 hours to 147.3 hours, more than 6 days. Lastly, Li et al. discuss 

improvements in hardware that could increase battery life. 

Rattagan et al. [19] examine prediction and battery life together, evaluating online power 

estimations from battery monitoring units. They discuss the current methods of online and offline 

monitors, indicating the pros and cons of each. While online methods are more feasible and 

scalable, their results have a higher error rate due to three problems that are not taken into 
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consideration: battery capacity degradation, asynchronous power consumption behaviour, and 

the effect of state of charge difference in hardware training. The battery capacity of a device will 

decrease after usage, while online methods use the original battery capacity value without taking 

this into account. Asynchronous power consumption refers to readings where power 

consumption is misattributed to a given component or resource. Lastly, the effect of state of 

charge (SOC) difference in hardware training refers to the power consumption estimation of the 

hardware at different battery percentages. While the consumption rate should be uniform 

regardless of the state of charge, that is not the case for online battery monitoring units. 

The proposed solution is a semi-online power estimation method that addresses the three 

discussed issues. Battery capacity degradation is accommodated by using both the charging and 

discharging data to approximate the current battery capacity. For asynchronous power 

consumption, the voltage differences in readings are applied to determine if this is occurring. 

Lastly, Rattagan et al. examine a variety of different SOC values to determine an optimal SOC 

that has a minimal effect on the accuracy of power estimates. The solution reduced the error rates 

of power estimates by 86.66%. In addition, Rattangan et al. note that accounting for battery 

capacity degradation had the largest effect in producing more accurate results. 

Peltonen et al. [20] attempt to construct energy models of smartphone usage through 

crowdsourcing, whereas most research focused on a singular device or system. They use a subset 

of data collected from Carat [11], a collaborative energy diagnostic system. The data contains 

11.2 millions samples from approximately 150 000 Android devices. The dataset also provides 

energy rates that can be used to calculate battery consumption. Within this dataset, they identify 

13 different context factors, 5 of which are user-changeable settings and 8 are subsystem state 

information. The context factors, their type, and the unit of measurement are shown in Table 2.  
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Context Factor Type of Context Factor Unit of Measurement 

Mobile Data Status System setting 

Connected, disconnected, 

connecting, or disconnecting 

Mobile Network Type System setting 

LTE, HSPA, GPRS, EDGE, or 

UMTS 

Network Type System setting None, Wi-Fi, mobile, or wimax 

Roaming System setting Enabled, or disabled 

Screen Brightness System setting 0-255, or “automatic” (-1) 

Battery Health Subsystem state 

Varies depending on the Li-Ion 

battery type 

Battery Temperature Subsystem state Degrees Celsius  

Battery Voltage Subsystem state Volts 

CPU Use Subsystem state Percent 

Distance Traveled Subsystem state Metre (between two samples) 

Mobile Data Activity Subsystem state None, out, in, or inout 

Wi-Fi Link Speed Subsystem state Mbps 

Wi-Fi Signal Strength Subsystem state dBm 
 

Table 2: Table of context factors observed within Peltonen et al.'s [20] study. 

 

With the substantial set of data collected, Peltonen et al. perform a thorough analysis 

creating battery models, calculating each context factor’s impact on energy consumption, 

quantifying the type of impact typical values of context factors have on energy consumption, and 

many other in-depth evaluations. The impact of pairs of context factors, and how different 

combinations of active context factors can affect battery consumption are also evaluated. The 

results illustrate how different system settings can affect battery consumption, and they have 

released their dataset for others to use. 

Anguita et al. [21] attempt to use machine learning to overcome battery limitations. They 

propose sensors can be used to predict the actions of the user. They use an existing machine 

learning framework and modify it to meet the resource constraints of a smartphone. Their 

implementation is then validated in a series of test cases where the framework predicts whether 
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the user is walking, walking upstairs, walking downstairs, sitting, standing, or laying. While the 

test cases are outside the scope of traditional application monitoring, they illustrate the usage of 

machine learning is feasible for mobile devices, and the resource requirements can be reduced. 

2.3. Battery Application Review 

The purpose of reviewing the current battery management applications was to determine 

the functionality that is currently offered, and to check that prediction is not an established 

approach. DU Battery Saver [22], Battery Doctor [23], and Battery Saver applications were 

retrieved from the Google Play Store, using the search tag battery saver and battery life. They 

were the highest rated applications, top results from searches, and had a minimum rating of 

4.5/5.0. In addition, DU Battery Saver and Battery Doctor have over 8 million downloads 

respectively as of May 2018. Battery Saver is no longer available in the Google Play Store as of 

May 2018, and the number of downloads was not recorded. 

The DU Battery Saver [22] offers a significant amount of functionality, providing a main 

page showing the battery percentage, battery remaining, and the temperature of the device as 

shown in Figure 4. The fix now feature will cause the device to close unused applications that are 

draining resources to extend the battery life. Within the main page, the mode option allows the 

user to change the current profile. The smart button reveals a set of options that determine which 

applications are needlessly using resources, freeing them up to conserve battery. Included here is 

a whitelist of applications that won’t be terminated. A list of profiles is also available, altering 

the functionality of the device based on the user’s needs. A table of switches is provided to 

quickly enable/disable features such as Wi-Fi, data, display brightness, and ringtones. In 

addition, the settings page in Figure 5 provides a variety of reminder features. Alongside these 
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features, the application is also visually appealing as well. Icons are used within the main menu, 

and animations are provided when it is scanning for applications that are using resources. 

 

   

Figure 4: Home page of DU Battery Saver   

  

Figure 5: Settings page of DU Battery Saver 

 

The issue with this application comes from the boost and toolbox options on the main 

menu. The toolbox is a list of advertisements, while boost claims that there is trash on the device, 

and advertises for another application. While many of the features on the device are beneficial, 

these components are obstructive and unnecessary. In addition, notifications advertising the other 

applications were also periodically appearing. Lastly, no prediction-based functions were 

observed on the application. 
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The Battery Doctor [23] application lacks the design appeal of DU Battery Saver, and 

provides similar features. The application monitors the battery consumption, and notifies the user 

when background applications are consuming excessive battery life. A highlight of application 

battery usage, power remaining, battery level history, and device temperature are also provided 

on the main page. Tabs on the bottom of the application lead to charging history, battery profiles, 

and a consumption page of the applications that are running. A settings page also provided a low 

power notifications, Wi-Fi toggling, and an ignore list. However, beyond these features, the 

application was not as appealing as The Battery Doctor. The application would constantly note 

that the battery was draining fast, as shown in Figure 6, even though the optimize now button 

was recently used. However, the biggest issue was the amount of advertisements throughout the 

entire application. In some cases, they blended in with some of the features, which could confuse 

users. Figure 7 provides an example of how intrusive the ads on the application were. 

      

Figure 6: Home page of Battery Doctor                  Figure 7: Advertisements of Battery Doctor 
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 The Battery Saver by S.T.A.R. Inc. was the first application that appeared to have latency 

issues loading between menu pages. However, the application had no advertisements, 

significantly different from the others. The main page indicates the battery life, and provides a 

display of functions that can be toggled on and off, as shown in Figure 8. The mode icon 

provided profiles that the user could set based on their usage. The issue with Battery Saver was 

the lack of functionality, as the previously stated functions were the only notable component of 

the application. The optimize button did not function like the other applications that sought out 

unneeded background applications. In this case, it merely suggested disabling Wi-Fi and other 

features to save power. The details icon listed certain features of the phone, such as the 

temperature, voltage, status, and the type of battery, but many of the details are not important to 

the user. Lastly, their task killer icon failed to load, and only displayed a blank screen. 

 

Figure 8: Main menu of Battery Saver 
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 The current functions of battery saving applications require the user to constantly make 

changes. Profile switching, toggling settings, and removing background applications were 

popular features over multiple applications, but would require repeated interaction whenever a 

change was needed. The most autonomous feature was a timer for profiles settings, which would 

revert back to default after a period of time. The tools that were implemented provide insight into 

the types of battery-related settings that need to be toggled. By creating an application that uses 

prediction, these established modifications can be used more efficiently.  

2.4. Hardware Limitations 

While applications provide an important role in battery conservation, the hardware 

component is equally as important. Developers do not have the same level of control over 

hardware, but their limitations must be considered. Rajaraman et al. [24] address this by breaking 

down the power consumption of live streaming on a smartphone device. Recording videos and 

streaming is a resource intensive task that rapidly drains the battery. By identifying where and 

how resources are consumed, improvements can be made to reduce the battery strain.  

Rajaraman et al. indentify the anatomy of the smartphone power consumption by 

measuring the drain rate over a series of trials, broken down into three sections: display, video 

camera, and wireless communication. The initial trial measures the device in an idle state on 

airplane mode and the screen powered off. In each section’s subsequent trial, additional 

components of the device are activated and the drain rate is logged. Examples of the components 

include the camera mode used to record the video, the brightness of the screen, and how the 

video is streamed to the internet. Once this information is collected, the data is evaluated to 

determine the components with the greatest drain rate. These components are then examined in 
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order to determine a more energy efficient approach. Their analysis indicated the greatest power 

consumption involved turning on the camera in focus mode, but not when it is recording in shoot 

mode. The consumption from focus mode also does not scale with the quality of the video, 

indicating the power drawn from this process does not come from the image sensor of the 

camera, but from external hardware components. 

Brocanelli et al. [25] design a configuration to assist in battery consumption, but the 

motivation came from a hardware perspective. While investigating smartphone idle periods, they 

observed that the device was significantly more active than expected. The processor would 

awaken to execute functions related to the Radio Interface Layer Daemon (RILD). The main 

objective of RILD is to communicate with the baseband processor in order to deliver voice calls 

SMS, or network data. Without RILD active, the device would not receive any notifications 

when idling. RILD is normally performed on the application processor, which is repeatedly 

awakened during idle periods. If RILD can be executed elsewhere, the consumption can be 

significantly reduced.  

 Brocanelli et al. propose that the RILD functions be performed on a microcontroller 

instead of the application processor. While app-based notifications would still require the 

application processor, notifications regarding voice calls and SMS can be shifted to the 

microcontroller, similar to how traditional feature phones functioned. The implementation 

involves attaching an additional microcontroller to their smartphone through the micro-USB 

port, but state that an internal approach is also possible. When their implemented Smart on 

Demand energy saving mode is active, the RILD functions are shifted from the application 

processor to the microcontroller. The microcontroller handles the communication with the 

baseband and application processors, allowing the application processor to sleep and only 
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awaken for smart app updates. Their results indicated the configuration reduced energy 

consumption by up to 42%. 
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3. Battery Application  

3.1. Battery Application Design 

 The proposed application is comprised of two main components. The first component is 

the client-side interface, while the second component is the server-side that handles the majority 

of the processing. The primary purpose of the client-side application is to collect relevant battery 

information and send it to the server. Other features could be provided in the future, but 

collecting data to analyze is currently the only mandatory feature. The application was developed 

using the Android API, as the test device was an Android smartphone. 

The server-side of the application is where the data acquired from the client-side is stored 

and processed. The purpose of the server-side component is to reduce the storage and processing 

strain on the device. The data stored on the server-side will be used to predict the draining rates 

of applications after a certain amount of information is collected. Readings will be sent to the 

server at 5-minute intervals. 

3.2. Work Completed 

The initial step of my contribution was to create an application that could perform 

periodic battery reading for a device. By receiving periodic readings of the device, it would be 

possible to track the user’s behaviour. Initially, the goal was to gather the percentage of the 

battery that each application consumes, information provided through Android’s user interface in 

Figure 9. However, this data is unobtainable programmatically; therefore alternative methods 

had to be pursued. 
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Figure 9: Estimated battery readings since the last charge of the device 

The next step involved examining the Android API to determine what type of battery 

information could be retrieved. The BatteryManager class provided information on the battery of 

the device, but did not include a list of active applications. A full list of information collected 

from the BatteryManager class is shown in Table 3.  
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Date date of reading, taken outside the scope of the BatteryManager Class 

Data 
tracks if the device was using cellular data or Wi-Fi, taken outside the scope of the 
BatteryManager Class 

Health the health of the battery. All reading showed it was in good health 

icon_small unused, referenced the resource ID of an icon but all results were NULL 

Level current battery percentage, same value as percentage column 

plugged if the device was charging or discharging 

present unused, indicated whether a battery was present 

Scale unused, indicated the maximum battery level of 100 

Status 
unused, indicates whether device is charging, discharging or full. Similar information 
provided by plugged column 

technology unused, indicates the type of battery 

temperature unused, indicates the temperature of the device 

voltage unused, indicates the current battery voltage level 

percentage the current state of charge 
 

Table 3: List of information retrieved from BatteryManager Class 

  

 Further examination into retrieving an application list revealed that this was no longer 

possible. The functions that provide this information was deprecated as of API level 21, Android 

5.0. While reading through multiple sources regarding the deprecation, a user named Jared 

Rummler [26] provides a workaround to the current issue, allowing users to retrieve the list of 

running applications. The provided class functions by utilizing the ps toolbox command of 

Android, a program that contains simplified functionality of Linux commands. The ps command 

provides information regarding the processes open on the device, which are used to generate a 

list of applications currently running. 

 The proposed application is divided into two components, the client side and the server 

side. The client-side application collects the data from the user and sends the information to the 

server. All of the collection is completed in background tasks; therefore the front-end of the 

application is primarily empty. The application uses two android services to complete the process 
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which are triggered when the application is opened. A service is a process of an application used 

to complete background actions [27]. This approach was necessary as the application will not 

always be open and in the foreground. The data must still be accessible even if the user is 

running another application or not using the device. This also eliminates concerns regarding 

background applications that are terminated due to inactivity.  

 The two services are kept separate so they can each run on independent schedules. The 

first service is used to take a snapshot of the battery information, along with a list of running 

applications. This information is then saved onto a local SQLite database within the application 

itself. The second service is used to upload the recorded information onto a server. This process 

keeps a timestamp log of the last upload to minimize the information transferred. 

The server side component of the application is comprised of two parts, a set of PHP 

scripts and the MySQL Database. The information from the device is sent to a PHP script on the 

server, which makes the appropriate MySQL calls to transfer the data to the appropriate MySQL 

database table. The MySQL database contains the information sent from the device. Each row in 

the database contains the timestamp of the snapshot, the information in Table 3, and a binary 

value for each application on the device during the collection period. The number 1 indicates that 

the application was active, while a 0 means it was inactive. A sample of readings is provided in 

Table 4. Note that the usage of data or Wi-Fi is omitted from the readings. This information was 

subsequently added as it was personally tracked instead of programmatically recorded. An SMS 

was sent to the device whenever the device switched between cellular data or Wi-Fi. In the 

unlikely event that a notification was forgotten, the rows of data in the affected timeslots were 

removed from the analysis. 
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Table 4: Sample set of data retrieved from application. The number of application columns and their names 

have been altered for visual purposes 

 

 

  

date health icon_small level plugged present scale status technology temperature voltage percentage App01 App02 App03 App04 App05 App06 App07

01/09/2017 0:04 2 NULL 86 0 1 100 3 Li-ion 236 4018 86 1 1 1 1 0 1 1

01/09/2017 0:09 2 NULL 86 0 1 100 3 Li-ion 226 4021 86 1 1 1 1 0 1 1

01/09/2017 0:14 2 NULL 85 0 1 100 3 Li-ion 220 4019 85 1 1 1 1 0 1 1

01/09/2017 0:19 2 NULL 85 0 1 100 3 Li-ion 215 3989 85 1 1 1 1 0 1 1

01/09/2017 0:24 2 NULL 85 0 1 100 3 Li-ion 211 4014 85 1 1 1 1 0 1 1

01/09/2017 0:29 2 NULL 84 0 1 100 3 Li-ion 242 3949 84 1 1 1 1 0 1 1

01/09/2017 0:34 2 NULL 82 0 1 100 3 Li-ion 294 3908 82 1 1 1 1 0 1 1

01/09/2017 0:39 2 NULL 81 0 1 100 3 Li-ion 313 3911 81 1 1 1 1 0 1 1

01/09/2017 0:44 2 NULL 79 0 1 100 3 Li-ion 339 3775 79 1 1 1 1 0 1 1

01/09/2017 0:49 2 NULL 78 0 1 100 3 Li-ion 348 3893 78 1 1 1 1 0 1 1

01/09/2017 0:54 2 NULL 76 0 1 100 3 Li-ion 344 3846 76 1 1 1 1 0 1 1

01/09/2017 0:59 2 NULL 74 0 1 100 3 Li-ion 359 3863 74 1 1 1 1 0 1 1

01/09/2017 1:04 2 NULL 72 0 1 100 3 Li-ion 364 3841 72 1 1 1 1 0 1 1

01/09/2017 7:39 2 NULL 64 0 1 100 3 Li-ion 236 3686 64 1 1 1 1 0 1 1

01/09/2017 7:44 2 NULL 62 0 1 100 3 Li-ion 262 3835 62 1 1 1 1 0 1 1

01/09/2017 7:49 2 NULL 62 0 1 100 3 Li-ion 244 3837 62 1 1 1 1 0 1 1
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4. Iterative Proportional Fitting 

4.1. Table Preprocessing 

Over 25000 readings were collected during a 3-month period using a Sony Xperia Z. An 

iterative proportional fitting (IPF) was then performed on the dataset, revealing the percentage 

consumed by each application. IPF is performed by averaging out the usage of each application 

over an extended period of time, with repeated iterations of the same data. The readings 

originally collected by the devices were gathered in 5-minute intervals, and need to be 

reformatted for IPF.  

A script reads through the entire database table one row at a time in order to create a new 

table suitable for IPF. The script reads a new row, comparing it to the previous one to check if 

their timestamps are within 10-minutes and if their charging state is the same. The 10-minute 

window exists due to a variance in the time each reading is logged by the application. The 

charging state also affects consumptions rates, therefore only rows with a discharging battery are 

evaluated. Once the row is determined to meet the criteria, it is then evaluated based on its 

battery percentage. If the SOC of the current row is the same as the previous one, a new row 

entry is not yet created for the reformatted table. Instead, a temporary row is created with the 

current timestamp, the present column changed to represent the number of minutes between the 

two readings, the interval value set to 1 to indicate 1 set of readings has elapsed, and the binary 

readings of the application columns changed to represent the number of minutes they have been 

active, which is equal to the number of minutes between the two readings. If subsequent readings 

also have the same SOC, the date is changed to the latest timestamp, the time difference between 

the latest two readings is added to the temporary row’s present column, the interval value is 
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increased by 1, and the binary readings of active applications in the current row are converted 

into minutes and added to the existing temporary row. 

If the SOC of the current row is lower than the previous one, a new row is created for the 

reformatted table. First, the temporary row is updated with the new information from this row. 

The temporary row is then written to a new file, and then cleared. This process is repeated until 

the entire table has been parsed. A difference between the old table and new, reformatted table is 

shown in Table 5 and Table 6.  

date data plugged present interval percentage App01 App02 App03 App04 

03/09/2017 23:54 2 0 1 1 50 0 1 1 1 

03/09/2017 23:59 2 0 1 1 50 1 0 1 1 

04/09/2017 0:09 2 0 1 1 50 1 0 0 1 

04/09/2017 0:14 2 0 1 1 50 0 1 1 1 

04/09/2017 0:19 2 0 1 1 50 1 1 1 1 

04/09/2017 0:24 2 0 1 1 49 1 1 1 1 

04/09/2017 0:29 2 0 1 1 47 1 1 1 1 

04/09/2017 0:34 2 0 1 1 46 1 1 1 1 

04/09/2017 0:39 2 0 1 1 46 1 0 1 1 

04/09/2017 0:44 2 0 1 1 46 1 1 1 1 

04/09/2017 0:49 2 0 1 1 45 1 1 0 1 

04/09/2017 0:54 2 0 1 1 44 1 1 1 1 

 
Table 5: Sample database readings prior to IPF reformatting 
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date data plugged present interval percentage App01 App02 App03 App04 

04/09/2017 0:24 2 0 30 5 1 25 15 20 30 

04/09/2017 0:29 2 0 5 1 2 5 5 5 5 

04/09/2017 0:34 2 0 5 1 1 5 5 5 5 

04/09/2017 0:49 2 0 15 3 1 15 10 10 15 

04/09/2017 0:54 2 0 5 1 1 5 5 5 5 

 

Table 6: Sample of reformatted table for IPF 

 

4.2. Perform IPF 

Once the preprocessing is complete, IPF can be performed on the data. To begin, each 

application in the table is assigned a weight/consumption value of 1. This value represents the 

battery consumption per minute. The entire table is then examined one row at a time in order to 

perform IPF. Each row contains the timestamp, the percentage drained, and the amount of time 

each application was running during that period. The next step is to calculate the updated 

consumption values of each running application based on the current row. To begin, the 

estimated total consumption of the active applications need to be calculated. Multiplying the 

number of minutes each application is active by its respective weight value and summing them 

will provide this value. To calculate the updated consumption values of an application, the 

battery percentage drained is multiplied by the application’s current consumption value and 

divided by the estimated total consumption of the active applications. This process is then 

repeated with every other active application, allowing the value of the battery drained to be 

divided proportionally to the weighted values of the active applications and the amount of time 

they are active. This process is repeated many times over the dataset to create estimated 

percentage values. A sample set of data is used to illustrate the process of IPF and how it 

functions. 
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Date Percentage App01 App02 App03 App04 App05 App06 App07 App08 App09 

04/09/2017 10:24 3 5 4 5 5 0 5 5 0 5 

04/09/2017 10:29 2 5 5 0 5 0 5 5 5 5 

04/09/2017 10:34 3 5 5 0 5 5 5 5 0 5 

04/09/2017 10:39 2 5 5 5 0 0 5 5 5 5 

04/09/2017 10:49 2 5 5 5 0 0 5 5 5 5 

04/09/2017 10:54 2 5 5 5 0 0 5 5 5 5 

 

Table 7: Sample dataset for IPF example 

 

Date Percentage App01 App02 App03 App04 App05 App06 App07 App08 App09 

04/09/2017 10:24 3 5 4 5 5 0 5 5 0 5 

 

Table 8: First row of Data 

 

app01 app02 app03 app04 app05 app06 app07 app08 app09 

1 1 1 1 1 1 1 1 1 

 

Table 9: Initial weight/consumption rate of applications 

 

The estimated total consumption of the active applications is calculated by multiplying each 

active application’s estimated consumption rate by the number of minutes it is active in this reading. This 

information is required in order to determine the updated consumption rates, which are calculated on a 

per-minute ratio. 

Let t represent the sum of the estimated consumption rate for all active applications 

Let a represent the estimated application consumptions in a given reading 

Let m represent the number of minutes each application was running in a given reading 

t = ∑ (ai * mi) 

t = 1 * 5 + 1 * 4 + 1 * 5 + 1 * 5 + 1 * 5 + 1 * 5 + 1 * 5 

t = 34 
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The battery percentage consumed by all open applications in the timestamp is 3%. The 

following formula is used to determine the percentage that each individual application 

consumed. 

Let px represent the total percentage of battery consumed in a given reading 

Let ay represent the estimated application consumption 

 

ay
1
 = px * (ay / t) 

app01 = 3 * (1 / 34) = 0.0882 

app02 = 3 * (1 / 34) = 0.0882 

app03 = 3 * (1 / 34) = 0.0882 

app04 = 3 * (1 / 34) = 0.0882 

app05 = 3 * (1 / 34) = not running 

app06 = 3 * (1 / 34) = 0.0882 

app07 = 3 * (1 / 34) = 0.0882 

app08 = not running 

app09 = 3 * (1 / 34) = 0.0882 

        

 

 Figure 10: Visual representation of how much each application contributed to the 3% drain 
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app01 app02 app03 app04 app05 app06 app07 app08 app09 

0.0882 0.0882 0.0882 0.0882 1 0.0882 0.0882 1 0.0882 

 

Table 10: Weight/consumption rate of applications after one iteration of IPF 

 

 

Date Percentage App01 App02 App03 App04 App05 App06 App07 App08 App09 

04/09/2017 10:29 2 5 5 0 5 0 5 5 5 5 

 

Table 11: Second Row of Data 

 

With the second row of data, the battery percentage consumed by all open applications is 

2%. The same formula is used to determine both the estimated total consumption and percentage 

that each application used. 

t = ∑ (ai * mi) 

t = 0.0882 * 5 + 0.0882 * 5 + 0.0882 * 5 + 0.0882 * 5 + 0.0882 * 5 + 1 * 5 + 0.0882 * 5 

t = 7.646 

 

 ay
1
 = px * (ay / t) 

app01 = 2 * (0.0882 / 7.646) = 0.02307 

app02 = 2 * (0.0882 / 7.646) = 0. 02307 

app03 = not running 

app04 = 2 * (0.0882 / 7.646) = 0. 02307 

app05 = not running 

app06 = 2 * (0.0882 / 7.646) = 0. 02307 

app07 = 2 * (0.0882 / 7.646) = 0. 02307 

app08 = 2 * (1 / 7.646) = 0.26157 

app09 = 2 * (0.0882 / 7.646) = 0. 02307 
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Figure 11: Visual representation of how much each application contributed to the 2% drain, based on the 

updated weight/consumption values 

 

app01 app02 app03 app04 app05 app06 app07 app08 app09 

0.00252 0.00252 0.0882 0.00252 1 0.00252 0.00252 0.00252 0.00252 
 

Table 12: Weight/consumption rate of applications after two iterations of IPF 

 

This process is repeated with each subsequent row, and then repeated with the entire 

dataset hundreds of times to normalize the data. The resulting data will contain estimated 

consumption rates for each application. These values will approximately satisfy any row of the 

original dataset. Multiplying the consumption rates of each active application in a given row by 

the number of minutes they were active and summing them will produce the percentage drained 

value of the row.  

app01 app02 app03 app04 app05 app06 app07 app08 app09 

0.023492 0.023492 0.243619
 

0.243619
 

0.23892 0.023492 0.023492 0.03892 0.023492 

 

Table 13: Sample set of estimated battery consumption values after IPF has been performed 
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After running iterating through the entire dataset one-thousand times, the resulting 

consumption rates of each application are shown in Table 13. However, due to the small sample 

size of data in the example, the values shown are not as accurate as they could be. A larger 

dataset is used to illustrate the accuracy of this model. 

  



47 
 

5. Analysis 

5.1. Additional Preprocessing 

Three months of data was collected between September 3
rd

 2017 and December 7
th

 

2017. Approximately two months of data is used for IPF, while the remaining month is used for 

verification purposes. Readings prior to November 5
th

, 2017 were used in the analysis, while the 

remaining readings were used for the verification process. All readings were collected on a 2013 

Sony Xperia Z. Only my personal device was used due to the type of information collected. As 

the device is constantly monitoring when and how the user interacts with their smartphone, a lot 

of personal information is extracted. Requesting approval from the University of Ontario 

Institute of Technology Research Ethics Board would be a challenging endeavour that may have 

required alterations to our collection process. As the limitations of the Android Software 

Development Kit had already restricted the process, we made the decision to only collect from 

my smartphone. This device was an ideal choice for the process, as the motivation for this 

project stems from my experiences with this smartphone and its battery limitations. Only 

collecting from one device will not impact IPF results, as each reading is tied to their respective 

device. 

The collected data was separated in two ways based on initial observations, Data or Wi-

Fi, and active or Idle. Data and Wi-Fi was personally logged whenever there was a switch 

between the two modes. This would primarily occur when entering and leaving a building with 

Wi-Fi access. Prior readings had indicated a difference in battery consumption; therefore these 

attributes were recorded in the analyzed readings. Active and idle were also two attributes 

discovered with preliminary readings. Initial baseline readings were established, with the device 
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unplugged and unused overnight. These readings illustrated a difference in consumption between 

an active and idle device, as well as idle consumption between data and Wi-Fi. 

Readings were divided between data and Wi-Fi before the preprocessing step in 4.1. 

After the readings have been grouped, they are divided into active or idle readings. In order to 

divide the results into active and idle usage, a script was used to parse through the table and 

evaluate the readings based on the amount drained in a given period. The script functioned by 

reading in a set of data. A set of data contained all of the readings within a given period that were 

a maximum of 10 minutes apart. If all of the readings had an interval value of 1, and the number 

of readings was greater than two, the set would be marked as active as it would indicate the 

battery is draining by at least 1% every 5-10 minutes in a row. Similarly, if all readings had an 

interval value of 3 or greater, with more than two readings in the set, it would indicate an 

inactive period as the battery is draining slowly. If these conditions are not met, the script breaks 

down the set information further and evaluates the rows with more specific parameters to 

determine if they are active or idle. 

After creating active and idle sets of data, IPF can then be performed to estimate 

application usage. Results were gathered for active usage with data, idle usage with data, active 

usage on Wi-Fi and idle usage on Wi-Fi.  
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5.2. Active Usage with Data 

AppID Name Consumption rate per 5 minutes 

165 droid.apps.maps 1.932657974 

207 com.facebook.orca:browser 1.039852759 

232 .katana:browser 1 

190 com.android.captiveportallogin 0.765539191 

197 com.facebook.orca:optsvc 0.603819035 

40 com.google.android.syncadapter 0.599690383 

75 com.sonyericsson.android.socia 0.522840798 

77 com.sonymobile.providers.topco 0.47484536 

55 com.ebay.kijiji.ca 0.473368041 

278 com.brainium.sudoku.free 0.472535403 

49 <pre-initialized> 0.365676633 

256 com.google.android.apps.paidta 0.290160356 

274 com.google.android.instantapps 0.261453193 

166 com.boardgamegeek 0.258780575 

85 com.google.android.gms.feedbac 0.258010442 

229 com.guruse.LiveItGoodPlus 0.252240552 

51 com.sonyericsson.album 0.233795264 

81 com.facebook.katana:browser 0.200093306 

205 com.ncix.app.android 0.132652856 

71 com.facebook.katana:videoplaye 0.106030167 

67 com.sonymobile.photoanalyzer 0.101657199 

20 com.sonymobile.camerawidget 0.071377667 

1 com.sonymobile.cameracommon 0.0489846 

2 com.android.systemui 0.0489846 

4 com.google.android.googlequick 0.0489846 

6 com.sonyericsson.textinput.uxp 0.0489846 

7 com.sonymobile.mx.android 0.0489846 

8 com.sonymobile.googleanalytics 0.0489846 

11 com.google.android.gms 0.0489846 

13 com.android.smspush 0.0489846 

17 com.google.android.gms.persist 0.0489846 

48 com.example.alphabatterylifeap 0.0489846 

93 com.google.android.tts 0.043937749 

87 com.mobisystems.office 0.039739665 

92 com.android.providers.partnerb 0.038270562 

277 ileged_process1 0.026942868 

90 com.android.partnerbrowsercust 0.021359353 
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80 com.sonyericsson.organizer 0.014464093 

89 com.sonymobile.playanywhere 0.012146442 

122 com.sonyericsson.metadataclean 0.012146442 

126 com.sonyericsson.music:service 0.012146442 

127 com.sonyericsson.music 0.012146442 

185 com.sonyericsson.setupwizard 0.012146442 

186 com.sonyericsson.simcontacts 0.012146442 

249 com.spotify.music 0.012146442 

 
Table 14: Table of local application ID, application name, and estimated consumption rate on active usage 

with data. Only applications with an estimated consumption rate greater than 0.01 are shown. 

 

5.3. Idle Usage with Data 

AppID Name Consumption rate per 5 minutes 

124 ca.transcontinental.android.sh 1.701331 

37 com.google.android.youtube 0.910289 

82 com.sonyericsson.soundenhancem 0.278741 

87 com.mobisystems.office 0.278741 

92 com.android.providers.partnerb 0.191252 

55 com.ebay.kijiji.ca 0.165383 

50 com.google.android.apps.docs 0.161907 

58 com.sonyericsson.android.camer 0.150943 

93 com.google.android.tts 0.138551 

62 com.sonymobile.entrance 0.129608 

28 com.mobisystems.fileman 0.094909 

71 com.facebook.katana:videoplaye 0.09078 

63 com.sonyericsson.conversations 0.089973 

90 com.android.partnerbrowsercust 0.085423 

219 com.passportparking.mobile.tor 0.07842 

109 com.google.android.apps.messag 0.074704 

194 com.timeplay 0.05798 

94 com.sonymobile.tasks 0.052979 

98 com.sonymobile.cameracommon.we 0.052766 

88 com.andrewshu.android.reddit 0.044894 

27 com.sonyericsson.xhs 0.042999 

21 com.android.vending 0.039414 

23 com.sonymobile.ree 0.029569 
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203 com.google.android.apps.docs.e 0.028461 

38 com.google.android.talk 0.028132 

184 com.sonyericsson.lockscreen.ux 0.016484 
 

Table 15: Table of local application ID, application name, and estimated consumption rate on idle usage with 

data. Only applications with an estimated consumption rate greater than 0.01 are shown. 

 

5.4. Active Usage with Wi-Fi 

AppID Name Consumption rate per 5 minutes 

97 com.mobisystems.office:search 1.359471 

37 com.google.android.youtube 1.07199 

197 com.facebook.orca:optsvc 1 

213 d.process.media 1 

278 com.brainium.sudoku.free 1 

169 android.youtube 0.889995 

89 com.sonymobile.playanywhere 0.840852 

92 com.android.providers.partnerb 0.760955 

44 com.android.exchange 0.631718 

103 com.google.android.configupdat 0.631718 

122 com.sonyericsson.metadataclean 0.631718 

126 com.sonyericsson.music:service 0.631718 

127 com.sonyericsson.music 0.631718 

163 com.android.email 0.631718 

215 com.mobisystems.office.recentF 0.548113 

138 csson.organizer 0.545455 

152 .ebay.kijiji.ca 0.526994 

49 <pre-initialized> 0.507042 

98 com.sonymobile.cameracommon.we 0.5 

51 com.sonyericsson.album 0.354524 

90 com.android.partnerbrowsercust 0.30964 

254 social.services 0.243819 

256 com.google.android.apps.paidta 0.204825 

113 com.android.documentsui 0.159741 

114 com.android.externalstorage 0.159741 

36 tv.twitch.android.app 0.138225 

9 com.sonyericsson.home 0.135621 

190 com.android.captiveportallogin 0.120099 
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144 com.sonymobile.entrance:com.so 0.110327 

43 com.google.android.gms.unstabl 0.10019 

174 com.mobisystems.office:pdf 0.067779 

55 com.ebay.kijiji.ca 0.033984 

1 com.sonymobile.cameracommon 0.026574 

2 com.android.systemui 0.026574 

4 com.google.android.googlequick 0.026574 

6 com.sonyericsson.textinput.uxp 0.026574 

7 com.sonymobile.mx.android 0.026574 

8 com.sonymobile.googleanalytics 0.026574 

11 com.google.android.gms 0.026574 

13 com.android.smspush 0.026574 

17 com.google.android.gms.persist 0.026574 

48 com.example.alphabatterylifeap 0.026574 

259 com.facebook.katana:notificati 0.026574 
 

Table 16: Table of local application ID, application name, and estimated consumption rate on active usage 

with Wi-Fi. Only applications with an estimated consumption rate greater than 0.01 are shown. 

 

5.5. Idle Usage with Wi-Fi 

AppID Name Consumption rate per 5 minutes 

156 com.fivemobile.cineplex 1.469046 

124 ca.transcontinental.android.sh 0.848586 

113 com.android.documentsui 0.74905 

216 ndroid.incallui 0.723009 

165 droid.apps.maps 0.721754 

33 com.ypg.rfd 0.623563 

140 ny.nfx.app.sfrc 0.53125 

67 com.sonymobile.photoanalyzer 0.341133 

139 oid.smartsearch 0.315703 

130 n.mShop.android 0.3 

82 com.sonyericsson.soundenhancem 0.25 

40 com.google.android.syncadapter 0.233619 

116 sonymobile.dlna 0.214826 

44 com.android.exchange 0.202419 

119 com.google.android.marvin.talk 0.192747 
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76 com.sonyericsson.android.smart 0.185105 

208 viders.calendar 0.142857 

89 com.sonymobile.playanywhere 0.125608 

52 com.sonymobile.autopairing 0.121826 

268 com.google.android.youtube.pla 0.100066 

203 com.google.android.apps.docs.e 0.084793 

164 com.android.sharedstoragebacku 0.079764 

23 com.sonymobile.ree 0.077151 

161 roid.music:main 0.0506 

91 com.android.chrome:privileged_ 0.041496 

83 com.google.android.gms:snet 0.040992 

57 com.google.android.play.games. 0.040768 

264 com.google.android.play.games 0.040768 

98 com.sonymobile.cameracommon.we 0.040444 

209 com.mcdonalds.superapp 0.033019 

212 com.facebook.orca:videoplayer 0.020862 

103 com.google.android.configupdat 0.020257 

81 com.facebook.katana:browser 0.019885 
 

Table 17: Table of local application ID, application name, and estimated consumption rate on idle usage with 

Wi-Fi. Only applications with an estimated consumption rate greater than 0.01 are shown. 
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6. Verification 

To verify the accuracy of the results, the generated values are compared to the last month 

of recorded readings. A given reading has the percentage drained and the amount of time each 

application was active for. With the consumption rates calculated through IPF and adjusting for 

their length of activity, summing the calculated rates will give an approximation of the 

percentage drained.  

Date Percentage App01 App02 App03 App04 App05 App06 App07 App08 App09 

05/10/2017 11:29 2 5 10 0 5 0 5 10 5 5 

 

Table 18: Sample data for verification example 

 

AppID Name Consumption rate per 1 minute 

1 App01 0.02 

2 App02 0.02 

3 App03 0.06 

4 App04 0.08 

5 App05 0.22 

6 App06 0.02 

7 App07 0.06 

8 App08 0.04 

9 App09 0.08 
 

Table 19: Sample consumption rates for verification example 

 

Let Appx represent the amount of time an application is active in a given reading 

Let ratex represent the estimated consumption rate per 1 minute of an application 

 

Percentage Drained (PD) = 2.0% 

Predicted Percentage Drained (PPD) = App01 * rate01 + App02 * rate02 + App03 * rate03 + App04 * rate04 + 

App05 * rate05 + App06 * rate06 + App07 * rate07 + App08 * rate08 + App09 * rate09 

PPD = 0.02 * 5 + 0.02 * 10 + 0.06 * 0 + 0.08 * 5 + 0.22 * 0 + 0.02 * 5 + 0.06 * 10 + 0.04 * 5 + 0.08 * 5 
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PPD = 0.1 + 0.2 + 0 + 0.4 + 0 + 0.1 + 0.6 + 0.2 + 0.4 

PPD = 2.0%  

 

Figure 12, Figure 13, Figure 14, and Figure 15 represent the accuracy of each type of 

reading. Each value in the table is the percentage error between the estimated and actual 

percentage drained. Any result that is not 0 indicates an incorrect estimation. The active data and 

active Wi-Fi results are more varied in comparison to idle readings. This is because idle readings 

primarily have a drain rate of 1%. Meanwhile, active readings have a diverse set of drain rates; 

therefore the estimations are more inaccurate. A set of summary statistics are also provided in 

Table 20. 

 

Figure 12: Prediction results for active data readings 
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Figure 13: Prediction results for idle data readings 

 

 

Figure 14: Prediction results for active Wi-Fi readings 
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Figure 15: Prediction results for idle Wi-Fi Readings 
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Type of Reading Mean Median Mode Range Standard Deviation 

Active Data 53.89064557 49.53829753 20.00933062 298.652528 49.2808488 

Idle Data 65.3578 48.09168 34.03614 524.5064 80.42148 

Active Wi-Fi 56.55833 57.20596 57.20596 197.5374   25.61456 

Idle Wi-Fi 125.6349 52.71312 44.16126 1425.947 204.44 
 

Table 20: Summary statistics of calculated percentage error for each type of reading 
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7. Result Analysis 

The results gathered appeared to be extremely volatile, as many of the values are 

significantly different from their expected results. A notable problem within the dataset was 

duplicate readings with different percentage drain rates. Multiple rows would have the exact 

same applications active, but have varying percentage drain rates. This would impact the results 

of IPF, as it is attempting to average out applications that drain at different rates. Similarly, many 

rows would be nearly identical, but have minor differences.  However, the corresponding 

applications to these differences have negligible consumption rates, effectively making these 

rows identical. These readings were removed and IPF was performed again in an attempt to 

produce accurate results. Table 21 indicates the difference in row entries before and after 

removing the duplicate entries. 

 

Readings Old Amount After removing duplicate entries 

Active Data Analysis 899 172 

Active Data Verification 258 77 

Idle Data Analysis 279 269 

Idle Data Verification 206 177 

Active Wi-Fi Verification 632 85 

Active Wi-Fi November 254 161 

Idle Wi-Fi Analysis 1303 731 

Idle Wi-Fi Verification 684 362 
 
Table 21: The number of readings before and after removing any entries with the same applications open 
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Figure 16: Prediction results for active data readings after removing duplicate entries 

 

 

Figure 17: Prediction results for idle data readings after removing duplicate entries 
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Figure 18:  Prediction results for active Wi-Fi readings after removing duplicate entries 
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Figure 19: Prediction results for idle Wi-Fi readings after removing duplicate entries 
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Type of Reading Mean Median Mode Range Standard Deviation 

Active Data 53.89064557 41.82915 27.98806 142.8435 34.41896 

Idle Data 88.4071 52.09336 46.59859 797.2639 125.3344 

Active Wi-Fi 53.97918 38.79993 1.787259 373.285  60.80815 

Idle Wi-Fi 1346.45 704.8569 2429.909 12432.54 1823.087 
 

Table 22: Summary statistics of calculated percentage error for each type of reading after removing duplicate 

readings 

  

The results shown in Figure 16, Figure 17, Figure 18, and Figure 19 indicate that results 

were still volatile and inconsistent, while Table 22 provides an updated set of summary statistics. 

The remaining problem involves entries where active applications in one reading constitute a 

portion of a different row. If the first reading has a larger percentage drained amount, it would 

imply an application can have a negative consumption rate. Table 23 illustrates the issue with 

two nearly identical readings. App09 is inactive in the first row, yet there is a larger percentage 

drained value. An active application would not result in a lower consumption rate, rendering the 

calculation unsolvable. When applying IPF on a smaller subset of data without this issue, 

accurate results are produced. However, these results are created by discarding the vast majority 

of readings, and would not be representative of the data gathered. 

Date Percentage App01 App02 App03 App04 App05 App06 App07 App08 App09 

08/09/2017 17:44 3 5 5 0 5 0 5 5 5 0 

08/09/2017 17:49 2 5 5 0 5 0 5 5 5 5 

 

Table 23: Sample table list illustrating a negative consumption rate 
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8. Discussion and Challenges 

A detailed explanation of the data aggregation process, analysis, and results were presented. 

Utilizing IPF to determine the average consumption rates of applications was not possible with the data 

recorded. Calculating a single average rate of consumption for an application resulted in inaccurate 

results. While an accurate and reliable solution was not determined, the experience allowed us to 

document notable limitations both in data collection and analysis. This information will hopefully provide 

others with insight into an alternative approach. 

 

8.1. Insufficient information gathered 

Tracking if an application was active or inactive, and using data or Wi-Fi was insufficient in 

determining its consumption rate. While the information we can collect from a device is limited, our 

approach was unable to calculate the average consumption rate. One issue is the list of active applications 

is not an indicator that each one was utilized at an equal rate. A previously used application may be 

running in the background unused, but is still picked up as an active application. If a user switches the 

foreground application and uses something else, the previous application is not immediately closed. This 

is a limitation that needs to be worked around, as only collecting the singular foreground application 

would not be representative of the applications draining the battery.  

8.2. Extend Period of Observation 

IPF currently grouped readings based on the SOC decreasing after 5-10 minutes elapsed. 

However, it may be necessary to extend readings for a longer duration and examine the changes within 

that period. Observing the change in battery over the course of 30 minutes may provide insight that isn’t 

considered in shorter durations.  
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8.3. Different Techniques Required 

An alternative approach is needed to analyze the data provided. As previously mentioned in 

Table 23, similar readings will have different consumption values, but the reading with fewer 

applications active will have a greater value. This highlights the challenge of utilizing IPF to 

determine an application’s consumption rate. In addition, readings with the same applications 

open but different percentage drained values presented another problem. These readings could be 

averaged out to a single consumption value; however the percentage drained for these readings 

can vary from 1%-4%. The verification process of these entries would be inaccurate. 

 

8.4. Expanding Acceptable Results 

A single consumption rate for an application in each scenario may be insufficient. 

Predicting a range of acceptable consumption values for each application may lead to higher 

accuracy during the verification process. This approach would also solve the issue of similar 

readings with different drain rates as shown in Table 23. A range of acceptable values would 

accommodate the differences in these readings. However, this approach may also present 

ineffective information if an application has a large range of acceptable results. It would also be 

unable to predict the given consumption rate at a specific reading. 
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8.5. Identifying Applications 

Two issues occurred when attempting to identify applications based on their name. The 

first issue was a character limit in the database table. A 30 character limit was set for the 

application name column, leading to a few incomplete names. However, the larger problem was  

identifying what an application was used for. While the popular applications were easily 

identified, many of the applications that were unused or had a low consumption were harder to 

determine. While this did not impact the results of determining consumption rates, being able to 

identify the applications and what they do would be useful. There did not appear to be a 

centralized location to search for applications and their purpose. A community-driven website 

where this information is collected would prove useful for future work in this field. 

 

8.6. Future Work 

There are still improvements to make and issues to solve before the application is fully 

functional. The application currently collects the list of active applications separately from the 

remaining battery data. Merging the collection process into one table would reduce the 

preprocessing time. Future implementations for the client-side component would include general 

functions that battery saving applications have, such as toggling Wi-Fi, data, GPS, display 

settings, Bluetooth, and audio. However, the immediate problem to solve is finding a method of 

accurately predicting the consumption rates of applications based on the limitations of the 

Android API. A prediction algorithm on user behaviour was not observed within the scope of 

this project, but would be the next step in providing meaningful feedback to the user. Once 



67 
 

enough time has passed and the user’s pattern is established, a prediction algorithm with accurate 

consumption rates can advise the user based on the collected information.  

While users will generally follow specific patterns, there will definitely be unpredictable 

usage that must be addressed. An example would be a user commuting to work. They would 

normally read the news on their phone, but decided to stream videos today. As videos consume a 

lot of energy, it would lead to a significant adjustment to the expected usage of the device. If this 

would cause the battery to deplete before a recharge is possible, the application would be forced 

to interrupt and notify the user. If this can be implemented efficiently, users with older devices 

would have a helpful tool that can manage their battery for them. 

The database of collected information can also be re-examined in the future and is 

publicly available (https://github.com/Changer628/Predicting-Mobile-Application-Power-

Consumption). A significant amount of data was collected, and can be used again with 

alternative prediction methods. Certain aspects such as the battery temperature and voltage were 

not used within this analysis, but may provide the additional resources required for more 

accurate results. In addition, this information is not restricted to examining application 

consumption rates, and may be useful in other areas of research as well. The readings represent a 

user’s interaction with their smartphone for a period of 3 months. They provide insight into the 

types of applications that were used, along with the amount of time they are accessed for. 

Research that examines user behaviour would find this dataset useful. 
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9. Conclusion 

As applications and smartphone devices become increasingly powerful, battery life remains a 

large problem for users. Smartphones are capable of integrating many aspects of a user’s life, 

leading us to become more dependent on them. As such, it is crucial they remain powered 

throughout a user’s entire day, leading to research and examination on this topic. The current 

implementations provide the changes that need to be made, but rely on repeated human 

interaction. As people may forget and not be vigilant in these changes, they are not used 

efficiently. The proposed application would be a first step in overcoming these challenges and 

automating this process. 
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