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ABSTRACT 

Superhomogenization (SPH) has gained interest in the industry as a possible method to 

overcome the inherent limitations of standard homogenization (SH) for full-nuclear-

reactor-core neutronics calculations because its implementation does not require any 

changes to existing computer codes.  Previous work found that single-cell SPH applied to 

Pressurized Heavy Water Reactors (PHWR) yields virtually no improvement compared 

to single-cell standard homogenization.  This work attempts to improve those results by 

accounting for neutron leakage across cell boundaries by performing SPH-based 

homogenization using a 3×3 multi-cell model. The method is evaluated using a 5×5 

lattice-cell model and comparing results for single-cell SH, multi-cell SH, single-cell 

SPH and multi-cell SPH. Results show that multi-cell SPH produces better results than 

single-cell SPH and multi-cell SH produces better results than single-cell SH.  However, 

multi-cell SPH offers no improvement compared to multi-cell SH, just as single-cell SPH 

offers no improvement over single-cell SH.   
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Chapter 1: Introduction 

 

When designing a nuclear reactor, the main objective is to be able to control the 

neutron-induced fission chain reaction.  Consequently, it is necessary to have an accurate 

description of the neutron interactions within the core.  Reactor physics is the study of 

interactions of neutrons with matter (specific nuclides) inside a nuclear reactor. The 

interactions of neutrons with specific nuclides depend on neutron energy and on material 

properties, characterized by neutronic-reaction macroscopic cross-sections.  The fission 

rate depends on the fission macroscopic cross section and on the distribution of the 

neutron flux within the reactor, which can be determined by solving the neutron transport 

equation. A statistical mechanical approach has been used to derive the neutron transport 

equation.   

For most designs of nuclear reactor cores, the fuel is contained within fuel rods. 

These fuel rods are grouped together, for a Light Water Reactor (LWR), these groupings 

are in a rectangular arrangement known as a fuel assembly. For Pressurized Heavy Water 

Reactors (PHWRs), the reactors investigated in this thesis, the fuel rods are grouped in an 

annulus arrangement known as a fuel bundle. A typical 37 element PHWR fuel bundle, 

pressure tube, and calandria tube used at the Bruce Nuclear Generation Station is 

depicted in Figure 1.1 below. 
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Figure 1.1: The configuration of the PHWR fuel channel including the fuel bundle, 

pressure tube, and calandria tube (Piro et al., 2017). 

The reactor then consists of a periodic array of either fuel assemblies or fuel bundles. If 

an axial cross-section was taken through the core a two-dimensional periodic array is 

observed. The periodic array consists of a repeated geometric unit that contains the fuel, 

coolant, and surrounding moderator. This two-dimensional geometric unit is referred to 

as a lattice cell. In the case of PHWR the lattice cell contains the fuel bundle.  

Reactor cores consist of multiple materials, and the cross-sections drastically change 

both spatially and over the spectrum of neutron energies. Such large energy and space 

variations in macroscopic cross-section values make it impossible to obtain analytical 

solutions for the transport equation and make numerical solutions computationally 

expensive.  To be useful for production calculations which need to be computationally 

inexpensive, full reactor core calculations are generally performed in two steps: a lattice 

step and a core step. The first step is the lattice calculation, whereby the neutron flux is 

obtained as the solution to the neutron transport equation solved for a model representing 
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a single unit cell, or fuel assembly. Once the flux distribution in the lattice cell is found, 

the macroscopic cross-sections calculation is weighted with the neutron flux and 

averaged over the lattice cell and over energy to generate homogenized and energy 

condensed cross-sections and diffusion coefficients. The averaged parameters are 

subsequently used in an approximation of the transport equation, known as the diffusion 

equation, to complete a full-core calculation, the second step of the whole procedure. The 

solution to the diffusion equation provides the reactor flux distribution in the entire core, 

which is used for calculating the power distribution in the reactor. Because most of the 

lattice heterogeneity occurs in the axial plane, lattice calculations and subsequent 

homogenization are usually performed for two-dimensional lattice cells located at 

different axial positions. The corresponding homogenized cross-sections have a relatively 

smooth axial variation and do not require any special treatment.  

The transport equation for neutrons will be reviewed in the following section (1.1) 

along with the method used for solving the equation in this thesis. An overview of the 

diffusion theory and how it applies to the transport equation will be discussed in section 

1.2, followed by an overview of standard homogenization in the concluding section (1.3). 

1.1. The Neutron Transport Equation 
 

1.1.1. Deriving the Transport Equation 
 

When discussing the behaviour of neutrons interacting with matter, it is not practical 

to analyze each particle individually due to the large population of particles. Instead we 

deal with a neutron density distribution in phase space (position and velocity vectors) and 

as a function of time, which requires a statistical mechanical approach. The transport 
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equation is used to describe the neutron density distribution in a closed domain, in either 

transient or steady state conditions. The equation is derived from the conservation of 

particles and is thus a neutron balance equation.  

It is convenient to use the neutron angular flux as the unknown function in the 

transport equation. The neutron angular flux is related to the neutron density by the 

following expression: 

 𝜙(𝒓, 𝜐, 𝛀, 𝑡) ≡ 𝜐𝑛(𝒓, 𝜐, 𝛀, 𝑡) (1.1) 

Each particle is moving in six-dimensional phase space consisting of three spatial 

dimensions (𝒓 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌), and three velocity dimensions, which consists of the 

module of velocity, (𝜐 = |𝝊|), and the direction given by a unit vector, 𝛀 =
𝝊

|𝝊|
. The 

neutron density is then a distribution with respect to 𝒓, 𝜐, 𝛀, and a function with respect to 

time, 𝑡.  

To simplify the description of the neutron behavior in a reactor, four assumptions are 

made: 

1. Relativistic effects can be neglected. 

2. Neutron-neutron interactions can be ignored. 

3. Neutrons travel in straight lines between interactions 

4. Materials are isotropic. 

These assumptions are valid because the kinetic energy of neutrons in a reactor are 

generally much smaller then required for relativistic effects to be noticeable, the neutron 

density in a reactor is much smaller then the density of nuclei, and neutron-nucleus 
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collisions are independent of the direction of the incident neutron. Due to the absence of 

neutron-neutron interactions, the transport equation becomes a linear variant of the 

Boltzmann equation. Since the neutron transport equation expresses the neutron balance, 

we derive it by setting the rate of change of the neutrons equal to the difference of the 

neutron production rate and the neutron loss rate in a control volume, V, defined by a 

surface, S for particles traveling at a speed within 𝑑𝜐, with direction within 𝑑ଶΩ (Herbert, 

2009). The rate of change for a finite volume can be expressed by the following: 

 𝑛̇(𝜐, 𝛀, 𝑡) = lim
௧→଴

ଵ

୼௧
∫ [𝑛(𝒓, 𝜐, 𝛀, 𝑡 + Δ𝑡) − 𝑛(𝒓, 𝜐, 𝛀, 𝑡)]𝑑ଷ𝑟𝑑𝜐𝑑ଶΩ

 

௏
 (1.2) 

The loss rate of neutrons in the same volume is determined by the loss of neutrons 

streaming (or leaking) out of the volume, and by the rate of neutrons in the control 

volume with a velocity within 𝑑𝜐, and a direction within 𝑑ଶΩ, colliding with a nucleus. 

The rate at which neutron stream out is given by Eq. (1.3). 

 𝐿 = ∫ (𝛀 ∙ 𝑵)𝜙(𝒓, 𝜐, 𝛀, 𝑡)𝑑ଶ𝑟𝑑𝜐𝑑ଶΩ
 

ௌ
 (1.3) 

Where 𝑵 is the normal vector of surface 𝑆, pointing outward from the volume element. 

Applying Divergence Theorem to Eq. (1.3) and using the identity 𝛁 ∙ 𝛀𝑓(𝒓) = 𝛀 ∙ 𝛁f(𝐫) 

gives the following: 

 𝐿 = ∫ 𝛀 ∙ 𝛁𝜙(𝒓, 𝜐, 𝛀, 𝑡)𝑑ଷ𝑟𝑑𝜐𝑑ଶΩΔ𝑡
 

௏
 (1.4) 

The rate at which neutrons collide with nuclei is given by Eq. (1.5). 

 𝐶 = ∫ Σ(𝒓, 𝜐)[𝜐 ∙ 𝑛(𝒓, 𝜐, 𝛀, 𝑡)]𝑑ଷ𝑟𝑑𝜐𝑑ଶΩ
 

௏
 (1.5) 

Where Σ(𝒓, 𝜐), is the total macroscopic cross-section at position r. The production rate of 

neutrons is given in Eq. (1.6). 



18 
 

 𝑃 = ∫ 𝑄(𝒓, 𝜐, 𝛀, 𝑡)𝑑ଷ𝑟𝑑𝜐𝑑ଶΩ
 

௏
 (1.6) 

The source density is expressed as 𝑄(𝒓, 𝜐, 𝛀, 𝑡) in the above equation. The particle balance 

equation can then be expressed by the following: 

 𝑛̇ = −𝐿 − 𝐶 + 𝑃 (1.7) 

Since the control volume is arbitrary, and every term in Eq. (1.7) is expressed in terms of 

a three-dimensional volume integral, the integrands of all the terms in Eq. (1.7) must 

satisfy the same equality. As a result, Eq. (1.7) can be rewritten to give Eq. (1.8). 

 𝑛̇(𝒓, 𝜐, 𝛀, 𝑡) = −𝛀 ∙ 𝛁𝜙(𝒓, 𝜐, 𝛀, 𝑡) − Σ(𝒓, 𝜐)[𝜐 ∙ 𝑛(𝒓, 𝑉௡, 𝛀, 𝑡)] + 𝑄(𝒓, 𝜐, 𝛀, 𝑡) (1.8) 

Substituting the angular flux based on Eq. (1.1), the neutron transport equation is given 

as: 

 ଵ

జ

డ

డ௧
𝜙(𝒓, 𝜐, 𝛀, 𝑡) + 𝛀 ∙ 𝛁𝜙(𝒓, 𝜐, 𝛀, 𝑡) + Σ(𝒓, 𝜐)𝜙(𝒓, 𝜐, 𝛀, 𝑡)  = 𝑄(𝒓, 𝜐, 𝛀, 𝑡) (1.9) 

The transport equation is often expressed in terms of energy, 𝐸, and will be for the rest of 

this thesis, instead of the neutron velocity, 𝜐.  Since neutron flux is a distribution the 

change of variables requires Eq. (1.10) to be satisfied.  

 |𝜙(𝒓, 𝜐, 𝛀, 𝑡)𝑑𝜐| = |𝜙(𝒓, 𝐸, 𝛀, 𝑡)𝑑𝐸| (1.10) 

The relationship between energy and neutron speed is given by the classical formula for 

kinetic energy as follows. 

 𝐸 =
ଵ

ଶ
𝑚𝜐ଶ 𝑎𝑛𝑑 𝑑𝐸 = 𝑚𝜐𝑑𝜐 (1.11) 

Then Eq. (1.10) can be rewritten to give the relationship between 𝜙(𝒓, 𝜐, 𝛀, 𝑡) and 

𝜙(𝒓, 𝐸, 𝛀, 𝑡). 
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 𝜙(𝒓, 𝐸, 𝛀, 𝑡) =
ଵ

௠జ
𝜙(𝒓, 𝜐, 𝛀, 𝑡) (1.12) 

Under steady-state conditions, the rate of change of the particle population is zero and 

Eq. (1.9) can then be expressed as: 

 𝛀 ∙ 𝛁𝜙(𝒓, 𝐸, 𝛀) + Σ(𝒓, 𝐸)𝜙(𝒓, 𝐸, 𝛀)  = 𝑄(𝒓, 𝐸, 𝛀) (1.13) 

The work presented in this thesis will always be under steady-state conditions and all 

further derivations will be presented as such. The loss of neutrons by collision can be 

expressed in terms of rate of neutrons being absorbed and the rate of neutrons scattering 

out of the energy range 𝑑𝐸 and direction 𝑑ଶΩ . The loss of neutrons from absorption and 

loss of neutrons from scattering is shown in Eq. (1.14). 

 Σ(𝒓, 𝐸)𝜙(𝒓, 𝐸, 𝛀) = Σ௔(𝒓, 𝐸)𝜙(𝒓, 𝐸, 𝛀) + ∫ 𝑑𝐸′
ஶ

଴ ∫ 𝑑ଶΩ′
 

ସగ
Σ௦(𝒓, 𝐸 → 𝐸ᇱ, 𝛀 → 𝛀′)𝜙(𝒓, 𝐸, 𝛀)

 (1.14) 

Where Σ௔(𝒓, 𝐸) is the macroscopic absorption cross-section, and Σ௦(𝒓, 𝐸 → 𝐸ᇱ, 𝛀 → 𝛀′) 

is the macroscopic differential scattering cross-section. The integrals are over all possible 

resulting angles and energies after scattering. The source of neutrons can be expressed in 

terms of neutrons scattering into the control volume from other directions and energies 

and for a multiplying medium, the addition of neutrons produced from fission. The source 

term or the gain from scattering and the production from fission is described in Eq. 

(1.15). 

 𝑄(𝒓, 𝐸, 𝛀) = ∫ 𝑑𝐸′
ஶ

଴ ∫ 𝑑ଶΩ′
 

ସగ
Σ௦(𝒓, 𝐸′ → 𝐸, 𝛀′ → 𝛀)𝜙(𝒓, 𝐸′, 𝛀′) + 

 ଵ

ସగ௄೐೑೑
∑ 𝜒௝(𝐸)௃

௝ୀ௜ ∫ 𝑑𝐸ᇱஶ

଴
𝜈Σ௙,௝(𝒓, 𝐸ᇱ)𝜙(𝒓, 𝐸′) (1.15) 
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The macroscopic cross-section for neutrons scattering into the control volume is 

Σ௦(𝒓, 𝐸′ → 𝐸, 𝛀′ → 𝛀). In Eq. (1.15), 𝑗 is the total number of fissionable isotopes, 

𝜈Σ௙,௝(𝒓, 𝐸ᇱ) is the number of neutrons produced per fission times the macroscopic cross-

section for fission of the 𝑗௧௛ fissionable isotope and 𝐾௘௙௙ is the effective multiplication 

factor, which is used to maintain a steady state, and ensure a solution. The probability for 

a neutron to be emitted from the fission of the 𝑗௧௛  fissionable isotope with energy 𝐸  is 

given by the fission spectrum 𝜒௝(𝐸), and is normalized by Eq. (1.16). 

 ∫ 𝜒௝(𝐸)𝑑𝐸
ஶ

଴
 = 1 (1.16) 

 Substituting Eq. (1.14) and (1.15) into Eq. (1.13) gives the integro-differential form of 

the transport equation: 

𝛀 ∙ 𝛁𝜙(𝒓, 𝐸, 𝛀) + Σ௔(𝒓, 𝐸)𝜙(𝒓, 𝐸, 𝛀) + ∫ 𝑑𝐸′
ஶ

଴ ∫ 𝑑ଶΩ′
 

ସగ
Σ௦(𝒓, 𝐸 → 𝐸ᇱ, 𝛀 →

𝛀′)𝜙(𝒓, 𝐸, 𝛀)  = ∫ 𝑑𝐸′
ஶ

଴ ∫ 𝑑ଶΩ′
 

ସగ
Σ௦(𝒓, 𝐸′ → 𝐸, 𝛀′ → 𝛀)𝜙(𝒓, 𝐸′, 𝛀′) +

ଵ

ସగ௄೐೑೑
∑ 𝜒௝(𝐸)௃

௝ୀ௜ ∫ 𝑑𝐸ᇱஶ

଴
𝜈Σ௙,௝(𝒓, 𝐸ᇱ)𝜙(𝒓, 𝐸′) 

   (1.17) 

To generating numerical solutions for the transport equation the energy variable is 

first discretized into multiple groups. This is done by dividing the entire energy domain 

into 𝐺 groups, indexed by 𝑔. All the energy dependent properties are averaged over the 

group. Eq. (1.17) can be expressed as multi-group neutron balance equation as shown in 

Eq. (1.18). 

 𝛀 ∙ 𝛁𝜙௚(𝒓, 𝛀) + Σ௔,௚(𝒓)𝜙௚(𝒓, 𝛀) + ∑ ∫ 𝑑ଶΩ′
 

ସగ
Σ௚→௚ᇱ(𝒓, 𝛀 → 𝛀′)𝜙௚(𝒓, 𝛀)௚ᇱ  = 
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෍ න 𝑑ଶΩ′

 

ସగ

Σ௚ᇱ→௚(𝒓, 𝛀′ → 𝛀)𝜙௚ᇱ(𝒓, 𝛀′)

௚ᇱ

+
1

4𝜋𝐾௘௙௙
෍ 𝜒௝௚

௃

௝ୀ௜

෍ 𝜈Σ௙,௝,௚(𝒓)𝜙௚(𝒓)

௚

 

   (1.18) 

The neutron transport equation given in Eq. (1.18), being an integro-differential 

equation of 5 independent variables (three spatial variables and two angular variables) 

and does not have simple analytical or numerical solutions. However, there are a 

multitude of different methods for solving it.  Many of the solutions necessitate 

simplification of Eq. (1.18) that comes from the transport equation being expressed in 

other forms. A common method for solving the transport equation, and the method used 

in this study, known as the Collision Probability method utilizes the integral form of the 

neutron transport equation. The integral transport equation is obtained by integrating the 

angular flux along its characteristic line for a given source density (Sanchez & 

McCormick, 1981). The characteristic defines the path a neutron travels between points 𝒓 

and 𝒓′ in the absence of any interaction. If a neutron travels in a straight line between 𝒓 

and 𝒓′ in the direction 𝛀, then the following relationship can be expressed: 

 𝒓 = 𝒓′ + 𝑠𝛀 (1.19) 

Where 𝑠 is the magnitude of the vector 𝒓 − 𝒓′. The derivative along the path can then be 

described as: 

 ௗ

ௗ௦
=

డ𝒓ᇲ

డ௦
∙ 𝛁𝒓ᇱ (1.20) 

Using Eq. (1.20) we can then rewrite Eq. (1.13) as the following: 

 ቂ
ୢ

ୢୱ
− Σ(𝒓, 𝐸)ቃ 𝜙(𝒓, 𝐸, 𝛀)  = −𝑄(𝒓, 𝐸, 𝛀) (1.21) 
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Where 𝑄(𝒓, 𝐸, 𝛀) is the source density as described in Eq. (1.15). The above equation is 

now a first order ordinary differential equation, which can be solved by introducing an 

integration factor, 𝑒ିఛ(௦,ா). The optical path is expressed as 𝜏 in the integration factor and 

is defined as a function of the macroscopic cross section. 

 𝜏(𝑠, 𝐸) = ∫ 𝑑𝑠′Σ(𝒓 − 𝑠ᇱ𝛀, E)
௦

଴
 (1.22) 

The solution of Eq. (1.21) is then expressed as: 

 𝜙(𝒓, 𝐸, 𝛀) = 𝜙(𝒓 − 𝑏𝛀, 𝐸, 𝛀)𝑒ିఛ(௕,ா) + ∫ 𝑑𝑠𝑒ିఛ(௦,ா)𝑄
௦

଴
(𝒓 − 𝑠𝛀, 𝐸, 𝛀) (1.23) 

The above equation is the integral neutron transport equation for a finite domain where 

𝜙(𝒓 − 𝑏𝛀, 𝐸, 𝛀) is determined according to the boundary conditions. The integral 

neutron transport equation can then also be expressed in its multigroup formulization 

shown in Eq. (1.24). 

 𝜙௚(𝒓, 𝛀) = 𝜙௚(𝒓 − 𝑏𝛀, 𝛀)𝑒ିఛ೒(௕) + ∫ 𝑑𝑠𝑒ିఛ೒(௦)𝑄
௦

଴ ௚
(𝒓 − 𝑠𝛀, 𝛀) (1.24) 

1.1.2. Collision Probability Method 
 

As mentioned in the previous section, there are a multitude of methods for 

solving the neutron transport equation. In this section a brief overview of the collision 

probability method will be presented, since it is the method used to solve the transport 

equation in this thesis. The method utilizes the integration transport equation (Sanchez & 

McCormick, 1981), shown in Eq. (1.23). The multigroup integration transport equation 

for a reactor with void boundary conditions (there is no incoming neutron current at the 

boundaries), the fist term in Eq. (1.24) goes to zero and can be rewritten as shown in Eq. 

(1.25). 



23 
 

 𝜙௚(𝒓, 𝛀) = ∫ 𝑑𝑠𝑒ିఛ೒(௦)𝑄௚(𝒓 − 𝑠𝛀, 𝛀)
ୱ

଴
 (1.25) 

Since reaction rates are independent on the direction of the incident neutron flux, it is 

more useful to define the group integral flux as: 

 𝜙௚(𝒓) = ∫ 𝑑ଶΩ𝜙௚(𝒓, 𝛀)
 

ஐ
 (1.26) 

Applying Eq. (1.26) to (1.25), assuming the source to be isotropic, and introducing the 

change of variables 𝒓ᇱ = 𝒓 − 𝑠𝛀, and 𝑑ଷ𝑟ᇱ = 𝑠ଶ𝑑ଶ𝛺𝑑𝑠 the following is obtained: 

 𝜙௚(𝒓) =
ଵ

ସగ
∫ 𝑑ଷ𝑟′

௘షഓ೒(ೞ)

௦మ 𝑄௚(𝒓′)
ୱ 

଴
 (1.27) 

The above equation represents a lattice of identical unit cells, which can be partitioned 

further into sub-cell regions 𝑉௜. Eq. (1.27) is then multiplied by Σ௚(𝒓) and integrated over 

each region 𝑉௜, to give Eq. (1.28). 

 ∫ 𝑑ଷ𝑟Σ௚(𝒓)𝜙௚(𝒓) =
 

௏ೕ

ଵ

ସగ
∫ 𝑑ଷ𝑟Σ௚(𝒓) ∑ 𝑄௜,௚௜ ∫ 𝑑ଷ𝑟′

 

௏೔

௘షഓ೒(ೞ)

௦మ

 

௏ೕ
 (1.28) 

 𝑄௜,௚ = ∑ Σ௦,௜,௚←௛𝜙௜,௚ +
ଵ

௄೐೑೑
𝑄௜,௚

௙௜௦௦
௛  (1.29) 

The fissions source term in Eq. (1.29) is given as: 

 𝑄௜,௚
௙௜௦௦

= ∑ 𝜒௝,௚
௃೑೔ೞೞ

௝ୀଵ ∑ 𝜈Σ௙,௝,௛𝜙௜,௛௛  (1.30) 

Where 𝑗 is the number fissionable isotopes, and 𝜒௝,௚ is the fission spectrum of isotope j in 

energy group 𝑔. Eq. (1.28) can be simplified to Eq. (1.31). 

 𝑉௝Σ௝,௚𝜙௝,௚ = ∑ 𝑄௜,௚𝑉௜𝑃௜௝,௚௜  (1.31) 
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The collision probability (CP) is 𝑃௜௝,௚, and is the probability for a neutron born uniformly 

and isotopically in region 𝑉௜, to undergo its first collision in 𝑉௝. If the total cross section is 

constant and equal to the macroscopic constant in each region, the collision probabilities 

can then be defined as reduced CPs and are expressed as follows. 

 𝑝௜௝,௚ =
௉೔ೕ,೒

ஊೕ,೒
=  

ଵ

ସగ௏೔
∫ 𝑑ଷ𝑟′ ∫ 𝑑ଷ𝑟

 

௏ೕ

௘షഓ೒(ೞ)

௦మ

 

௏೔
 (1.32) 

Collision probabilities have reciprocity and conservation properties such that the 

following relationships are obeyed: 

 𝑝௜௝,௚𝑉௜ = 𝑝௝௜,௚𝑉௝ (1.33) 

 ∑ 𝑝௜௝,௚Σ௝,௚௝ = 1; ∀𝑖 (1.34) 

Using the reciprocity property, the expression for flux can be further simplified to give 

the following: 

 𝜙௜,௚ = ∑ 𝑝௜௝,௚Q௝,௚௝  (1.35) 

The collision probability method is normally performed in the three following steps. The 

first step is applying a tracking process applied over the entire lattice geometry to give 

sufficiently large number of neutron trajectories. The second step is performing a 

numerical integration using the tracking data and macroscopic cross sections for each 

region to determine the collision probabilities. The final step is solving the integrated flux 

using Eq. (1.29) and (1.35) (Herbert, 2009). 
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1.2. Diffusion Equation 
 

The diffusion equation approximates the transport equation by utilizing Fick’s Law to 

give a simpler description of the neutron current. Fick’s Law states that there is a directed 

neutron flow (neutron current) from a region of high integral neutron flux to a region of 

lower integral flux. The mathematical expression for Fick’s Law is: 

 𝑱௚ = −𝐷௚𝛁𝜙௚ (1.36) 

Where 𝑱௚ is the group neutron current, 𝜙௚ is group integral neutron flux, and 𝐷௚ is the 

group diffusion coefficient. The gradient operator is in the direction of increasing neutron 

flux.  Since the net neutron flow is towards the lower flux, a negative sign precedes the 

diffusion coefficients. Substituting Eq. (1.36) and integral fluxes into Eq. (1.18) gives the 

multigroup diffusion equation. 

 −𝛁 ∙ [𝐷௚(𝒓)𝛁𝜓௚(𝒓)] + Σ௔,௚(𝒓)𝜓௚(𝒓) + ∑ Σ௚→௚ᇱ(𝒓)𝜓௚(𝒓)௚ᇱ  = ∑ Σ௚ᇱ→௚(𝒓)𝜓௚ᇱ(𝒓)௚ᇱ + 

 ଵ

௄೐೑೑
∑ 𝜒௝௚

௃
௝ୀ௜ ∑ 𝜐Σ௙,௝,௚(𝒓)𝜓௚(𝒓)௚  (1.37) 

Where Σ௚→௚ᇱ(𝒓) is the macroscopic cross-section for a neutron to scatter out of the 

energy group g and into group g’ and is known as out scattering. Σ௚ᇱ→௚(𝒓) is the 

macroscopic cross-section for a neutron to scatter from group g’ into group g and is 

known as the in scattering cross-section. The integrated neutron flux and cross-sections 

has been changed to 𝜓௚ representing the diffusion integral flux to avoid confusion for 

later discussions.  

Full reactor core calculations are normally performed with two energy groups. The 

first group is known as the fast group, and the group includes all energies greater then 
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0.625 eV, all other neutron energies are in the second group, known as the thermal group. 

All neutrons born from fission are always in the fast group, and most neutrons that induce 

fission have energy within the thermal range. For two energy groups, Eq. (1.37), 

transforms into a system of two equations, one for the fast group, and one for the thermal 

group, shown in (1.38).  

  −𝛁 ∙ [𝐷ଵ(𝒓)𝛁𝜓ଵ(𝒓)] + Σത௔,ଵ𝜓ଵ(𝒓) + Σതଵ→ଶ𝜓ଵ(𝒓)  = Σതଶ→ଵ𝜓ଶ(𝒓) +  

1

𝐾௘௙௙
෍ 𝜒௝

௃

௝ୀ௜

(𝜐Σത௙,௝,ଵ𝜓ଵ(𝒓) + 𝜐Σത௙,௝,ଶ𝜓ଶ(𝒓)) 

 −𝛁 ∙ [𝐷ଶ(𝒓)𝛁𝜓ଶ(𝒓)] + Σത௔,ଶ𝜓ଶ(𝒓) + Σതଶ→ଵ𝜓ଶ(𝒓)  = Σതଵ→ଶ𝜓ଵ(𝒓) (1.38) 

 

1.3. Standard Homogenization 
 

Solving the transport equation for a full reactor core or lattice is computationally 

expensive and not practicable for production calculations given the time and cost 

constraints. Instead, the transport equation is solved on a small region that is repeated 

throughout the reactor lattice, known as a cell. The cross-section data and diffusion 

coefficients are then averaged over the region and condensed into two energy groups and 

then used to solve the full lattice geometry using the computationally cheap diffusion 

approach. The procedure just described is referred to as homogenization. For 

homogenization to be useful certain heterogenous reactor properties must be reproduced 

when the homogenized problem is solved. The homogenization procedure does not allow 

for conservation of any parameters that characterize any sub-region of the cell, instead 

the desired conservation will be with regards to the spatial integral of the parameters of 
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interest. The most commonly employed homogenization method (Standard 

Homogenization) only requires the reaction rates to be preserved and utilizes a net zero 

neutron current (𝑱𝒈 ∙ 𝑵 = 0) on the cell edges during the transportation calculation 

(Smith, 1984). Standard homogenization is usually performed with use of flux-weighted 

averages over the entire lattice cell, and the calculation is performed with the following 

expressions. 

 Σത஑୥
 ∫ 𝜓௚(𝒓)𝑑𝒓

 

௏೔
= ∫ 𝜙௚(𝒓)Σ஑୥

 (𝒓)𝑑𝒓
 

௏೔
 (1.39) 

 Σത஑୥
 =

∫ థ೒(𝒓)ஊౝ
ಉ(𝒓)ௗ𝒓

 

ೇ೔

∫ థ೒(𝒓)ௗ𝒓
 

ೇ೔

 (1.40) 

 𝐷ഥ௚ =
∫ థ೒(𝒓)஽೒(𝒓)ௗ𝒓

 

ೇ೔

∫ థ೒(𝒓)ௗ𝒓
 

ೇ೔

 (1.41) 

Where 𝑉௜, 𝜓௚, Σത஑୥
 , and 𝐷ഥ௚ are the volume of the lattice cell, the homogenized integrated 

flux, the homogenized cross-section, and the homogenized diffusion coefficient 

respectively. The corresponding heterogenous parameters are denoted by 𝜙௚, Σ஑୥
 , and 𝐷௚ 

representing the integrated neutron flux, macroscopic cross-section, and the diffusion 

coefficient respectively. The subscript 𝛼 denotes the type of cross-section which can be: 

out scattering, in scattering, absorption, or fission.  

The process of homogenization of a PHWR lattice is depicted in Figure 1.2. The 

two-dimensional lattice cell for PHWRs is normally taken to be the cross-section of a 

single fuel-bundle and its surrounding tubes (depicted on the left of Figure 1.2 as the 

circle inside the lattice cell) and moderator (depicted as the light blue surrounding the 

circles in the left of Figure 1.2). The PHWR lattice cell is shown in more detail in Figure 

2.1 and will be further described in Section 2.1. 
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Figure 1.2: Graphical representation of Standard Homogenization for PHWRs (Nichita, 

2015). 

The difference colours in Figure 1.2 indicate different levels of burnup that come from 

online refuelling that is done during PHWR operation. Due to the large amount of 

heterogeneity that is present in a PHWR, error is introduced when homogenization is 

applied. The focus of this thesis is to improve the accuracy of homogenization for 

PHWRs, by performing sub-cell homogenization with equivalent factors and accounting 

for cell-boundary leakage.  
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Chapter 2: Literature Review and Problem Statement 

2.1 Problems with Standard Homogenization 
 

2.1.1. The PHWR Lattice Cell 
 

The standard lattice cell (or node) that is used for PHWR calculations normally 

represents a single fuel bundle and all the surrounding materials including the heavy 

water moderator. The lattice cell is square with side lengths of 28.575 cm as shown in 

Figure 2.1. The fuel bundle is made up of thirty-seven fuel pins, consisting of natural 

uranium oxide fuel pellets incapsulated in a zircaloy tube. The fuel pins are arranged in a 

concentric-ring configuration, with a single pin in the centre surrounded by a ring of six 

pins, a ring of twelve pins, and an outer-most ring of eighteen pins. The fuel bundle is 

surrounded by heavy water coolant (99.7% pure at ~550K) and contained inside a 

pressure tube made of Zr-Nb 2.5% alloy. The pressure tube is within a zircaloy calandria 

tube. To ensure thermal isolation between the hot fuel channel and the cool moderator the 

calandria tube and pressure tube are separated by an annulus gap filled with helium gas. 

The calandria tube is surrounded by a large volume of 99.9% pure heavy water moderator 

at 346K. The high heterogeneity present in the PHWR lattice causes standard 

homogenization to introduce large homogenization errors. 
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Figure 2.1: Standard PHWR Two-Dimensional Lattice Cell. 

 

2.1.2. Homogenization Errors 
 

The quantities that are required to be preserved for a homogenized model to give 

equivalent results to a heterogenous model include the multiplication constant, the cell 

averaged reaction rate (which requires Eq. (1.39) to hold true), and surface averaged 

current (which requires Eq. (2.1) to hold true).  

 ∫ 𝛻 ∙ 𝑱𝒈(𝒓) ∙ 𝑑𝑆
 

௦೔
ೖ  = ∫ 𝛻 ∙ 𝑱̅𝒈(𝒓) ∙ 𝑑𝑆

 

௦೔
ೖ  (2.1) 

In Eq. (2.1) 𝑠௜
௞ represents face 𝑘 of region 𝑖;  𝑱𝒈 is the heterogenous group neutron 

current and 𝑱̅𝒈 is the homogenous group neutron current. When using diffusion theory, 

Eq. (2.1) requires the homogenous diffusion coefficient to be determined from Eq. (2.2). 

 𝐷ഥ௚
௜ =

ି ∫ 𝑱𝒈(𝒓)∙ௗௌ
 

ೞ೔
ೖ

∫ ఇ∙ట೒(𝒓)∙ௗௌ
 

ೞ೔
ೖ

 (2.2) 
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However, it is impossible to have spatially constant values for 𝐷ഥ௚
௜  that preserve both 

reaction rates and surface currents. To overcome this problem either additional degrees of 

freedom are necessary or some of the of preservation requirements need to be relaxed. 

The standard homogenization procedure relaxes the preservation requirements needed 

and focuses on the preservation of reaction rates only (Smith, 1986). The generated cross-

sections determined from standard homogenization do not conserve the reaction rates 

from transport to diffusion calculations. The main reason for the inaccuracies come from 

the net zero cell boundary current assumption and the definition of the homogenized 

diffusion coefficient presented in Eq. (1.41). The argument for the validation of these 

assumptions is that for an infinite lattice consisting of identical cells standard 

homogenization will preserve the reaction rates. However, if there are finite boundaries 

present on the reactor or cells are not identical (e.g. fuel is at different burnup levels, or a 

control rod is present) then the reaction rates are not preserved. The disagreement is 

illustrated by the inaccurate results from standard homogenization when cobalt 

absorption rods were introduced at the Pickering power plant (Robinson, 1995). 

Improvement of full reactor core calculations is required and has been an active area of 

research in recent years. 

 

2.2. Historical Improvements for Homogenization 
 

There has been considerable effort in the past forty years to develop improved 

homogenization methods. One such method is known as Generalized Equivalence Theory 

and it allows preservation of reaction rates from the transport model to the diffusion 
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model (Smith, 1980). The inter-lattice leakage is corrected by enforcing discontinuity of 

the integral flux at the inter-cell boundaries. The discontinuities are expressed by 

imposing the continuity of the product between the flux and quantities called 

discontinuity factors given by the following expression: 

 𝑓௚ =
థ೒

್

టഥ೒
್ (2.3) 

Where 𝜙௚
௕ and 𝜓ത௚

௕ are the heterogenous and homogenous integral neutron fluxes at 

boundary 𝑏 for group 𝑔. Discontinuity factors can be calculated for each cell boundary. 

The generation of the discontinuity factors require some computational steps in addition 

to the two steps in the Standard Homogenization approach.  

The idea of discontinuity factors was further built upon by use of a linear 

discontinuous finite difference diffusion formulation which applied discontinuous factors 

to the diffusion model (Aragones & Anhert, 1986). The method applied limited 

incremental corrections to the diffusion coefficients and was able to achieve faster and 

steady convergence of eigenvalues for lattice cells surrounded by high neutronic 

reflecting boundaries. The main limitation of the method was that it had a requirement of 

incremental correction calculations done separately between each local and global 

calculation step. A method that utilized a linear interpolation scheme to correct the 

homogenized cross-sections and discontinuity factors was investigated (Rahnema & 

Nichita, 1997). The homogenized parameters computed from the transport equation were 

subjected to interpolation and then along with the discontinuity factors were 

independently related to the surface current ratio at each surface. The parameters were 

corrected based on the actual boundary conditions for each lattice cell boundary. The 
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method, however, could only successfully be applied to diffusion theory for LWRs due to 

their cartesian arrangement of the fuel assemblies. 

A method that achieved similar results to the discontinuity factors was generating 

lattice cell cross-sections as a function of the boundary conditions (Rahnema, 1989). The 

variation of inter-lattice leakage was originally accounted for through use of boundary 

condition perturbation theory. However, was latter improved upon by Kim and Cho 

(1993) to avoid the use of perturbation theory by applying an iterative approach for 

generating lattice cell cross-sections with flux weighted constants and variational 

principles (Pomraning, 1967). The method was able to reduce the computational cost but 

was only ever applied to LWRs and Boiling Water Reactors (BWRs). Another alternative 

to discontinuity factors was investigated that utilized a function fitting method that 

incorporated the surrounding effects on the generated cross-sections (Herrero et al., 

2012). A simplified Analytic Coarse Mesh Finite Difference function that neglected the 

interacting energy group terms was used for generation of cross-sections. The effects of 

the interacting energy group terms were instead accounted for in the cell buckling 

calculations. The result of the method produced good cross-sections for diffusion pin-by-

pin calculations. More recently, an alternative approach was put forward by Berman 

(2013) that introduced weakly space-dependent diffusion coefficients, which allowed for 

improved preservation of averaged group reaction rates and surface currents. The method 

made use of an iterative approach, known as the iterative semi-homogenization method. 

The results were evaluated with a set of one dimensional, one group test problems and 

compared to other methods. The method was found to be highly successful at preserving 

reaction rates and surface currents. 
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Another important alternative approach for improvement of Standard 

Homogenization process is Superhomogenization or SPH (Herbert, 1993). 

Superhomogenization has the benefit of being computationally inexpensive in 

comparison to its contemporaries. The SPH method is the approach used in this study and 

will be further expanded on in the following section. 

2.3. Superhomogenization  
 

2.3.1. History of SPH in Literature 
 

The SPH procedure has been iterated upon over the course of its development 

history. The method can be broken down into three generations during its development. 

The first generation was the inception of the approach and was first presented by 

Kavenoky (1978). The first attempt was to try and create SPH-corrected homogenized 

cross-sections for a heterogenous diffusion model of an irregular LWR lattice. The 

procedure renormalized the homogenized cross-sections and fluxes to conserve reaction 

rates and node boundary currents in a simplified assembly calculation or 

macrocalculation. The macrocalculation is performed over assembled homogenized pin 

cells with uniform cell boundary currents in a coarse energy grid. The number of SPH 

factors that were generated for each coarse energy group is equal to the number of pin 

cells, and the method was only shown to be consistent when the number of surface 

currents were equal to the number of SPH factors. As a result, this limited the approach to 

situations where each pin cell was surrounded by a uniform surface current. 

Carrying over some of the ideas from the first generation, Herbert (1981) presented the 

second-generation procedure for SPH. The second-generation provides a transport-
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transport and transport-diffusion equivalence technique that removes the limitations of 

the first generation by determining a consistent set of SPH factors regardless the number 

of cell boundary currents. This was achieved by performing a steepest decent search to 

obtain SPH factors that conserve reaction rates in the macrocalculation. The gradients 

were determined by use of general perturbation of the macrocalculation. The method 

generates an infinite number of SPH factor sets and requires normalization to determine a 

unique SPH factor set. The factors were normalized to conserve the integrated flux of the 

global assembly. 

The third generation was a direct iterative improvement of the second generation with 

addition of more SPH factor normalization options and a simplified iterative strategy for 

determining SPH factors that no longer requires using a general perturbation of the 

macrocalculation. 

The third generation SPH method as applied to LWR was presented by Herbert (1993). 

The results showed promise with the control rod worth measurements of a pin-by-pin 

sub-cell homogenization with SPH factors in comparison to reference values. Recently an 

investigation into the SPH method applied to PHWR was performed (Mohapatra, 2016) 

and will be discussed in detail in the following section. 

2.3.2. Theoretical Background 
 

The Superhomogenization (SPH) method, is a sub-cell homogenization approach 

with equivalent factors or SPH factors used to correct homogenized cross-sections and 

diffusion coefficients. The SPH factors insure conservation of reaction and leakage rates 

from fine region and fine group transport model to a coarse region and coarse group 
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diffusion model. The SPH adjusted cross sections are determined from multiplying the 

averaged cross section, Σത௠,௞, for a coarse region 𝐶௠and group 𝑀௞by the correlating SPH 

factor, 𝜇௠,௞. 

 D෩௠,௞ = 𝜇௠,௞Dഥ௠,௞ 

  Σ෨௠,௞ = 𝜇௠,௞Σത௠,௞ (2.4) 

The SPH factors ensure the conservation of reaction rates, which can be expressed with 

average heterogenous flux, 𝜙തோீ, and the averaged diffusion flux, 𝜓തோீ, for coarse region 

𝑅 and group 𝐺 as the following: 

 Σ෨௠,௞𝜓ത௠,௞ = Σത௠,௞𝜙ത௠,௞ (2.5) 

The relationship between the average homogenous flux and heterogenous flux is then: 

 𝜙ത௠,௞ = 𝜇௠,௞𝜓ത௠,௞ (2.6) 

The SPH corrected cross sections can then be substituted in the multigroup diffusion Eq. 

(1.37) to give the SPH corrected multigroup diffusion equation shown in Eq. (2.7). 

 −𝛁 ∙ [𝐷෩௞(𝒓)𝛁𝜓෨௞(𝒓)] + Σ෨௔,௞(𝒓)𝜓෨௞(𝒓) + ∑ Σ෨௞→௞ᇱ(𝒓)𝜓෨௞(𝒓)௞ᇱ  = ∑ Σ෨௞ᇱ→௞(𝒓)𝜓෨௞ᇱ(𝒓)௞ᇱ + 

 ଵ

௄೐೑೑
∑ 𝜒௝௞

௃
௝ୀ௜ ∑ 𝜈Σ෨௙,௝,௞(𝒓)𝜓෨௞(𝒓)௞  (2.7) 

The two-group diffusion system of equations can also be written in terms of SPH 

corrected cross-sections and diffusion coefficients buy substituting them into Eq. (1.38) 

to get Eq. (2.8). 

 −𝛁 ∙ [𝐷෩ଵ(𝒓)𝛁𝜓෨ଵ(𝒓)] + Σ෨௔,ଵ(𝒓)𝜓෨ଵ(𝒓) + Σ෨ଵ→ଶ(𝒓)𝜓෨ଵ(𝒓)  = Σ෨ଶ→ଵ(𝒓)𝜓෨ଶ(𝒓) + 
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1

𝐾௘௙௙
෍ 𝜒௝

௃

௝ୀ௜

(𝜈Σ෨௙,௝,ଵ(𝒓)𝜓෨ଵ(𝒓) + 𝜐Σ෨௙,௝,ଶ(𝒓)𝜓෨ଶ(𝒓)) 

    −𝛁 ∙ [𝐷෩ଶ(𝒓)𝛁𝜓෨ଶ(𝒓)] + Σ෨௔,ଶ(𝒓)𝜓෨ଶ(𝒓) + Σ෨ଶ→ଵ(𝒓)𝜓෨ଶ(𝒓)  = Σ෨ଵ→ଶ(𝒓)𝜓෨ଵ(𝒓) (2.8) 

The neutron fluxes determined from Eq. (2.8) should give the same value as the neutron 

flux determined from Eq. (1.18) for the same reactor geometry and material composition 

after normalization.  

The SPH factors are calculated by an iterative method. The approach that was chosen 

is a fixed-point iterative strategy and allows avoidance of general perturbation of the 

macrocalculation. The algorithm proceeds in four steps: 

1. The SPH factors are set to unity for iteration 0 

 𝜇௠,௞
(଴)

= 1 (2.9) 

The neutron source is then estimated by: 

 𝑄௞
(଴)

(𝒓) = ∑ 𝑄௠,௞←௟௟  𝑖𝑓 𝒓 ∈ 𝑉௠ (2.10) 

2. The SPH factors are used to generate the corrected cross and diffusion 

coefficients with Eq. (2.4). A macrocalculation can then be performed with 

conservative boundary conditions to obtain the macro flux 𝜓෨௞
(௡)

(𝒓), for each 

coarse energy group as a function of the neutron sources of the preceding 

iteration. The macro integrated flux can then be determined by: 

 𝐹෨௠,௞
(௡)

= ∫ 𝑑ଷ𝑟𝜓෨௞
(௡)

(𝒓)
 

௏೘
 (2.11) 



38 
 

3. The macro integrated flux can then be used to determine the SPH factors by Eq. 

(2.12), where 𝐹௠,௞
∗  is the target integrated reaction rate and is given by Eq. (2.13). 

 

 𝜇௠,௞
(௡)

=
ி೘,ೖ

∗

ி෨೘,ೖ
(೙)  (2.12) 

 𝐹௠,௞
∗ = ∑ ∑ 𝑉௜𝜙௜,௚௜∈஼೘௚∈ெೖ

 (2.13) 

4. If the following convergence criterion is satisfied by the current iteration of the 

SPH factors, then the procedure is complete. 

 max
௠,௞

ቚఓ೘,ೖ
(೙)

ିఓ೘,ೖ
(೙షభ)

ቚ

ఓ
೘,ೖ
(೙) < 10ିସ (2.14) 

If the criterion is not satisfied, 𝑛 is set to 𝑛 + 1 and the iteration is repeated starting at 

step 2. 

There are an infinite number of SPH factors that can satisfy the conservation of the 

macrocalculation for a closed geometry (reflective boundary conditions) that differ up to 

a single multiplication constant that is the same for all regions and groups. To obtain a 

unique solution, the SPH factors are determined with an arbitrary normalization 

condition. The most common and simplest condition is the flux-volume normalization 

condition. The normalization is done by normalizing the flux determined in step two of 

the iteration process (Herbert, 2009). 

 𝜓෨௞
(௡) ௡௢௥௠.

(𝒓) = 𝜓෨௞
(௡)

(𝒓)
∑ ி೘,ೖ

∗
೘

∑ ∫ ௗయ௥ట෩ೖ
(೙)

(𝒓)
 

ೇ೘೘

 (2.15) 

Similarly, to the case of standard homogenization SPH full reactor core calculation 

proceeds in two steps. The first step differs however, in the fact that homogenization is 
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done at a sub-cell level and SPH equivalence factors are determined in an iterative 

method. Once the sub-cell homogenized and group condensed cross-sections are 

determined and SPH corrected, the full core diffusion model is constructed, and neutron 

fluxes are calculated. Due to the Cartesian geometry of LWRs, SPH can be done on a 

pin-by-pin level, a graphical representation of the Superhomogenization full core 

calculation for LWR is shown in Figure 2.2. The heterogenous pin sub-region of the fuel 

assembly is shown on the left of Figure 2.2. The sub-region is homogenized, and the 

resulting cross-sections are corrected with SPH factors, as illustrated by the centre image 

in Figure 2.2. The SPH corrected homogenized sub-region is then used to construct the 

full reactor core depicted on the right of Figure 2.2. 

 

Figure 2.2: Sub-cell SPH homogenization for LWRs. 
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2.4. Thesis Problem Statement 
 

There is considerable interest in utilizing the SPH method for production of PHWRs 

since it circumvents additional computational steps that are required for other 

homogenization improvement methods. More importantly, it can easily be implemented 

into current production algorithms since no change to the current computational 

infrastructure is required, only changing the cross-section and diffusion coefficients that 

are used. The SPH method has had limited investigation in the past into its application to 

diffusion models with PHWR geometries but has shown promise in its application to 

LWRs. Recently, a sub-cell homogenization diffusion model using SPH equivalence 

factors has been applied to PHWRs, however the results did not show significant or any 

improvement of the standard homogenization approach (Mohapatra, 2016). The 

investigation performed sub-cell homogenization on a single PHWR lattice cell with 

reflective boundary conditions. The SPH factors were normalized using the flux-volume 

normalization condition. The SPH corrected cross-sections were then utilized in a 3×3 

lattice cell partial core macrocalculation with discharge burnup bundles present for 

assessment of the method. The results were compared to a reference equivalent 

heterogenous transport partial core model. There was no improvement of the method 

when results were compared with an equivalent standard homogenization approach. 

Table 2.1 shows the comparison of SPH factors for all nine sub-regions of the lattice cell 

calculated from a single lattice cell calculation and from a 3×3 lattice cell calculation. 

The single cell SPH factors are shown on the top row for each of the nine sub-regions. 

The percent difference of the single cell SPH factors compared to the exact SPH factors 

for the top left lattice cell from the 3×3 calculation is shown in the middle row for each 
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sub-region. The percent difference of the single cell SPH factors compared to the exact 

SPH factors for the centre lattice cell from the 3×3 calculation is shown in the bottom 

row for each sub-region. Table 2.1 shows a several percent difference between the single 

cell SPH factors and the exact SPH factors generated using a 3×3 partial core model. The 

difference suggests that the SPH factors are dependent on cell-boundary leakage, and 

further investigation for possible improvement with a better description of cell boundary 

conditions was recommended.  

Table 2.1: SPH factor comparison (Nichita & Mohapatra, 2016). 

SPH facts. (single-
bundle) 

1.009 1.042 1.009 

% diff. (top left) 11.79 11.31 10.39 

% diff. (centre) 6.26 4.05 1.41 
SPH facts. (single-

bundle) 
1.042 0.889 1.042 

% diff. (top left) 11.31 10.85 9.86 

% diff. (centre) 4.05 1.38 -1.65 

SPH facts. (single-
bundle) 

1.009 1.042 1.009 

% diff. (top left) 10.39 9.86 8.62 

% diff. (centre) 1.41 -1.65 -4.55 
 

The work presented herein will directly build upon the method used in the previous 

attempt to apply SPH to PHWRs with improved cell-boundary leakage descriptions. 

 

 

 

 



42 
 

Chapter 3: Methodology 

 

The following presents the methodology utilized in this research for generating SPH 

factors and evaluating the SPH method with corrected boundary conditions as applied to 

PHWRs. As mentioned previously, sub-cell SPH corrected homogenization reactor 

calculations proceed in two steps; a lattice calculation and a core calculation. The first 

step, the lattice calculation, is a transport calculation done, typically on a single cell with 

detailed geometry and 69 energy groups and includes energy condensation and coarse 

sub-cell geometry homogenization. During this step, SPH factors are calculated along 

with the sub-cell homogenized cross-sections and diffusion coefficients. To ensure 

accurate boundary conditions, the lattice calculation step was performed for a multi-cell 

model (usually a 3×3-cell model consisting of the cell of interest surrounded by its 8 

neighbors) and not for an isolated lattice cell with reflective boundary conditions.  

Including the surrounding cells in the model ensures that the boundary conditions for the 

cell of interest (located at the center of the super-cell) are close to the true ones present in 

a full-core calculation.  Aside from the usual 3×3 super-cell, additional super-cell models 

were used to account for corner, centre, and side lattice cell positions in the full-core 

geometry. The different multi-cell geometries used are shown in Figure 3.1 below. 

 

Figure 3.1: The different multi-cells used for the lattice calculations. 
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The centre cell’s (or corner or side lattice cell) SPH factors, homogenized cross-sections 

and diffusion coefficients were the ones used for the core calculation step. The full-core 

model employed in this work was a 5×5-cell core, which was small-enough to allow a 

reference flux to be found using transport theory for the detailed, heterogeneous, 

geometry.  The full core calculation was also referred to as a homogeneous diffusion 

calculation. The homogenized core model was constructed by assembling together the 

sub-cell homogenized cells and is shown in Figure 3.2.  

 

Figure 3.2: Sub-cell homogenized 5×5 reactor core. 

The macroscopic cross sections for the homogenized cells were determined from the 

(multi-cell) lattice calculation for each respective lattice cell location in the reactor core. 

For lattice cells in the corner of the 5×5 core, the SPH factors and cross-sections were 

taken from a 2×2 multi-cell calculation with an equivalent burnup pattern. For lattice 
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cells on the edge of the core data from one of the two centre cells from the 3×2 multi-cell 

calculations with an equivalent burnup pattern were used, the specific cell was dependent 

on the orientation within the core. For lattice cells inside the core the data from the centre 

cell of the 3×3 multi-cell with an equivalent burnup pattern was used. An illustration 

demonstrating the origin of the data used in each lattice cell is depicted in the Figure 3.3 

below.  

 

Figure 3.3: Illustration of the construction of the diffusion core from the data of the 

super-cell calculations. 

The neutron fluxes and reaction rates were then compared to the reference ones obtained 

from the detailed-geometry full-core transport calculation.   

3.1. Fuel Burnup considerations 
 

Unique to PHWRs is online refueling, which creates an additional consideration for 

analysis of PHWRs. Due to online refueling, different lattice cells can have different 
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levels of fuel burnup.  Such differences need to be accounted for when modelling the 

reactor core because macroscopic cross-sections change with the fuel burnup. The burnup 

of a single PHWR lattice cell was simulated using 69-energy groups using the 

microscopic cross-section library developed by the WIMS-D Library Update Project 

(WLUP) (Jonkmans, 2006). The boundary conditions were reflective, however, during 

production the reactor runs at criticality so a B1 type calculation was performed. A B1 

type calculation enforces a keff of 1 and introduces buckling as the eigenvalue for the 

transport equation and effectively adjust the lattice cell leakage to maintain a critical 

lattice cell. The final results of this calculation consisted of detailed geometry cross-

section data condensed to two energy groups. Such cross-sections were generated for 

multiple burnup levels of the fuel bundle, starting at zero burnup (fresh fuel) to discharge 

burnup (~7.0 kWd/kg). This new generated cross-section library was used for the 

following calculations. 

3.2. Lattice Calculations 
 

The PHWR lattice cell, as shown in Figure 2.1, was subdivided into 9 rectangular 

sub-regions, the outer eight consists of just moderator while the ninth, centre sub region 

contains the entire fuel bundle, pressure tube, calandria tube, and some surrounding 

moderator, the subdivisions of the lattice cell are shown in Figure 3.4 below.   
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Figure 3.4: Subdivisions of the lattice cell. 

Because SPH-corrected cross-sections were used in core diffusion calculations that use 

Cartesian meshes, the sub-cells for which SPH factors are calculated must be rectangular.  

At the same time, the PHWR fuel bundle has cylindrical geometry, which does not lend 

itself to meaningful rectangular sub-divisions and limits the amount of subdivisions 

possible within the fuel bundle because it requires the full fuel channel to be located in a 

single sub-region.  

Four multi-cell models were constructed using subdivided lattice cells: a 3×3, a 

vertical and a horizontal 3×2, and a 2×2. SPH factors and sub-cell homogenized cross-

sections and diffusion coefficients were determined for all four models. To account for 

the variable burnup across the lattice cells different combination of fresh fuel and 

discharge fuel lattice cells were considered for all four super-cell types. Specifically, each 

cell in a multi-cell model has the same burnup as the corresponding cell in the full-core 

heterogeneous model. 

Reflective boundary conditions were applied to the outer boundary of each multi-cell 

model, and all multi-cell calculations performed were B1 type calculations.  
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3.4. Core Calculation 
 

A 5×5 partial core was utilized to simulate the full reactor core. The core calculation 

was a diffusion calculation performed on a 5×5 cell-homogenized core. The desired fuel 

bundle burnup composition to be investigated and cell position in the 5×5 core model 

determined which data to be used from the lattice calculation. The boundary conditions 

for the core calculation were reflective and the diffusion calculation produced the 

integrated flux of the reactor.  

To determine how well results obtained from the homogenized core diffusion model 

reproduce the results obtained using the heterogenous model, a reference calculation was 

required. The reference calculation was a k type two-group transport calculation for a 5×5 

partial core with detailed geometry. Reflective boundary conditions were utilized on all 

boundaries. The results were averaged to give single values for integrated flux per energy 

group for each lattice cell.  Because both the static transport and diffusion equations for 

multiplying media (i.e. media including fissile materials) are homogeneous eigenvalue-

eigenvector problems, the flux is only determined up to a multiplicative constant, which 

was determined by normalizing all fluxes to correspond to one fission per second per 

lattice cell. 

Before proceeding with lattice cell calculations, the computational method had to be 

verified to ensure it was performing as intended, which was done by an equivalence test. 

If the lattice calculation is correct, a 5×5 heterogenous calculation with SPH factors 

generated from an identical 5×5 detailed transport calculation will give the exact same 

integrated averaged flux as the equivalent 5×5 transport model after normalization. 
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Figure 3.5 shows a flow chart that gives a summary of the approach for generating a sub-

cell homogenized reactor core that was utilized in this thesis.  

 

Figure 3.5: Flow chart depicting the methodology used in this thesis. 

 
 
3.5. Computational Tools 
 

The computational aspect of the research presented here was performed with two 

standard codes DRAGON and DONJON. For all transport considerations, DRAGON 

version 3.05E code was utilized and all diffusion considerations were performed with 

Develop single lattice cell transport model with correct 
material and geometry descriptions to generate cross-sections 

for multiple fuel burnup.  

Establish equivalence between SPH homogenization and 
transport model for a 5×5 partial core. 

Develop multiple 3×3, 2×3, 2×2 partial core models with 
varying burnup configurations to generate SPH corrected 

cross-sections. 

Assemble heterogenous diffusion 5×5 reactor core with the 
corrected cross-sections from previous step. 
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DONJON version 3.01 code. Both codes were developed at the Ecole Polytechnique de 

Montreal and are routinely used in the Canadian nuclear industry for lattice and full-core 

calculations, respectively. This section will present a short description of the two codes. 

3.5.1. DRAGON 
 

The computer code DRAGON (Marleau et al., 2007) is a collection of multiple 

modules that can solve the multi-group neutron-transport equation in complex 

geometries, specifically in a lattice cell or fuel assembly. It can also perform resonance 

self-shielding calculations to determine the multigroup cross-sections.  Additionally, it 

can perform fuel depletion calculations and can generate region-homogenized and group-

condensed macroscopic cross sections, as well as SPH factors. The various modules are 

linked together by using the GAN generalized driver and only exchange information 

between each other by well defined data structures.  

The multigroup spatial and angular distribution of the flux as the solution to the 

neutron transport equation can be determined by various algorithms contained in 

DRAGON. All algorithms are based on a one-group solution procedure and the 

contributions from other energy groups are incorporated in the source term. The flux 

solver algorithms or modules, either utilize collision probability method or the method of 

characteristics for solving the transport equation. There are five such modules, the first is 

the JPM option, that solves the integral form of the transport equation using the interface 

current method applied to homogenous blocks. The following two options are SYBIL and 

EXCELL/NXT, which solve the integral transport equation using the collision 

probabilities method, where the former is for simple one-dimensional (1-D) or two-

dimensional (2-D) geometries and the latter is for more general 2-D and three-
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dimensional (3-D) geometries. The final two modules are MOCC and MCU which both 

use the method of characteristics to solve the transport equation. For 2-D geometries 

MOCC is used and for 3-D geometries the MCU module is used. The research presented 

in this thesis utilized the collision probability method for solving the transport equation 

for the 2-D PHWR lattice cell and made use of the NXT module. 

The DRAGON code requires an input data structure for execution. The data structure is 

presented as a script using the language CLE-2000, and requires module and variable 

declaration, geometric description, and nuclear data of the materials simulated within the 

desired geometry. DRAGON can access microscopic cross-sections directly for desired 

nuclear data. The geometric parameters and mixture composition as described for a 

PHWR lattice cell above, along with the WIMS-D WLUP microscopic library were used 

in this thesis.  

3.5.2. DRAGON Modules 
 

Several modules in DRAGON are required for solving the transport equation and 

generating SPH equivalent factors. These modules include the following: LIB, GEO, 

NXT, SHI, ASM, FLU, EDI, EVO, and CPO. The LIB module allows the inclusion of 

the microscopic cross-section library to the definition of the material mixtures. The GEO 

module allows for the input of the desired geometric description used for the calculation. 

The NXT module generates the tracking file that allows for general 2-D geometry 

collision probability method solutions as described above. The SHI module allows for 

self-shielding calculations at the fuel pin boundary.  The ASM module generates the 

collision probability matrix for the defined geometry. The FLU module generates the flux 

solution and associated eigenvalues. The EDI module allows for averaging and 
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condensing cross-sections and generating SPH factors. The information is also stored on 

a file if needed for later use. The EVO module is used for burnup calculations. The CPO 

module reorganizes the EDI data structure to a format accessible by DONJON.  

3.5.3. DONJON 
 

DONJON computer code (Varin et al., 2005) is used for solving the diffusion 

equation and nuclear reactor modelling. The code came from merging the diffusion solver 

code TRIVAC-3 and the reactor modelling code XSIMUL. DONJON is similar to 

DRAGON in regard to being divided into multiple calculation modules that are all linked 

together by the GAN generalized driver with exchanging information through well 

defined data structures. DONJON utilizes multiple spatial discretization in full 

multigroup formalism to solve the diffusion equation. Due to the application of sub-cell 

homogenization performed in this research the mesh centred finite differences method is 

utilized to solve the diffusion equation.  

Like DRAGON, DONJON requires a CLE-2000 input data structure for execution of 

the desired simulated reactor. The input file is required to contain module and variable 

declaration, the reactor geometric description, and macroscopic cross-section data. The 

geometry information primarily defines the lattice cells and reflector arrangements. In 

this study, the geometry portrays the homogenized volume PHWR lattice cells. The 

macroscopic cross-section data comes from a lattice transport calculation and must be 

contained in a file with COMPO structure. The DRAGON module CPO produces a 

COMPO files for a desired lattice calculation to be used in DONJON. 
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3.5.4. DONJON Modules 
 

The DONJON calculation modules required in the research presented here include 

the following: GEOM, CRE, BIVACT, BIVACA, FLUD, and OUT. The GEOM module 

allows for the input of the desired geometric description. The CRE module allows for 

inclusion of macroscopic cross-section library to the desired material mixtures read 

directly from a COMPO file. The BIVACT and BIVACA modules are used for 

generation of tracking information generation depending on the desired calculation 

method specified to solve the diffusion equation for a two-dimensional geometry. The 

FLUD module solve the diffusion equation to generate values for the homogenized 

integrated flux and associated eigenvalues. The OUT module allows for the generation of 

output files of the computational results.  
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Chapter 4: Models and Calculations 

 

In this chapter the simulated models used for the lattice calculation step, core 

calculation step, and the reference partial core calculation are presented. The lattice-cell 

models that are presented include the single lattice cell for burnup cross-section 

generation, and the multi-cell models for generating SPH corrected sub-cell homogenized 

cross-sections. The multiple-burnup core configurations reference models are presented, 

along with the corresponding heterogeneous diffusion multi-cell models.  

4.1. Lattice Calculation models 
 

In this section, the development of the single 69-group detailed transport lattice cell 

model for DRAGON is presented, along with self-shielding and burnup calculations 

performed. The calculation produced two-group macroscopic cross-section data for a 

geometrically detailed lattice cell at multiple fuel burnup levels, from fresh fuel to 

discharge burnup. The 69 energy groups were condensed to a fast and thermal group, 

separated at 0.625 eV. The cross-section data from this calculation was then used for all 

subsequent DRAGON calculations. The multi-cell models used for generating SPH 

corrected sub-cell homogenized cross-sections are also presented. This section concludes 

with the diffusion lattice cell model developed for DONJON calculations. 

4.1.1. Single-Cell Transport Model 
 

The DRAGON single lattice cell calculation takes the subdivided lattice cell 

geometric description as discussed in Section 3.3 and material description, along with a 

microscopic-cross-section library as inputs.  The calculation generated an output file that 
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contains two-group macroscopic cross-sections for multiple levels of fuel burnup in two 

energy groups. The material composition of the lattice cell was described in Section 

2.1.1, and were modelled with the density, isotopic composition (weight %), and 

temperature presented in Table 4.1 below.  

Table 4.1: Material properties within the PHWR lattice cell. 

Component Material Density 
(g/cm3) 

Isotopic 
Composition 
(weight %) 

Temperature 
(K) 

Moderator D2O See below 99.9 346 
Calandria Tube Zircaloy 6.5 100 346 

Annulus gap He 0.0014 100 346 
Pressure Tube Zr-Nb(2.5%) 

alloy 
6.5 100 550 

Coolant D2O See below 99.7 550 
Fuel Pin Zircaloy 6.5 100 550 

Fuel UO2 10.6 See below 1155 
 

The density of heavy water for both the moderator and coolant and isotopic contents of 

the UO2 fuel were calculated using the INFO module in DRAGON.  

Further spatial discretization of geometric regions improves the computational accuracy 

in DRAGON at the expense of computational time. The moderator region was further 

divided to give a 4×4 square, which was sufficient due to the small spatial variation of the 

neutron flux within the moderator. The fuel channel, however, was subjected to much 

finer region subdivision. The coolant required annuli subdivisions with thickness between 

0.25 to 0.5 the length of the mean free path of a neutron.  For heavy water, the mean free 

path is ~2 cm, which resulted in the thickness of the subdivision in the range of 0.5 to 1 

cm (Auger et al., 1947). The fuel pins required further subdivision to account for self-

shielding. The resulting DRAGON lattice cell was divided into a total of 179 regions, of 
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which only 16 were rectangular and the remaining 163 were circular, as depicted in 

Figure 4.1.  

 

Figure 4.1: Lattice cell generated by DRAGON 3.05E, the different colours represent 

different mixtures. 

After neutron slowing-down occurs in the moderator, neutrons re-entering the fuel pin are 

susceptible to resonance capture in the fuel. The neutrons that are absorbed are lost on the 

periphery of the fuel, thus the outer regions shield the centre of the fuel pin creating the 

effect known as self-shielding. A self-shielding model was used to account for this effect 

in a lattice cell calculation. The model was an algorithm that produced average (self-

shielded) cross-sections defined over a coarse energy group. To achieve the desired cross-

sections, sub-regions were assigned to the resonant part of the geometry which subdivide 

the fuel pin into annuli as depicted in Figure 4.1. The self-shielding calculation was 

performed by the SHI module in DRAGON.  
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The final additional consideration required for the single cell lattice calculation is fuel 

burnup simulation. The burnup calculation was performed by the EVO module in 

DRAGON. The fuel composition was calculated for fresh fuel and at 7 additional burnup 

steps, to a maximum burnup of 7000 MWd/t(U). For each burnup step the lattice cell 

burnup was increased by 1000 MWd/t(U) so by the seventh iteration discharge burnup 

was achieved. Although there is a rapid change in reactivity from the buildup of fission 

products and then from the increase in the plutonium concentration, the coarse burnup 

steps are sufficient since only fresh fuel and discharge burnup fuel was modeled in this 

thesis. 

The data flow during the lattice calculation for a single cell is depicted in Figure 4.2. The 

final output file was used for subsequent transport calculations.  
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Figure 4.2: Diagram of Data Flow in DRAGON for Single Cell Lattice Calculation. 
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4.1.2. Multi-Cell Transport Models 
 

A subsequent lattice cell calculation was performed to generate sub-cell 

homogenized cross-sections with SPH equivalence factors. However, as discussed 

previously to improve the results with a better description of inter-cell neutron leakage, 

the calculation was performed using multi-cell models. The multi-cell model was 

constructed with nine lattice cells as described in Section 4.1.1 to create a 3×3 square 

model. The boundary conditions were reflective and a B1 type calculation was performed 

to simulate a critical reactor. The nine-cell multi-cell model is shown in Figure 4.3. 

 

Figure 4.3: 3×3 multi-cell DRAGON 3.05E model for SPH lattice calculations. 

The centre cell homogenized cross-sections and SPH factors were transferred to 

DONJON for core calculations. However, cells located on the corner and edge of the 

larger core calculation model would not be accurately simulated using the centre 3×3 cell. 
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Three additional multi-cell calculations were performed for the corner, and edge cells. 

The corner cell homogenized cross-sections and SPH factors were generated from a 2×2 

multi-cell lattice calculation with the same consideration as for the 3×3 model. The data 

that was transferred to DONJON for subsequent core calculations was taken from the 

correlating corner of the 2×2 model. The process was repeated but for a six-cell 2×3 

model for the edge cells, which required two models to be created: a horizontal and 

vertical one. The data was generated for one of the middle cells, depending on the 

location in the core calculation. The three additional models are shown in Figures 4.4 and 

4.5 below.  

 

Figure 4.4: 2×2 multi-cell DRAGON 3.05E model for SPH lattice calculation for corner 

cell in the diffusion core calculation. 
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Figure 4.5: Six cell multi-cell DRAGON 3.05E models, both horizontal (left) and vertical 

(right) for SPH lattice calculation for edge cells in the diffusion core calculation. 

The process above was repeated multiple times for varying combinations of fresh fuel 

bundles and discharge-burnup fuel bundles to allow for several core configurations to be 

evaluated. The above procedure also allowed generation of full-cell (standard) 

homogenization without SPH factors for further comparison. Figure 4.6 above shows the 

data flow within DRAGON for the generation of homogenized cross-sections and SPH 

factors. The single lattice cell calculation presented in Section 4.1.1 also produced sub-

cell homogenized cross-sections with SPH factors, and standard homogenized cross-

sections. 
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Figure 4.6: The Data flow in DRAGON for sub-cell homogenization with SPH factors for 

the multi-cell lattice calculation. 
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4.1.3. Single-Cell Diffusion Models 
 

The aim of this study was to compare lattice level results from a detailed transport 

calculation to the lattice level results for the homogenized diffusion calculation. The 

diffusion lattice cell model used for core calculations in DONJON was generated to give 

an equivalent 3×3 sub-divided cell. A standard homogenized lattice cell was also created 

for comparison both of which are shown in Figure 4.7 below. 

     

Figure 4.7: The two diffusion lattice cells. The left is the heterogenous cell and the right 

is the homogenous lattice cell. 

4.2. Reference and Core Calculation Models 
 

Multiple 5×5 partial core models were developed to asses the performance of SPH 

factors with improved boundary conditions. There were six different configurations of 

fresh fuel and discharge fuel partial core models and an additional checkboard voided 

coolant core were developed. Reflective boundary conditions were used for all 

calculations. DRAGON was used to generate reference results against which the SPH 

method was compared. The DONJON diffusion code was used to perform all 
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homogenous core calculations. Multiple diffusion cores were modelled for each fuel 

burnup configuration for each of the different lattice cell homogenization calculations. 

One for standard homogenization from a single lattice cell, another for standard 

homogenization for a partial core lattice calculation. Additional two for sub-cell 

homogenization with SPH factors from both single cell and partial core lattice 

calculations.  

4.2.1. Detailed Reference Transport Models 
 

A detailed transport partial core model was developed for each fuel burnup 

combination as a reference for both fission rate and multiplication constant in DRAGON. 

A total of 7 reference models were developed, each containing 25 lattice cells assembled 

into a 5×5 square. The lattice cells all have the same spatial discretization as the single 

bundle lattice cell discussed in Section 4.1, each consisting of 179 regions for a total of 

4475 regions. All models use the 2 energy group cross-sections generated from the single 

bundle calculation. Figures 4.8 to 4.12 depict the fuel burnup combinations used.  All 

bundles were modelled to have discharge burnup unless denoted by ZB (zero burnup), 

which were modelled as fresh fuel. The first evaluated configuration consisted of three 

fresh fuel bundles and is shown in Figure 4.8 below. 
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Figure 4.8: 5×5 reference core model with three fresh fuel bundles.  

Partial cores with four fresh fuel bundles were subsequently evaluated and are depicted in 

the following Figure 4.9. 

                           

 a) b) 

Figure 4.9: 5×5 reference core models with four fresh fuel bundles.  

Followed by the evaluation with five fresh fuel bundles as shown in Figure 4.10. 
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 a) b) 

Figure 4.10: 5×5 reference core models with five fresh fuel bundles.  

Finally, a partial core with six fresh fuel bundles was evaluated as depicted in Figure 

4.11. 

 

Figure 4.11: 5×5 reference core models with six fresh fuel bundles.  

To simulate the effectiveness of the SPH method’s ability to asses Loss of Coolant 

Accidents (LOCA), a partial core with a checkerboard pattern of lattice cells with voided 
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coolant was developed and shown in Figure 4.12. The lattice cells with voided coolant 

are indicated by a V and all fuel bundles were modeled with a discharge burnup level. 

 

Figure 4.12: 5×5 reference core model with a voided coolant fuel bundles.  

 

 

4.2.2. Partial-Core Diffusion Models 
 

The diffusion 5×5 cores that were modelled in DONJON consisted of heterogeneous 

diffusion lattice cells with 9 sub-cell divisions, or a single homogenized lattice cells as 

described in Section 4.1.3. There were 7 different partial core configurations developed to 

match the configurations of the reference partial cores that were being simulated. All 

configurations were repeated for each lattice cell homogenization approach that was 

being evaluated.  
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Figure 4.13: 5×5 homogenous diffusion core model.  

Figure 4.13 above depicts the homogenized diffusion core that was used for all seven fuel 

channel configurations that were assessed. All reactor cores consist of 25 regions. Figure 

4.14 below portrays the equivalent heterogenous diffusion model that consists of the sub-

divided lattice cell and each consist of 225 regions. 
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Figure 4.14: 5×5 homogenous diffusion core model.  
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Chapter 5: Results and Discussion 

5.1. Reaction Rate Normalization 
 

For multiplying media, both the transport equation and the diffusion equations are 

eigenvalue problems, where the neutron flux is the eigenfunction and the multiplication 

constant is the eigenvalue. As a result, the neutron flux can only be determined up to a 

multiplicative constant, requiring some normalization procedure for comparison between 

the two solutions. In this thesis, reaction rate normalization will be applied, such that 

there is a reaction rate of 1 fission per second in each lattice cell.  

The total reaction rate (RR) for a reactor is given in Eq. (5.1), where 𝐶 is the number of 

lattice cells defined by region, 𝑅, where 𝑉௥௖ is the volume of a sub-region, 𝑟, within the 

cell. The macroscopic fission cross-section is given as Σ௙,௚௥௖, for energy group 𝑔 and sub 

region 𝑟 in lattice cell 𝑐, and 𝜙ത௚௥௖ is the normalized flux for group 𝑔 and region 𝑟 of 

lattice cell 𝑐.  

 𝑅𝑅் = ∑ ∑ 𝑉௥௖
ோ
௥ୀଵ ൫∑ (Σ௙,௚௥௖ × 𝜙ത௚௥௖

ீ
௚ୀଵ ൯஼

௖ୀଵ   (5.1) 

The normalized flux is determined from the average flux, 𝜙௚௥௖, of region 𝑟, group 𝑔, and 

cell 𝑐, and a normalization constant 𝐴, as shown in Eq. (5.2). 

 𝜙ത௚௥௖ = 𝐴𝜙௚௥௖   (5.2) 

Since 𝐴 is a constant and can be factored out of the summations. Eq. (5.1) can be written 

as follows: 

 𝑅𝑅் = 𝐴 ∑ ∑ 𝑉௥௖
ோ
௥ୀଵ ൫∑ (Σ௙,௚௥௖ × 𝜙௚௥௖

ீ
௚ୀଵ ൯஼

௖ୀଵ   (5.3) 

The above expression can then be written to solve for the normalization constant. 
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 𝐴 =
ோோ೅

∑ ∑ ௏ೝ೎
ೃ
ೝసభ ൫∑ (ஊ೑,೒ೝ೎×థ೒ೝ೎

ಸ
೒సభ ൯಴

೎సభ  
  (5.4) 

The value for 𝑅𝑅், is always equal to the number of lattice cells (25) in this work. Once the 

normalization constant has been solved the normalized flux can be determined from Eq. (5.2). 

5.2. Results 
 

The 5×5 core DRAGON results (𝑘௘௙௙, fluxes, reaction rates) are taken as reference 

and all DONJON results will be compared to them. The evaluation of the diffusion core 

is done by assessing the percent difference in the bundle fission rates (FR) and the 

difference in 𝑘௘௙௙. The percent difference is calculated using Eq. (5.5), and the difference 

in 𝑘௘௙௙ is calculated using Eq. (5.6), where 𝐹𝑅஽ோ஺ீைே and 𝐹𝑅஽ைே௃ைே are the normalized 

fission rates from the DRAGON reference calculation and the DONJON calculation 

respectively.  

 %𝑑𝑖𝑓𝑓ிோ =  
ிோವೀಿ಻ೀಿିிோವೃಲಸೀಿ

ிோವೃಲಸೀಿ
× 100%  (5.5) 

 𝑑𝑖𝑓𝑓௞ି௘௙௙ = 𝑘௘௙௙,஽ைே௃ைே − 𝑘௘௙௙,஽ோ஺ீைே  (5.6) 

For all fuel burnup configurations, the results for the four lattice calculation approaches 

were compared; single-cell standard homogenization (SC-SH), single-cell sub-cell 

homogenization with SPH factors (SC-SPH), multi-cell standard homogenization (MC-

SH), and multi-cell sub-cell homogenization with SPH factors (MC-SPH). Tables 5.1-5.7 

show the results for each of the 5×5 full-core configurations, which differ only in the 

arrangement of the fresh-fuel cells.  The top row shows 𝑘௘௙௙ results, while the bottom 

five rows show fission-rate results for the 5x5 configuration.  In each table cell, the top 

box shows the reference transport calculation result, while the four boxes below show the 
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difference between the homogenized-model results and the reference (transport) results 

for each of the four homogenization approaches.  Cells corresponding to fresh fuel are 

shaded and the numbers are shown in bold.  

 

Table 5.1: Comparison of 𝑘௘௙௙ and normalized reaction rates for the core depicted in 

Figure 4.8.  

𝑘௘௙௙  (DRG)   0.9882   
𝑘௘௙௙  difference (SC-SH)   -0.0232   
𝑘௘௙௙  difference (SC-SPH)   -0.0231   
𝑘௘௙௙  difference (MC-SH)   0.0005   
𝑘௘௙௙  difference (MC-SPH)   0.0005   

FR (DRG) 1.0012 1.0131 1.0153 1.0131 1.0012 
%diff(SC-SH) 1.35 2.92 3.23 2.92 1.35 

%diff (SC-SPH) 1.00 2.71 2.94 2.73 1.03 
%diff (MC-SH) 1.19 2.26 2.39 2.26 1.19 

%diff (MC-SPH) 2.78 2.11 4.16 2.11 2.78 

 1.0018 1.1369 1.0298 1.1369 1.0018 

 1.55 5.96 5.18 5.96 1.55 

 1.31 8.02 5.17 8.06 1.36 

 1.32 2.71 3.61 2.71 1.31 

 1.21 2.13 3.09 2.13 1.21 

 0.9821 1.0023 1.1286 1.0023 0.9821 

 -0.87 1.82 5.16 1.82 -0.87 

 -1.27 1.66 7.23 1.80 -1.21 

 -0.37 1.37 2.05 1.37 -0.37 

 0.35 0.90 2.25 0.90 0.35 

 0.9578 0.9666 0.9748 0.9666 0.9578 

 -4.05 -2.80 -1.70 -2.80 -4.05 

 -4.55 -3.24 -1.96 -3.04 -4.50 

 -2.50 -1.73 -1.00 -1.73 -2.50 

 -3.02 -1.56 -1.42 -1.56 -3.02 

 0.9431 0.9465 0.9488 0.9465 0.9431 

 -6.04 -5.54 -5.21 -5.54 -6.04 

 -6.62 -6.08 -5.71 -6.06 -6.58 

 -3.87 -3.54 -3.32 -3.54 -3.87 

 -4.34 -4.01 -3.78 -4.01 -4.34 
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Table 5.2: Comparison of 𝑘௘௙௙ and normalized reaction rates for the core depicted in 

Figure 4.9 a). 

𝑘௘௙௙  (DRG)   0.9926   
𝑘௘௙௙  difference (SC-SH)   -0.0238   
𝑘௘௙௙  difference (SC-SPH)   -0.0235   
𝑘௘௙௙  difference (MC-SH)   -0.0003   
𝑘௘௙௙  difference (MC-SPH)   -0.0000   

FR (DRG) 0.9690 0.9783 0.9787 0.9783 0.9690 
%diff(SC-SH) -2.04 -0.83 -0.76 -0.83 -2.05 

%diff (SC-SPH) -2.53 -1.20 -1.23 -1.20 -2.54 
%diff (MC-SH) -1.11 -0.27 -0.30 -0.27 -1.11 

%diff (MC-SPH) 0.33 -0.53 1.31 -0.53 0.33 

 0.9783 1.1041 0.9934 1.1041 0.9783 

 -0.83 2.72 1.11 2.72 -0.83 

 -1.20 4.56 0.85 4.56 -1.20 

 -0.27 0.67 0.99 0.67 -0.28 

 -0.53 -0.75 0.23 -0.75 -0.53 

 0.9788 0.9934 0.9927 0.9934 0.9788 

 -0.76 1.11 1.05 1.11 -0.76 

 -1.23 0.84 0.59 0.84 -1.23 

 -0.31 0.98 0.84 0.98 -0.31 

 1.32 0.24 2.32 0.24 1.32 

 0.9783 1.1041 0.9934 1.1041 0.9783 

 -0.84 2.71 1.11 2.71 -0.84 

 -1.20 4.56 0.84 4.56 -1.21 

 -0.28 0.66 0.98 0.66 -0.28 

 -0.51 -0.73 0.26 -0.73 -0.51 

 0.9690 0.9783 0.9788 0.9783 0.9690 

 -2.05 -0.84 -0.76 -0.84 -2.05 

 -2.54 -1.20 -1.23 -1.21 -2.54 

 -1.12 -0.28 -0.29 -0.29 -1.12 

 0.36 -0.49 -1.19 -0.49 0.36 
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Table 5.3: Comparison of 𝑘௘௙௙ and normalized reaction rates for the core depicted in 

Figure 4.9 b). 

𝑘௘௙௙  (DRG)   0.9931   
𝑘௘௙௙  difference (SC-SH)   -0.0220   
𝑘௘௙௙  difference (SC-SPH)   -0.0227   
𝑘௘௙௙  difference (MC-SH)   0.0006   
𝑘௘௙௙  difference (MC-SPH)   -0.0004   

FR (DRG) 0.9541 0.9721 0.9997 1.0091 0.9990 
%diff(SC-SH) -5.29 -2.11 2.34 4.01 2.78 

%diff (SC-SPH) -5.88 -2.62 2.03 3.75 2.40 
%diff (MC-SH) -2.41 -0.85 1.61 2.35 1.50 

%diff (MC-SPH) -3.01 -0.12 1.54 3.63 3.07 

 0.9615 0.9814 1.1321 1.1463 1.0073 

 -5.17 -0.95 6.83 8.95 4.19 

 -5.73 -1.31 8.89 11.17 3.93 

 -1.77 -0.00 2.77 3.87 2.21 

 -2.36 -0.54 2.40 2.72 3.48 

 0.9789 0.9799 1.0005 1.1274 0.9945 

 -5.80 -0.62 3.78 7.27 2.88 

 -6.36 -1.03 3.52 9.34 2.57 

 -0.37 -0.23 1.60 2.44 1.11 

 -0.95 0.37 1.95 2.07 2.45 

 1.1062 0.9745 0.9679 0.9706 0.9625 

 -16.23 12.15 0.61 0.16 -1.14 

 -16.65 14.03 0.19 -0.21 -1.64 

 0.60 -0.72 -1.21 -0.93 -1.67 

 -1.12 -1.28 -1.10 -1.40 -0.88 

 0.9781 0.9612 0.9495 0.9445 0.9412 

 -7.38 -3.60 -2.89 -3.46 -4.00 

 -7.96 -4.07 -3.46 -4.03 -4.59 

 -0.55 -1.96 -2.86 -3.27 -3.57 

 -0.39 -1.24 -3.43 -3.78 -4.06 
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Table 5.4: Comparison of 𝑘௘௙௙ and normalized reaction rates for the core depicted in 

Figure 4.10 a). 

𝑘௘௙௙  (DRG)   0.9976   
𝑘௘௙௙  difference (SC-SH)   -0.0214   
𝑘௘௙௙  difference (SC-SPH)   -0.0210   
𝑘௘௙௙  difference (MC-SH)   -0.0004   
𝑘௘௙௙  difference (MC-SPH)   -0.0002   

FR (DRG) 0.9573 0.9694 0.9718 0.9694 0.9573 
%diff(SC-SH) -3.15 -1.54 -1.20 -1.54 -3.15 

%diff (SC-SPH) -3.76 -2.03 -1.77 -2.03 -3.77 
%diff (MC-SH) -1.76 -0.65 -0.50 -0.65 -1.76 

%diff (MC-SPH) -0.55 -1.12 0.91 -1.12 -0.55 

 0.9694 1.1019 0.9989 1.1019 0.9694 

 -1.55 2.97 2.33 2.97 -1.55 

 -2.03 4.69 2.03 4.69 -2.03 

 -0.66 0.87 1.82 0.86 -0.66 

 -1.12 -0.06 0.97 -0.06 -1.12 

 0.9719 0.9989 1.1243 0.9989 0.9719 

 -1.20 2.33 5.63 2.33 -1.20 

 -1.78 2.03 7.39 2.03 -1.78 

 -0.50 1.82 2.41 1.82 -0.50 

 0.91 0.97 3.23 0.97 0.90 

 0.9694 1.1020 0.9989 1.1020 0.9694 

 -1.55 2.97 2.33 2.97 -1.55 

 -2.03 4.69 2.03 4.69 -2.03 

 -0.66 0.86 1.82 0.86 -0.66 

 -1.12 -0.06 0.97 -0.06 -1.12 

 0.9574 0.9694 0.9719 0.9694 0.9574 

 -3.16 -1.55 -1.20 -1.55 -3.16 

 -3.77 -2.03 -1.78 -2.03 -3.77 

 -1.76 -0.66 -0.50 -0.66 -1.76 

 -0.55 -1.12 0.90 -1.12 -0.55 
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Table 5.5: Comparison of 𝑘௘௙௙ and normalized reaction rates for the core depicted in 

Figure 4.10 b). 

𝑘௘௙௙  (DRG)   0.9983   
𝑘௘௙௙  difference (SC-SH)   -0.0200   
𝑘௘௙௙  difference (SC-SPH)   -0.0196   
𝑘௘௙௙  difference (MC-SH)   0.0008   
𝑘௘௙௙  difference (MC-SPH)   0.0009   

FR (DRG) 1.1751 1.0140 0.9658 0.9337 0.9180 
%diff(SC-SH) 11.80 4.36 -2.15 -6.58 -8.77 

%diff (SC-SPH) 13.98 4.05 -2.76 -7.33 -9.60 
%diff (MC-SH) 6.35 3.16 -1.07 -3.91 -5.43 

%diff (MC-SPH) 6.24 3.28 -0.22 -4.43 -5.90 

 1.0140 1.1192 0.9804 0.9495 0.9337 

 4.36 4.86 -0.37 -4.44 -6.58 

 4.05 6.63 -0.79 -5.13 -7.33 

 3.16 2.07 0.14 -2.54 -3.91 

 3.28 2.21 -0.23 -2.36 -4.43 

 0.9658 0.9804 1.1004 0.9804 0.9658 

 -2.15 -0.37 2.40 -0.37 -2.15 

 -2.77 -0.80 4.05 -0.80 -2.77 

 -1.04 0.14 0.51 0.14 -1.04 

 -0.22 -0.23 0.67 -0.24 -0.22 

 0.9337 0.9495 0.9804 1.1193 1.0141 

 -6.58 -4.45 -0.37 4.86 4.35 

 -7.33 -5.13 -0.80 6.62 4.04 

 -3.91 -2.55 0.14 2.07 3.16 

 -4.43 -2.37 -0.24 2.21 3.28 

 0.9180 0.9338 0.9658 1.0141 1.1751 

 -8.78 -6.59 -2.16 4.35 11.79 

 -9.60 -7.33 -2.77 4.04 13.97 

 -5.43 -3.92 -1.04 3.16 6.34 

 -5.90 -4.43 -0.22 3.27 6.23 
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Table 5.6: Comparison of 𝑘௘௙௙ and normalized reaction rates for the core depicted in 

Figure 4.11.  

𝑘௘௙௙  (DRG)   1.0025   
𝑘௘௙௙  difference (SC-SH)   -0.0199   
𝑘௘௙௙  difference (SC-SPH)   -0.0194   
𝑘௘௙௙  difference (MC-SH)   0.0005   
𝑘௘௙௙  difference (MC-SPH)   -0.0001   

FR (DRG) 0.9487 0.9598 0.9611 0.9598 0.9487 
%diff(SC-SH) -3.84 -2.35 -2.18 2.35 3.84 

%diff (SC-SPH) -4.57 -2.94 -2.88 2.94 4.57 
%diff (MC-SH) -2.12 -1.10 -1.06 1.10 2.12 

%diff (MC-SPH) -1.07 -1.72 0.17 1.72 1.07 

 0.9677 1.1002 0.9895 1.1002 0.9677 

 -1.28 3.26 1.59 3.26 -1.28 

 -1.88 4.95 1.07 4.95 -1.88 

 -0.47 1.14 1.37 1.14 -0.47 

 0.23 -0.62 1.52 -0.62 0.23 

 0.9775 1.1171 1.0035 1.1171 0.9775 

 0.03 5.26 3.42 5.26 0.03 

 -0.56 7.06 2.88 7.06 -0.56 

 0.32 2.38 2.48 2.38 0.32 

 2.15 0.64 3.61 0.64 2.14 

 0.9677 1.1003 0.9896 1.1003 0.9677 

 -1.28 3.26 1.59 3.26 -1.28 

 -1.88 4.95 1.07 4.94 -1.88 

 -0.47 1.14 1.37 1.14 -0.47 

 0.22 -0.63 1.52 -0.63 0.22 

 0.9487 0.9598 0.9612 0.9599 0.9487 

 -3.84 -2.35 -2.18 -2.35 -3.84 

 -4.57 -2.95 -2.88 -2.95 -4.57 

 -2.13 -1.11 -1.07 -1.11 -2.13 

 -1.08 -1.72 0.16 -1.73 -1.08 
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Table 5.7: Comparison of 𝑘௘௙௙ and normalized reaction rates for the core depicted in 

Figure 4.12.   

𝑘௘௙௙  (DRG)   0.9803   
𝑘௘௙௙  difference (SC-SH)   -0.0278   
𝑘௘௙௙  difference (SC-SPH)   -0.0280   
𝑘௘௙௙  difference (MC-SH)   0.0004   
𝑘௘௙௙  difference (MC-SPH)   0.0003   

FR (DRG) 1.0222 0.9767 1.0214 0.9767 1.0222 
%diff(SC-SH) -0.20 0.29 -0.27 0.29 -0.20 

%diff (SC-SPH) -0.30 0.42 -0.38 0.42 -0.30 
%diff (MC-SH) -0.14 0.14 -0.10 0.14 -0.13 

%diff (MC-SPH) 0.30 -0.21 0.19 -0.21 0.30 

 0.9767 1.0214 0.9763 1.0214 0.9767 

 0.29 -0.27 0.27 -0.27 0.29 

 0.42 -0.38 0.40 -0.39 0.42 

 0.14 -0.09 0.10 -0.09 0.14 

 -0.21 0.02 -0.09 0.02 -0.21 

 1.0214 0.9763 1.0212 0.9763 1.0214 

 -0.27 0.27 -0.28 0.27 -0.27 

 -0.38 0.40 -0.40 0.40 -0.38 

 -0.10 0.10 -0.11 0.10 -0.10 

 0.18 -0.09 0.01 -0.09 0.18 

 0.9767 1.0214 0.9763 1.0214 0.9767 

 0.29 -0.27 0.27 -0.27 0.29 

 0.42 -0.39 0.39 -0.39 0.42 

 0.13 -0.09 0.10 -0.09 0.13 

 -0.22 0.02 -0.09 0.02 -0.22 

 1.0222 0.9767 1.0214 0.9767 1.0222 

 -0.21 0.29 -0.27 0.29 -0.21 

 -0.31 0.41 -0.39 0.41 -0.31 

 -0.14 0.13 -0.11 0.13 -0.14 

 0.29 -0.22 0.18 -0.22 0.29 

 

For completion purposes, all lattice cell calculation approaches were compared in such a 

way as to simulate a Loss of Coolant Accident (LOCA). In a PHWR adjacent fuel 

channels have coolant flowing in opposite directions, and to simulate a LOCA for 

PHWRs bundles with voided coolant must be in an alternating checkboard pattern. The 

results for the calculations are presented in Table 5.7 above, where all bolded and shaded 
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sections represent coolant voided lattice cell. All bundles where at a discharge fuel 

burnup level. 

5.3. Discussion 
 

The results shown in Section 5.2 show that using a multi-cell model for 

homogenizing cross-section data greatly improves the accuracy of the homogenization 

compared to using a single cell model. Furthermore, when a single cell model is used, the 

use of SPH factors does not improve the results compared to standard homogenization, a 

result that agrees with the results found in the preceding study (Mohapatra, 2016). That 

study hypothesized that the reason for the lack of improvement may be due to errors in 

calculated SPH factors resulting from their dependence on inter-lattice cell leakage. This 

study accounted for inter-cell leakage by utilizing the multi-cell lattice calculation 

approach, and the SPH factor improvement for the multi-cell approach in comparison to 

the single cell approach can be seen in Table 5.8. The Figure 5.1 depicts which cell in the 

5×5 core was used for comparison, and the regions within the cell that correspond to the 

SPH factor comparisons in Table 5.8.  
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Table 5.8: SPH factor comparison of the centre cell of the 5×5 core with diagonal 

orientation of fresh fuel. 

 1 2 3 

SPH Fact. (5×5) 0.912 0.945 0.934 

% diff. (3×3) 7.84 7.54 6.90 

% diff. (1×1) 10.77 9.63 8.06 

 4 5 6 

 
0.945 0.841 0.967 

 
7.54 7.25 6.59 

 
9.63 7.44 7.21 

 7 8 9 

 
0.934 0.967 0.947 

 
6.90 6.59 5.94 

 
8.06 7.21 6.66 

 

 

Figure 5.1: The cell and sub-regions corresponding to the SPH factor comparison in 

Table 5.8.  

 

However, even with the improvement of the SPH factors, there is no better diffusion-

transport reaction rate equivalence for sub-cell homogenization with SPH factors then 
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standard homogenization for a multi-cell lattice calculation step approach. In fact, the 

difference is almost identical as seen for the comparison for the single cell lattice 

calculation step. The SPH method as applied to LWRs in literature also demonstrated the 

improvement of the method with better boundary condition considerations (Hébert & 

Benoist, 1991 & Hébert, 1993). However, there was no comparison to the results of 

standard homogenization for the equivalent conditions. 

A possible explanation as to why there is no improvement from sub-cell homogenization 

with SPH factors is the spatial discretization of the lattice cell is not fine enough to have 

significant improvement over standard homogenization. The largest region of 

heterogeneity is within in the fuel channel, which was not sub-divided in this study. 

However, due to the concentric ring design of the PHWR fuel bundle, further sub-cell 

homogenization in DRAGON is not possible and a different transport code would be 

required for further testing. 

Another possible explanation is that the sub-cell homogenization improves the flux 

distribution within the cell but has little effect of the course cell-to-cell flux variation. The 

SPH factor normalization condition that was used in this study was the flux-volume 

condition, which ensures the spatially integrated macro-calculation (diffusion) flux for 

each group is equivalent to the transport model. However, the short coming of this 

approach is the flux continuity is not guaranteed between neighboring lattice cells in the 

diffusion calculation. The Selengut normalization condition was developed to ensure flux 

continuity between two lattice cells (Selengut, 1960). The Selengut methodology utilizes 

a normalization factor such that the surface fluxes are equal to one. There are two 

approaches for this method, the first uses the full cell averaged flux with the surface flux 
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of the transport calculation. The second approach uses the average flux of the water gap 

in the diffusion lattice cell and the surface flux of the transport calculation (Chambon & 

Hébert, 2015). Utilizing this different SPH normalization condition may improve the 

results by ensuring the continuity of the flux across cell borders and creating a better core 

flux shape.  

However, both explanations provided above are not suspected to have considerable 

improvement on the results presented in this study. The difficulty that arises from the 

homogenization process is preserving all the parameters of the heterogenous model. The 

homogenous model, however, does not offer enough degrees of freedom (DOF) to be 

able to preserve all desired parameters (Smith, 1986). There are 𝐺 × (𝑁 + 1) 

homogenous parameters, where 𝐺 is the number of energy groups and (𝑁 + 1) is the 

number of reaction types and the diffusion coefficient. However, there are 𝐺 × (𝑁 +

2 × 𝐷) parameters to be conserved, 𝐺 × 𝑁 reaction rates and 𝐺 × 2 × 𝐷 currents for each 

surface of the region being homogenized, where 𝐷 is the dimensions of the region being 

modelled. The SPH factors generated for sub-cell homogenization only add an additional 

𝐺 degrees of freedom and not enough to overcome the preservation problem (Berman, 

2013). The Selengut normalization is not predicted to overcome this limitation, since the 

methodology is based on the average boundary flux and has not discrepancy between the 

fluxes on each surface of the lattice cell. As result, it does not add any additional degrees 

of freedom then the standard normalization approach.  
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Chapter 6: Summary, Conclusion, and Future Investigations 

6.1. Summary and Conclusion 
 

Previous work (Mohapatra, 2016) performed in an attempt to improve 

homogenization methods for PHWRs using sub-cell homogenization with 

Superhomogenization (SPH) equivalence factors was found to be unsuccessful. The 

reason for the lack of improvement was hypothesised to be due to SPH factors being 

dependent on inter-cell neutron leakage (NIchita & Mohapatra, 2016). Due to the ease of 

implementation of the SPH method into already established production reactor-physics 

simulation codes, there was interest in expanding the previous investigative work to 

improve SPH-homogenization results. In this thesis, SPH factors are calculated 

accounting for inter-cell leakage with the aim of improving homogenization results.  

Results for several homogenization approximations are compared: single-cell standard 

homogenization, single-cell SPH, multi-cell standard homogenization and multi-cell 

SPH.  

The results for all calculations are shown is section 5.2 show that the most 

substantial improvement comes from the use of multi-cell lattice calculations, be they 

standard homogenization or SPH, with or without sub-region divisions.  There is no 

significant improvement, or often even worse results from the use of sub-cell 

homogenization with SPH factors in comparison to standard homogenization. The multi-

cell SPH approach is shown to improve the accuracy of calculated bundle powers 

compared to the single-cell SPH approach.  However, the accuracy is comparable to the 

multi-cell standard homogenization approach as shown in Table 6.1. 
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Table 6.1: Summary of all methods and cores evaluated presented as root mean square 

(RMS) percent errors. 

Number of 
Fresh 
Bundles SC-SH RMS(%)  

SC-SPH RMS 
(%) MC-SH RMS (%) 

MC-SPH RMS 
(%) 

3 3.95 4.62 2.38 2.64 
4a 1.62 2.41 0.70 0.83 
4b 6.17 6.91 2.03 2.29 
5a 2.57 3.39 1.26 1.11 
5b 5.88 6.81 3.36 3.47 
6 3.00 3.95 1.47 1.34 

CB 0.27 0.39 0.12 0.19 
 

The results obtained using the SPH method and those obtained using standard 

homogenization are almost identical for both single-cell and multi-cell lattice calculation 

approaches. The sub-cell homogenization with SPH factors may improve the accuracy of 

the power and neutron flux shapes within the cell, but not the bundle power and flux at 

the core level.  That is because, as explained in Chapter 5, SPH factors do not provide 

sufficient degrees of freedom to preserve both the sub-region reaction rates and the inter-

cell leakage rates; the latter being what determines the flux shape at the core level. 

6.2. Future Investigations 
 

Given that the utility of SPH factors is primarily in helping reproduce the power 

distribution within the cell, future work is warranted for this purpose.  To achieve this 

goal, sub-regions need to correspond to individual fuel pins. Due to the geometry 

constraints of the DRAGON-code version utilized in this research, further splitting of the 

central sub-region (the ones containing the fuel) was not possible. Further work could be 

done to improve the pin-power distribution by utilizing finer sub-cell division in a 
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different transport code. Additionally, because only standard flux-volume normalization 

of the SPH factors (which does not ensure continuity of the flux at the inter-lattice cell 

boundary) was used in this thesis, further investigations may use different SPH factor 

normalization conditions such as one or all the different Selengut normalization 

conditions. However, because, as discussed in Chapter 5, such normalizations rely on 

using average cell boundary flux or current, they are only expected to yield 

improvements for cases in which all neighbours of a given cell are identical, such as in 

the case of checkerboard configurations, whereby either the burnup or the void fraction 

alternate between neighboring cells in a checkerboard pattern.  
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