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Abstract

Heart disease is the leading cause of death in America, and arrhythmia is considered one

of the most important precursors of heart attacks. We cannot predict arrhythmia directly;

however, it has been shown that cardiac alternans is closely related to arrhythmia[35].

Therefore, predicting alternans could be the first step in preventing arrhythmia. Fenton

and Karma(1998)[10] came up with the Fenton-Karma model (the F-K model) with three

variables and 13 parameters that is a relatively simple and basic model that including

information on alternans. Our research is based on the F-K model at the cell level rather

than the tissue level.

We study the parameter space of the F-K model and discover robust correlations

between parameters and dynamical responses. The relations cannot be disclosed by

some statistical methods like principal component analysis(PCA) or K-means clustering

because we cannot see the dynamical behaviors of parameter sets.

The links instead emerge when the parameter space is partitioned according to bifur-

cation responses. We call this general method “metabifurcation analysis”. Concretely,

the bifurcation responses are shown by the bifurcation plots, which show the model re-

sponses, like action potential duration(APD) restitution curves, to a sequential change

in pacing frequency. According to the bifurcation patterns, we partition the parameter

space in five “parent families”. After investigating and characterizing them in depth, we

subtly classify the largest parent families into four subfamilies. We discuss their essential

differences in qualitative dynamical behaviors like whether they exhibit bistability and
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how solutions change after alternans appears.

The partitioning cannot be achieved by the investigation of only a small number

of parameter sets. To obtain a relatively large number of parameter sets to make the

results reliable, we implement a particle swarm optimization process with parallel pro-

gramming interfaces like OpenMP and Open MPI to search the parameter space and

obtain 1,525,833 physiologically admissible parameter sets; then, we randomly choose a

representative sample of 270,000 parameter sets to do the bifurcation analysis.

After doing the metabifurcation analysis on the the F-K model, some results are listed

as follows. First, more than 70% parameter sets from 270,000 meaningful parameter

sets do not or only have one period-doubling bifurcation. Second, τ−w plays the leading

role of identifying subfamilies in the parent family(PF2) with only one period-doubling

bifurcation; Moreover, in one subfamily(F3), there is a positive linear relation between

τ−w and the appearance of bistability.

Keywords: Alternans, Bifurcation analysis, the Fenton-Karma model, PCA
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Chapter 1

Introduction

Myocardial infarction (MI)that is also known as a heart attack, causes the fatal damage

to the heart muscle, and heart arrhythmia is the leading cause of MI.[33]

In a cardiac electrical system, an arrhythmia is a disturbance in the regular rhythm of

heartbeats. When the rhythm is too fast, it is named tachycardia. If it is too slow, we call

that bradycardia. Furthermore, it may be too early or irregular, we call them premature

contraction and fibrillation separately. All these situations are caused by the problem of

electrical signals that tell heart muscle the time to contract and relax. Because electrical

impulses coordinating heartbeats are not working regularly, the heart beats too fast, too

slowly or inconsistently. Some heart arrhythmias can be harmless; for example, everyone

has experienced an irregular heartbeat at some time. However, some arrhythmias are

detrimental to our health in some cases, which can be severe as to be potentially fatal;

especially, rhythm varies extensively from a regular heartbeat. [21]

1.1 Cardiac Alternans

Cardiac alternans is defined as a condition that a periodic beat-to-beat oscillating elec-

trical activity, and the strength of myofiber contraction varies between weak and strong

rates rather than a constant heart rate.[8] Generally, alternans occurs at a high frequency

1



Chapter 1. Introduction 2

Figure 1.1: T wave alternans. The first graph is an electrocardiogram where “A” indicates

a longer T wave, and “B” is a shorter T wave. The second graph is an electrical activity graph

of a ventricular cell where “A” corresponds to a longer action potential(APD) restitution curve,

and “B” correlates to a shorter APD restitution curve.[24]

of heartbeats, and it is typically related to increasing the risk of atrial and ventricular

arrhythmia and sudden cardiac death.

Cardiac alternans is classified into mechanical alternans and electrical alternans; how-

ever, mechanical alternans occurs with electrical alternans. Electrical alternans can be

observed in electrocardiogram as the alternation of T waves. Fig.1.1 displays the behavior

of T-wave alternans at the single cell level and the tissue level. A longer T waves shown

as “A”, at the tissue level, corresponds to a longer action potential duration(APD) resti-

tution curve and a shorter diastolic interval(DI) in the cell level; in contrast, a shorter T

waves shown as “B” in the tissue level is corresponding to a shorter APD and a longer

DI in the cell level. In both cases, cycle length(CL)=APD+DI where CL refers to the

sequence of electrical events that repeats with each heartbeat.[19]

1.2 Cardiac Models

There are two different levels of cardiac models: cell-level models encoding information

about excitability, and tissue-level models using electrical conduction to enable a quan-

titative description of action potential propagation.
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Concerning the cardiac tissue models, there are two families: bidomain models con-

sider cardiac tissue as a composed of intracellular and extracellular spaces; in mon-

odomain model, it is assumed that the intracellular and extracellular domains are the

same.[5]

At the tissue scale, cardiac tissue behaves like electrically coupled cells, and large-

scale tissue simulations may involve millions of cells. Therefore, understanding cardiac

behavior at the cell level and simplifying cell models are critical steps to improve compu-

tational tractability for the tissue models. Generally, biophysically detailed cell models

include more than 30 variables, hundreds of equations and parameters; however, most

simplified cell models only contains less than ten variables and a correspondingly reduced

number of equations and parameters.[5]

Simplified models used for cardiac cell simulations are generally divided into three

categories: Reduced models, Generic model and Phenomenological models.

Reduced models are direct reductions of the biophysically complex detailed cardiac

models through using the steady-state value for the different variables, such as the fast

gating variable that governs activation of current Na+. Due to assuming that the gating

variables instantaneously achieve the steady-state value that is related to a given voltage,

the reduced models not only eliminate variables but also loose the significant properties.

Therefore, the models are extremely sensitive to the time step, and a larger time step

will result in unacceptably large errors. The main advantage of reduced models is to

improve computational tractability and retain a similar structure as the detailed model;

nevertheless, the approach may reduce or eliminate essential properties of real cells and

tissue, which can lead to undesirable results.[5]

Generic model, also called generic excitable media models[5], describe a prototype

of an excitable system like neuron or heart system. By modifying the parameters in

the models, they can generate limited properties like the detailed models. The most

representative generic model is the FitzHugh-Nagumo (the FHN) model[12] that is a 2-
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variable reduction of the Hodgkin-Huxley model[18]. The FHN model and other generic

models lack other critical realistic properties. For example they do not have relastic

APD restitution curves. Therefore, it is limited to use and hard to show the qualitative

behavior like the biophysically detailed models.[5]

Phenomenological models aim to reproduce main dynamical properties of cells and

tissues without including extra biophysical details. For example, rather than containing

ten or more ion channels, pumps and exchangers, phenomenological models focus on the

summary of these properties such as fast inward, slow inward and slow outward currents

that only depend on several variables and equations[10].

There are several pros of phenomenological models: First, The output of phenomeno-

logical models can fit not only the experimental data but also the biophysically detailed

models. Moreover, these models only include the small number of variables, equations

and parameters compared with the detailed models.[2]

1.2.1 Alternans in phenomenological models

Cardiac cellular electrophysiology models have been designed to represent cells from dif-

ferent regions (atria, ventricles, Purkinje) to different species (rabbits, zebrafish, and

human). The number of phenomenological models has increased significantly in the past

decade. However, a model for a specific combination of species and regions may still

not be available. In some cases, only a small subset of models reproduce the particular

properties like alternans for a given study[5]. As we mentioned before, T-wave alter-

nans at fast pacing rates is a common phenomenon across many species and different

regions of heart cells, but not all models have shown the existence of alternans. For

example, alternans has been found in the canine ventricular model introduced by Fox

et al. (2002)[13], but that has not been found in the earlier canine ventricular model

created by Winslow model (1999)[36]. Among rabbit ventricular models, alternans exists

in the model introduced by Mahajan et al. (2008)[22], but that has not been reported in
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the earlier model proposed by Shannon et al. (2004)[28].

1.3 Metabifurcation analysis

Metabifurcation analysis was first introduced as a method to study a mean field model

of the cortex (Liley’s MFM).[14]. That model includes a bunch of nonlinear differential

equations, several variables and a number of parameters, which is similar to the F-K

model. Furthermore, the normal dynamical behavior of Liley’s MFM is also periodic,

which is similar to the F-K model. Based on these similarities, I have implemented

the metabifurcation analysis in the F-K model, our goal is to disclose links between

parameters and dynamical features like alternans and bistability.

In general, the metabifurcation analysis is implemented as follows:

• Search the parameter space of a model and find the meaningful combinations of

parameters.

• Draw the bifurcation diagrams concerning one or two control parameters for all of

the meaningful parameter sets.

• Partition the nonlinear structure of the selected parameter space in families accord-

ing to different bifurcation responses.

• By comparing the distributions of parameters among the mentioned families, we can

unveil the links between the parameters and the dynamical patterns; then, we can tell

which parameters have the primary effect on the partitioning and cause the qualitative

difference in dynamical behaviors.

1.4 Outline

The paper is divided into five main sections:

First, we analyze one of the human cardiac ventricular models, the F-K model (1998).

We will show how Ca[2+], Na[+] and Ka[+] currents affect electrical events at a relatively
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slow pacing frequency. As the pacing frequency increases, the physiological mechanisms

causing alternans will be discussed.

Second, we introduce the theoretical and numerical tools employed in some details

such as the time-step integration, particle swarm optimization(PSO), principal compo-

nent analysis(PCA), etc. Furthermore, we will introduce some details about the bifurca-

tion analysis of the F-K model.

Thirdly, there are three main steps in the implementation. The first is to search

the parameter space with using a robust statistical method named the PSO procedure;

as a result, we have obtained a large representative sample of parameter sets that can

generate physiologically plausible behavior. The second step is to randomly choose a

representative sample containing 270 thousand parameter sets. For each of these param-

eter sets, we draw the bifurcation plots showing the APD response to changes in the

pacing frequency. The third step is to classify parameter sets into five “parent families”,

according to the number of period-doubling bifurcation points, and Fig. 1.2 indicates

the three most common parent families. To understand the insightful behavior in the

largest parent family(PF2) that only has one period-doubling bifurcation, we trace the

other solution after the period-doubling bifurcation occurs. Consequently, we sort PF2

into four “distinct families” or “subfamilies”. Fig. 1.3 shows the three most typical dy-

namical behaviors, and the last families includes the parameter sets with rare behaviors

and convergence problems.

In the results, there are five major parts. First, after implementing the PSO process,

we have obtained more than 1.5 million parameter sets, we talk about the distributions

of parameters and relations among the parameters. Second, we show some illustrative

bifurcation diagrams in parent families and subfamilies of PF2. Furthermore, we focus

on the similarity and difference of the qualitative behaviors in four subfamilies belonging

to PF2. Fourth, the parameter distributions in subfamilies are compared based Jensen-

Shannon divergence. Finally, the relations between special points like period-doubling
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Figure 1.2: Family clasifications. Family classification is based on the number of period-

doubling bifurcations(PD). Here, we show examples in three families: the first graph is PF1

witout period-doubling bifurcations; the second graph(PF2) has only one period-doubling bi-

furcation; the third one(PF3) has two period-doubling bifurcations

Figure 1.3: Subfamily clasifications in PF2. These three graphs show the classification in

PF2 based on the behavior after switching branches at the period-doubling bifurcation. LPinc is

a fold bifurcation where the solution changes from stable to unstable; LPdes is a fold bifurcation

where the solution changes from unstable to stable
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bifurcations and parameters are discussed in each subfamily.

The last part is the discussion: First, to compare our approach and analysis with the

former work that people have done, we talk about the contributions and the innovations

of my research. Next, the results have been compared with some published results; some

examples of the results have been discussed. Finally, the future work and its difficulties

will be explained.



Chapter 2

The Fenton-Karma Model

2.1 Introduction of the F-K Model

Fenton and Karma (1998) have come up with the simplest phenomenological model of a

cardiac membrane at both the ventricular cell level and the ventricular tissue level. The

model has only three variables: u, v, and w. u ≡ (V − Vc)/(Vfi − Vc) is a dimensionless

membrane potential(Voltage) where Vc is a resting membrane potential, and Vfi is the

potential of triggering a fast inward current; v is a fast gating variable; w is a slow gating

variable.[10] Thirteen parameters are in Table. 2.1 and typical values for the parameters

are used to draw the following graphs in Chapter 2.2 for analysis.

The three differential equations in the F-K model are shown in Eq.(2.1)∼ Eq.(2.3):

∂tu = 5 · (D5 u)− Jfi(u; v)− Jsi(u;w)− Jso(u) + Jstim(T ) (2.1)

∂tv =
1

τ−v (u)
	 (uc − u)(1− v)− 1

τ+
v

	 (u− uc)v (2.2)

∂tw =
1

τ−w
	 (uc − u)(1− w)− 1

τ+
w

	 (u− uc)w (2.3)

First, voltage changing rate(∂tu) depends on 5 · (D5 u), Jfi, Jsi, Jso and Jstim where

Jfi represents a fast inward current (Na+) depending on u and v, Jsi shows a slow inward

9
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Table 2.1: Physiological ranges and typical values for thirteen parameters of the

F-K model.[3]

Parameter Definition Typical Values Minimum Maximum Units

τ−v1

Reactivating time constant of

the fast gating variable (u < uv)
19.6 5 100 ms

τ−v2

Reactivating time constant of

the fast gating variable (u ≥ uv)
1240 1 1500 ms

τ+
v

Deactivating time constant of

the fast gating variable
3.33 1 15 ms

τ−w
Reactivating time constant of

the slow gating variable
41.0 10 150 ms

τ+
w

Deactivating time constant of

the slow gating variable
870.0 100 1000 ms

τd

Characteristic time of

the fast inward current
0.25 0.05 0.3 ms

τo

Characteristic time of

the slow outward current(reactivation)
12.5 5 25 ms

τr

Characteristic time of

the slow outward current(deactivation)
33.33 15 250 ms

τsi

Characteristic time of

the slow inward current
29.0 15 55 ms

ucrit

Threshold of

the fast inward current
0.13 0.1 0.25

usi
c

Threshold of

the slow inward current
0.85 0.4 0.9

uv splitting voltage 0.04 0.02 0.25

k
Steepness of

the slow inward current
10 8 20

∗usi
c > uc > uv
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current (Ca2+) affected by u and w, Jso indicates an outward current only relying on u,

5· (D5u) represents spatial diffusion. Here, we analyze the F-K model without spatial

extension; therefore, 5· (D5 u) ≡ 0. Furthermore, we need to give an external periodic

stimulus current Jstim [34] that represents the periodic excitation of the F-K model. The

fast inward current, the slow inward current and the outward current are in Eq.(2.4)∼

Eq.(2.6)

Jfi(u; v) = − 1

τd

v 	 (u− uc)(1− u)(u− uc) (2.4)

Jsi(u;w) = − 1

2τsi

w(1 + tanh[k(u− usi
c )]) (2.5)

Jso(u) =
1

τo

u	 (uc − u) +
1

τr

	 (u− uc) (2.6)

where τd is the characteristic time for the fast inward current, uc is the threshold at

which Na+ channels are open, usi
c is the threshold where Ca2+ channels are open, τsi is a

characteristic time for the slow inward current. τo and τr are the characteristic time of

the slow outward current, 	(x1−x2) is the Heaviside step function, also named stepwise

function, defined as:

	(x1 − x2) =

 1 x1 ≥ x2

0 x1 < x2

(2.7)

Secondly, in Eq.(2.2), τ+
v is the time constant that governs the deactivation of the

fast inward current, and τ−v (u) is also the time constant that controls the reactivation

process of the same current separately over two voltage ranges (uv < u < uc and u < uc)

by defining the function in Eq.(2.8):

t−v (u) = 	(u− uv)τ−v1 +	(uv − u)τ−v2 (2.8)

Third, in Eq.(2.3), τ+
w is the time constant that governs the deactivation of the slow

outward current, and τ−w is the time constant controlling the reactivation of that current.
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Figure 2.1: Membrane potential analysis for 0 < t ≤ t1. The first graph shows how

membrane potential changes with respect to time; the four small graphs show the four currents

with respect to time. The pink line shows how the membrane potential changes corresponding

to the four currents for 0 < t ≤ t1. The values of parameters are from Table 2.1. To observe

the changes clearly, the scales of the four currents are set differently

2.2 Analysis of the F-K Model

We will separately describe six phases of one periodic response. We trace time (t) from

0ms to 700ms that represents one period where 4t is 0.05ms. In the following graphs

from Fig. 2.1 to Fig. 2.6, t1 and t5 are the time at which the fast inward currents open

and close, namely u > ucrit and u < ucrit; t2 is the time where slow inward currents open,

u > usi
c ; t3 is the time where u > 1 that is defined in Eq.(2.4); t4 is the time where u

passes the maximum value.

(1): 0 < t ≤ t1

∂tu = −Jso + Jstim ≈ Jstim (2.9)
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Figure 2.2: Membrane potential analysis for t1 < t ≤ t2. The blue line shows how

the membrane potential changes corresponding to the four currents Jfi, Jsi, Jso and Jstim for

t1 < t ≤ t2.

According to equation Eq.(2.1)∼ Eq.(2.3) and Fig. 2.1, when 0 < t ≤ t1, Jfi = 0,

Jsi = 0 and Jso = −u/τo < 0.01 is much smaller than the value of Jstim. Hence, the

change of voltage is mainly dependent on Jstim shown in Eq. (2.9). Stimulus activates

the voltage(u) to achieve the threshold of excitation (ucrit) to depolarize the membrane.

Biochemically speaking, when u < ucrit, the membrane potential is resting.

(2): t1 < t ≤ t2

∂tu = −Jfi − Jsi − Jso + Jstim ≈ −Jfi + Jstim (2.10)

In Fig. 2.2, when t1 < t ≤ t2, the voltage(u) is greater than the threshold of excitation

(ucrit) but smaller than usi
c , the passage of Na+ is open, and sodium ions enter the

membrane. Simultaneously, the slow inward current is gradually activated; therefore, the

passage of Ca2+ is slowly opening, and a few calcium ions pass through the membrane.

During this period, ||Jsi|| < 0.02 and ||Jso|| = 0.03 are much smaller than ||Jfi|| and

||Jstim||; therefore, the effect of the slow inward current and the slow outward current
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Figure 2.3: Membrane potential analysis for t2 < t ≤ t3. The green line shows how

the membrane potential changes corresponding to the four currents Jfi, Jsi, Jso and Jstim for

t2 < t ≤ t3.

is negligible, and Jfi and Jstim have the key effect on the membrane potential shown in

Eq.(2.10).

(3): t2 < t ≤ t3

∂tu = −Jfi − Jsi − Jso + Jstim (2.11)

According to Fig. 2.3, when t2 < t ≤ t3, the voltage(u) is greater than the threshold

(usi
c ) of excitation of Jsi but smaller than 1, the impact of the excitation current and

the fast inward current is decreasing; in contrast, the effect of the slow inward current is

increasing; furthermore, the slow outward current maintain the same impact. Biologically

speaking, t2 < t ≤ t3 is the transition time where the passages of Na+ is gradually closing,

and more and more channels of Ca2+ are open. Therefore, the slow outward and the slow

inward currents slowly control the behavior of the membrane potential.
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Figure 2.4: Membrane potential analysis for t3 < t ≤ t4. The brown line shows how

the membrane potential changes corresponding to the four currents Jfi, Jsi, Jso and Jstim for

t3 < t ≤ t4.

(4) t3 < t ≤ t4

∂tu = −Jsi − Jso (2.12)

When t3 < t ≤ t4, 1 < u < umax and the channels of sodium ions are completely

closed, and u only depends on the slow inward current and the slow outward current

shown in Eq.(2.12). In Fig. 2.4, ||Jsi|| is decreasing; in contrast, ||Jso|| = 0.03 is constant.

When ||Jsi|| > ||Jso||, the voltage increases from 1 to umax = 1.18; when ||Jsi|| = ||Jso||,

∂tu = 0, the voltage reaches the maximum point, and the membrane finishes the depo-

larization.

(5) t4 < t ≤ t5

∂tu = −Jsi − Jso (2.13)

When t4 < t ≤ t5, u is decreasing from umax to the threshold ucrit where ||Jsi|| < ||Jso||.

At the beginning, the channel of Ca2+ closes slowly; then, the closing speed increases so
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Figure 2.5: Membrane potential analysis for t4 < t ≤ t5. The black line shows how

the membrane potential changes corresponding to the four currents Jfi, Jsi, Jso and Jstim for

t4 < t ≤ t5.

the impact of the slow inward current is reducing during this phase. However, the effect

of the slow outward current maintains the same. According to Eq.(2.13) and Fig. 2.5, we

can see that the change of voltage(u) still depends on Jsi and Jso but gradually depends

on Jso only.

(6)t5 < t

∂tu = −Jso (2.14)

When u is close to ucrit, the channel of Ca2+ has completely closed, and the only open

channel is K+. In 2.14 and Fig. 2.6, u only depends on Jso. As t5 < t, u is smaller

than ucrit again, the speed of K+ leaving the membrane significantly decreases, and u

gradually restores to the resting membrane potential.

During those aforementioned six stages, (1) ∼ (4) are the processes of depolarization;

in comparison, (5) ∼ (6) implement the repolarization. We have analyzed how the

membrane potential u changes corresponding to the two gating variables v and w in one
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Figure 2.6: Membrane potential analysis for t5 < t. The purple line shows how the

membrane potential changes corresponding to the four currents Jfi, Jsi, Jso and Jstim for t5 < t.

period, and the graph is in Fig. 2.7.

The fast gating variable and the slow gating variable control the fast inward current

and the slow inward current separately. Therefore, if two gating variables do not have

enough time to rest; as a consequence, the next response will be abnormal. We will talk

about this phenomenon in the following section.

2.3 Behaviors of the F-K model with the increasing

pacing frequency

As the pacing frequency increases, there is not enough time for both gating variables to

recover completely. Consequently, alternans will appear, which corresponds to a period-

doubling bifurcation point in bifurcation analysis.

In general, a bifurcation occurs when a small smooth change made to the control

parameter value of a system causes a sudden ’qualitative’ or topological behavior change
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Figure 2.7: The curves of three variables in one period. The first graph is the voltage(u),

the second one is the fast gating variable(v), and the last one is the slow gating variable(w)

during one period (700 ms)

in its dynamical behavior[23]. In the F-K model, when the forcing period T as a control

parameter decreases, the behavior of the model will change qualitatively to alternating

behavior when a period-doubling bifurcation appears.

In Chapter 1.1, we have mentioned cycle length (CL=APD+DI), and we can also call

the CL as forcing period T . In one CL, the longer APD needs more time to recover. If

the DI is longer than the recovering time, the APD of the next CL will not be affected;

in contrast, if the DI is not long enough to cover the recovering time, the APD of the

next CL will be affected and becomes shorter. Fig. 2.8 shows both cases.

As T decreases, the APD does not change because the DI is longer than the recovering

time; therefore, the behavior of the electric system of a ventricular cell will not change

qualitatively.

If the pacing time T still decreases, the DI is not long enough time to cover the

recovering time. The APD of the next cycle length(CL) will be affected and become
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Figure 2.8: Behaviors of the longer cycle length(CL) and the shorter CL. A illustrates

the behavior that DI is long enough to cover the recovering time; B shows the behavior that

the DI is not long enough to cover the rescovering time
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shorter. As we mentioned the shorter APD requests less time to recover; namely, the

second APD needs less time to restore. Therefore, the DI of the second CL is long enough

to give the ventricular cell enough time to repolarize. Consequently, the the third cycle

length will be like the first cycle length, and the fourth CL will be like the second one.

This physiological behavior is called alternans; we can observe the onset of the alternans

after the first period-doubling bifurcation appears in general.

As the T continuously decreases, the DI in the second cycle length(CL) is not long

enough to cover the recovering time to generate the normal APD in the third CL. There-

fore, the third ADP decreases and the time needed for the repolarization also reduces,

so we will see the behavior of the third CL gradually approach that of the second CL.

In a nutshell, all CLs will behave as the same again. It means the alternans disappears

when we decrease T at some specific value. Correspondingly, we will see the second

period-doubling bifurcation point in the F-K model.

We have explained the dynamical behavior as we decrease the forcing period T by

illustrating one example. If we choose another parameter set, the behavior will possibly

be different. For example, we may not see the absence of alternans. In some parameter

sets, the behavior that alternans appears and disappears may repeat as T decreases as

long as the forcing time is long enough to ensure T > APD. Otherwise, there will be

two stimuli corresponding to one CL because the second stimulus occurs during the same

APD restitution curve, and it diminishes suddenly and cannot generate the second APD

restitution curve. We call this forcing period as blocking time. Different parameter sets

will make the F-K model behavior differently as T decreases. We will see more types of

behaviors in Chapter 5.



Chapter 3

Numerical methods

3.1 Time-step Integration

In the last chapter, we have introduced the F-K model, we can write the nonlinear

differential equations of the F-K model as Eq.(3.1)

Ẋ = F (X) (3.1)

where F (X) are the differential equations from Eq.(2.1)∼ Eq.(2.3), X = (u, v, w).

When we do the bifurcation analysis as the control parameter T varies, the fixed point

at each T is obtained by solving the linearized ODEs with Newton’s method. To solve

the linearized ODEs, we need to compute the matrix of derivative of the map φ(t). To

find that matrix, we need to solve the linearized differential equations of the F-K model

in Eq.(3.2)

Ȧ = DXF (φ(t))A (3.2)

where A = DXφ(t), and φ(t) is the solution. DXF (φ(t)) is a 3× 3 Jacobian matrix.

21
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3.1.1 Time-stepping methods

In numerical analysis, Runge-Kutta methods are a family of implicit and explicit iterative

methods used in temporal discretization for approximate solutions of ordinary differential

equations [6]. The forward Euler method is the most basic explicit method for numeri-

cal integration of ordinary differential equations and the simplest Runge-Kutta method

shown in Eq.(3.3)

X i+1 = X i + F (X i) · h (3.3)

where X = (u, v, w), F (X) is the vector of (u̇, v̇, ẇ), and h = dt in the F-K model.

The trapezoidal rule is an implicit second-order method, which can be considered as

both a Runge-Kutta method and a linear multistep method. We discretize Eq.(3.1) with

the trapezoidal rule, we will get Eq.(3.4).

X i+1 = X i +
1

2
(F (X i) + F (X i+1)) · h (3.4)

In the bifurcation analysis of the F-K model, we also use the trapezoidal rule to

discretize Eq.(3.2) and get Eq.(3.5).

Ai+1 = Ai +
1

2
(DXiF (X i)Ai +DXi+1F (X i+1)Ai+1) · h (3.5)

There are three reasons that we choose the trapezoidal rule rather than other Runge-

Kutta methods:

• Computational efficiency: as we know, the higher the order of Runge-Kutta methods

we use, the faster the error is reduced as the time step decreases. However, we will search

millions of parameter sets of the F-K model, and we will integrate thousands of time

steps for each parameter set. To improve computational efficiency and make the particle

swarm optimization(PSO) executable efficiently, we choose the second order accuracy

Runge-Kutta method.
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• Accuracy: the accuracy of the Euler method improves linearly when the step size

decreases linearly, whereas the trapezoidal method enhances the accuracy quadratically.

Because we will do bifurcation analysis on the F-K model, we need a relatively accurate

prediction in each time step.

• Stability: We have shown that the F-K model includes several stepwise functions.

To make the system differentiable, we convert them to the hyperbolic tangent functions

with a large stiffness parameter kstep. Due to this, we need a stable time-stepping method.

The trapezoidal rule is a relatively stable multi-time-step method [32].

3.1.2 Newton’s method

Newton’s method, also named the Newton-Raphson method, is a method for finding

successively better approximations to the roots of a function.

In the F-K model, we use Newton’s method to solve the trapezoidal rule to find a

more accurate solution. In each time step, we would like to solve Eq.(3.6). Because the

trapezoidal method is an implicit method, we use the forward Euler method to obtain

the adequately good initial guess of X0
n+1.

G(X i
n+1, Xn, tn, tn+1) = X i

n+1 −
1

2
(F (Xn, tn) + F (X i

n+1, tn+1)) · dt−Xn = 0 (3.6)

where Xn = (un, vn, wn), dt = tn+1 − tn and F (X, t) = (u̇, v̇, ẇ).

To solve the Eq.(3.6), we need compute Z in the linear equations AZ = B shown as

Eq.(3.7).

5Xi
n+1
G(X i

n+1, Xn, tn, tn+1)(X i+1
n+1 −X i

n+1) = −G(X i
n+1, Xn, tn, tn+1) (3.7)

whereA = 5Xi
n+1
G(X i

n+1, Xn, tn, tn+1), Z = (X i+1
n+1−X i

n+1), andB = −G(X i
n+1, Xn, tn, tn+1).
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X i+1
n+1 = X i

n+1 +4X i
n+1 (3.8)

where 4X i
n+1 = X i+1

n+1 −X i
n+1.

After solving Eq.(3.7) in one iteration, we can get a better approximation of Xn+1 in

Eq.(3.8) if Newton’s method converges. Then, we can move to the next iteration until

the error is smaller than the error we set.

[I3×3 −
1

2
dtDXi+1F (X i+1)]Ai+1 = [I3×3 +

1

2
dtDXiF (X i)]Ai (3.9)

After getting Xn+1 by solving Eq.(3.4) with Newton’s iteration, Eq.(3.9) shows how

to solve Eq.(3.5) to get Ai+1.

3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a swarm intelligence technique for optimization

initially developed by Kennedy and Eberhart(1995) [20]. PSO searches a solution space

for optimizing a problem by iteratively updating candidate solutions according to the

given function that measures the behavior of each candidate solution. The position of

a candidate solution is affected not only by its local best position but are also guided

toward the global best location in the searching space. Eventually, all candidate solutions

may or may not move toward the global best solution depending on the perturbation.

The PSO system is consisting of two equations: First is the velocity updated equation

given by Eq.(3.10), and the position is updated with Eq.(3.11).

V t+1
i = V t

i +R1dt(LPi − P t
i ) +R2dt(GPt − P t

i ) (3.10)

P t+1
i = P t

i + V t+1
i (3.11)



Chapter 3. Numerical methods 25

where the index of a particle is represented by i. V t
i = (vti(1), vti(2), ...vti(m)) is the

velocity of particle i at t where t is an integer and represents each PSO step; m is the

number of dimensions. P t
i = (pti(1), pti(2), ...pti(m)) is the location of particle i at time

t, GPt = (gbt(1), gbt(2), ...gbt(m)) is the global best position of all particles at time t,

and LPt
i = (lpt

i(1), lpt
i(2), ...lpt

i(m)) is the local best position of each particle until time t.

R1 = (rt1(1), rt1(2), ...rt1(m)) and R2 = (rt2(1), rt2(2), ...rt2(m)) are the perturbation vectors

and each element of the vectors is selected from a (0,1) uniform distribution. In the

F-K model, a particle represents a parameter set where each dimension of the particle

indicates each parameter.

Shi and Eberhart(1998)[30] came up with the concept of an inertia weight ω by

introducing a constant parameter in the PSO procedure, which significantly affects the

convergence and exploration ability. Therefore Eq.(3.10) turns to Eq.(3.12)

V t+1
i = ωV t

i +R1dt(LP
t
i − P t

i ) +R2dt(GP
t − P t

i ) (3.12)

They stated that a large inertia weight facilitates a global search while a small inertia

weight facilitates a local search[30]. When ω equals 0, the previous velocity will not

influence the current velocity, and we can rewrite Eq.(3.11) and (3.12) to Eq.(3.13).

P t+1
i = P t

i +R1dt(LP
t
i − P t

i ) +R2dt(GP
t − P t

i ) (3.13)

In Eq.(3.13), ω = 0 that means there is not inertia anymore, so the current position of

a particle only depends on the previous position, the local best location, the global best

position and the step size; therefore, the local searching ability significantly improves. For

different purposes, parameter sets are scored by different criteria; here, the score, given

in Eq.(4.18) in Chapter 4, is based on the APD that each parameter set can generate.

Eq.(3.13) is not a simple and convex function with global optimum, and the global best
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position is the best position among the local best positions in each PSO step, and there

can be many global best positions that have the same score.

3.3 Principal Component Analysis

Karl Pearson(1901)[25]invented principal component analysis (PCA) which is a statistical

procedure with using an orthogonal transformation to convert a set of observed data of

correlated variables into a set of linearly uncorrelated variables.

It is defined that the first principal component has the largest possible variance and

the following components have the smaller variance compared with the preceding com-

ponents. Since each component is orthogonal to the others, the resulting variables form

an uncorrelated orthogonal basis set.

PCA can be implemented by eigenvalue decomposition of a data covariance matrix

after normalizing the data matrix for each variable. The results of PCA procedure will

be expressed as component scores or factor scores and the variable values corresponding

to the scores[29].

The procedure of PCA with the covariance method is explained as follows:

Let P be a matrix with m dimensions as colomns and n observations as rows. In

the F-K model, m is the number of parameters, and n is the number of parameter sets.

First, standardize the components of matrix, each standardized component is:

p̂ij =
(pij − pj)
σ(pj)

(3.14)

where i is the index of the observation, j is the index of the dimension, σ(pj) is the

standard deviation and pj =
1

n

∑n
i=1 p

i
j.

Second, we compute the covariance matrix C that is a m × m matrix where each

element represents the covariance between two features. The covariance between two

features is computed as follows:
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cjh =
n∑

i=1

(p̂ij − pj)(p̂ih − ph)

n
(3.15)

and the covariance matrix C is:

C = (cjh)m×m =



c11 c12 ... c1m

c21 c22 ... c2m

. . . .

. . . .

. . . .

cm1 cm2 ... cmm


Next, we implement the eigen-decomposition on the covariance matrix to get eigen-

values and eigenvectors. The magnitude of the eigenvalues measures the amount of

information that different eigenvectors can present. According to the percentage of each

absolute eigenvalue occupying among all the absolute eigenvalues, we can tell the portion

of information that each eigenvector can explain.

3.4 Bifurcation Analysis of the F-K model

In the F-K model or other phenomenological models, the qualitative behaviors changing

in a ventricular cell are related to bifurcation points in bifurcation analysis. The following

steps show the way that we design our dynamical system and do the bifurcation analysis.

3.4.1 Poincaré Map

Our system is designed as a Poincaré map that can be interpreted as a discrete dynamical

system. In the F-K model, we can consider the time-step integration in one period as a

map φ(X, t) where X is a vector of variables (u, v, w) and t is the evolution time. The

map φ(X, t) satisfies Eq.(3.16):
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∂

∂t
φ(X, t) = Ẋ =


∂tu

∂tv

∂tw

 =


−Jfi(u; v)− Jsi(u;w)− Jso(u) + Jstim(T )

1

τ−v (u)
	 (uc − u)(1− v)− 1

τ+
v

	 (u− uc)v

1

τ−w
	 (uc − u)(1− w)− 1

τ+
w

	 (u− uc)w

 (3.16)

In my research, we numerically solve Eq.(3.16) in the F-K model by the mentioned

time-step integration in one period T and get Eq.(3.17):

φ(X,T ) : Xn → Xn+1 (3.17)

G(X,T ) = φ(X,T )−X = 0 (3.18)

To attain the fixed point X, we implement Newton’s method to solve Eq.(3.18) to

obtain a better approximation of the fixed point in each iteration.

3.4.2 Phase condition

In the bifurcation analysis, we would like to analyze how the control parameter T affects

the map, so we not only need to obtain a better approximation of the fixed X but also

need to find a better approximation of T that is consider as a variable as follows. In

the map of the F-K model, Eq.(3.19) has three ordinary differential equations but four

variables.

G(X,T ) = φ(X,T )−X = 0 (3.19)

Therefore, we need to introduce a phase condition to a unique solution. There are

different ways to define the last equation to find the solution Z = (X,T ). In AUTO, if

we give Eq.(3.19)R4 → R3, AUTO will create the last equation Eq.(3.20): R4 → R1.



Chapter 3. Numerical methods 29

Figure 3.1: Solution curve of the F-K model. The x-axis is the periodic stimulus time

T , the y-axis is the L2 norm of the vector Z. Zi is the solution we know;Z0
i+1 is a proposed

solution; Zi+1 is a new solution; ds is the pseudo arclength.

In Fig. 3.1, ψ(X,T ) is chosen as a vector (Zi, Z
0
i+1), where Z0

i+1 is a proposed point,

is perpendicular to (Z0
i+1, Zi+1) where Zi+1 is a new point. In AUTO, ψ(X,T ) is defined

such that the distance between Z0
i+1 and Zi+1 is minimal.

ψ(X,T ) = 0 (3.20)

Now, we have four equations and four variables so we can use Newton’s method to

solve Eq.(3.19) and Eq.(3.20) to get a better approximation of Z. A sketch of a solution

curve of Z is in Fig. 3.1

In Fig. 3.1, ds is defined as

ds =‖ Z0
i+1 − Zi ‖ (3.21)

In AUTO, the pseudo-arclength is adjustable, if Newton’s iteration converges very

fast, then ds will increase until it reaches the maximum ds; in contrast, if Newton’s

iteration cannot converge, ds will decreases until reaching the minimum ds.
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Figure 3.2: Fold bifurcations in the F-K model. If we trace the solution from the upper

branch to the lower branch, the first graph shows a solution that changes from unstable to

stable when multiplier µ passes one, and the second graph indicates a solution that changes

from stable to unstable when the multiplier changes from µ < 1 to µ > 1.

3.4.3 Fold bifurcation

In bifurcation theory, a local bifurcation where two equilibrium points of a dynamical sys-

tem collide with each other is named saddle-node bifurcation point. In discrete dynamical

systems, the same bifurcation is often instead named a fold bifurcation.

In the mentioned discrete dynamical system, we have defined our map in Eq.(3.22):

φ(X,T ) : Xn → Xn+1 (3.22)

To solve the fixed point X, we need to solve Eq.(3.23).

G(X,T ) = φ(X,T )−X = 0 (3.23)

where X is the fixed point. When one eigenvalue of the Jacobian matrix Dφ(X,T ) passes

1, we can tell the equilibrium point has a fold bifurcation. Fig. 3.2 illustrates the fold

bifurcation.
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Figure 3.3: Period-doubling bifurcations in the F-K model. From left side to right side,

the first µ = −1 is a period-doubling bifurcation that indicates a stable alternating solution

appears, and the second µ = −1 is another period-doubling bifurcation in which a stable

alternating solution disappears.

3.4.4 Period-doubling bifurcation

In discrete dynamical systems, period-doubling bifurcation is a bifurcation where a slight

change in a parameter value will result in the original periodic system switching to a new

behavior with twice the period of the original system.

When one eigenvalue of the Jacobian matrix Dφ(X,T ) passes −1, we can tell the

equilibrium point has a period-doubling bifurcation. Fig. 3.3 shows the stable alternating

solution appearing and disappearing concerning the value of multiplier µ.

3.5 OpenMP and Open MPI

OpenMP (Open Multi-Processing) is an application programming interface (API) that

supports multiple platforms executes tasks by using shared memory in C, C++, and

Fortran[31]. OpenMP is implemented by using multi-threads that share the same mem-

ory space to execute a task where a master thread (a series of instructions executed

sequentially) forks a number of slave threads, and the master thread distributes parallel
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Figure 3.4: Slave node including a master thread and multiple slave threads im-

plements a parallel task with OpenMP. Task 1 and Task 2 are two different parallel

tasks.

sub-tasks to the slave threads; then, the slave threads can run the parts of the whole task

concurrently. The process is shown in Fig.3.4.

Compared with OpenMP, Open MPI is an interface among different CPUs(CPUs)

without sharing memory space. One CPU that is considered as the master node sending

distributes tasks to other CPUs that are slave CPUs. When the slave processors finish

their tasks, they will send the results back to the master node, and the master node will

execute the subsequent instructions.

In general, the application programming that is built with the hybrid model of both

OpenMP and OpenMPI where OpenMP is used for parallelism within a (multi-threads)

node while Open MPI is for parallelism among all CPUs.

The reason that we choose OpenMP and Open MPI is to speed up the PSO searching

process. Here is an example that we set 200 particles and update 5 PSO steps. Fig. 3.6

and Fig.3.7 show CPU time VS different numbers of CPUs and threads.
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Figure 3.5: Master node distributes multitasks to slave CPUs and obtains the

results from slave CPUs with Open MPI. Multitasks can be totally different.

Figure 3.6: CPU Time VS the number of CPUs One CPU is set as master, the number

of slaves increases from 1 to 7, and each slave CPU only has one thread

Figure 3.7: CPU Time VS the number of threads.One CPU is set as master, one CPU

is set as slave, and the number of threads in the slave CPU increases from 1 to 8
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3.6 Language and Software

Fortran developed by IBM is an imperative programming language that is especially

used for scientific computing and numerical computation. The reason of using Fortran

or C++ rather than Matlab or other high level languages is that Fortran or C++ is a

low level language that is faster than the high level languages in terms of computation;

furthermore, we set multiple tasks in PSO implementation to search parameter space

in order to speed up the searching ability; therefore we have to use OpenMP and Open

MPI that other advanced languages cannot execute. The other reason of choosing Fortran

rather than other low level languages for my research is that AUTO files are written in

Fortran.

AUTO is a software that is designed for continuation and bifurcation problems in

ordinary differential equations. AUTO-07p is the latest version[7]. When we do the

bifurcation analysis, the time-step integration will be a subroutine that must be Fortran

file to be compiled with other AUTO-07p files.

Python scripts are used to drive AUTO-07p, handle the data set, classify the different

families.

Shell scripts relate the array jobs to python files, extract information from the output

files, compile AUTO files, libraries and time series integration subroutine.

A batch script is to submit jobs and set rules for them in Sharcnet.

The structures of the mentioned language and software are in Fig. 3.8.
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Figure 3.8: Language and software used in the research. The first graph represents

the particle swarm optimization process to obtain the raw data, the seond graph represents

the bifurcation analysis and the classification process where the interaction between shell script

and python script is used to deal with the bifurcation results and classify them into families.
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Implementation

There are three main steps in the implementation part: First, we apply the particle swarm

optimization (PSO) method to search the thirteen-dimensional parameter space of the F-

K model to gain the parameter sets that can generate the physiologically meaningful one-

dimensional ventricular graphs at T = 700ms. The second step is to do the bifurcation

analysis on parameter sets selected randomly from those meaningful parameter sets.

Thirdly, we classify the parameter sets chosen to do the bifurcation analysis into different

parent families and subfamilies based on the different qualitative behaviors as T decreases

from 700ms to 150ms.

4.1 Hyperbolic Tangent Function

Before we execute those three steps, it is important to make the F-K model differentiable.

Here, we introduce sigmoid functions which are mathematical functions having a char-

acteristic “S”−shaped curve. Often, a sigmoid function refers to the particular case of

the logistic function when the transition area is tiny. A wide variety of sigmoid functions

have been used as the activation function of artificial neurons or stimuli, including the

logistic and hyperbolic tangent functions[17]. The stepwise function as mentioned in the

F-K model can be written as a revised hyperbolic tangent function if kstep is large in

36
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Eq.(4.1):

	(x1 − x2) =

 1 x1 ≥ x2

0 x1 < x2

≈ 1

2
+

1

2
tanh(kstep(x1 − x2)) (4.1)

where kstep is stiffness. when kstep is small, the transition from 0 to 1 is relatively slow;

in contrast, when kstep is large, the transition between 0 and 1 is fast. We use a revised

hyperbolic tangent function with kstep = 500. If kstep is large, the stiffness problem will

appear to make Newton’s method hard converge. Therefore, we would like to choose

a relatively small value for kstep as long as the smallest kstep still can make dt smaller

than any time constant in Table. 2.1. In chapter 4.3.1, we will introduce a relation

dt ≤ τr/k
step where the maximum value of τr is 250ms; therefore the maximum dt < 0.5

that is still smaller than all the time constants in Table. 2.1.

4.2 Stimulus Function

Like mentioned, there is an external periodic stimulus current as a pacemaker in the

F-K model Jstim. It is necessary to create a function to simulate Jstim. Essentially, the

stimulus is the diffusive current experienced by a cell in a one dimensional cable as the

wave propagate down the cable. What has been recorded is the voltage experienced

by that cell during a time period. Fig. 4.1 shows the external stimulus data obtained

from the numerical data based on the F-K model where the time period is 14ms and the

regression line.

According to the behavior of the stimulus-current data, I have created a function that

can generate the similar shape with the specific values for parameters:

R(t, tc, al, ar, bl, br) =
−(t− tc)

(eal·t+bl + ear·t−br)
(4.2)

where t is a variable, tc, al, ar, bl and br are parameters, we give the initial value to these
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Figure 4.1: Regression of a set of stimulus data. The red stars indicate the external

stimulus current recorded every 0.05ms from a numerical data described in the text, and the

stimulus lasts 14ms. The blue line is the regression line

parameters and implement Newton’s method to get a better approximation of those five

parameters.

The function we want to minimize is

G(tc, al, ar, bl, br) =
t=14∑
t=0

R(t, tc, al, ar, bl, br)− y(t) (4.3)

where y(t) is the experimental data.

After solving 5Gpars = 0, we get approximate value of those five parameters, and the

stimulus function becomes Eq.(4.4) that is used to draw the regression (blue) line in Fig.

4.1.

R(t) =
−(t− 4.94)

(e−3.09·t+14.08 + e1.70·t−8.03)
(4.4)

Eq.(4.4) is a function chosen to represent the external periodic stimulus Jstim in the

F-K model.
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4.3 Time-step integration

The time-step integration is applied in the mentioned first two steps; therefore, we will

show the time-step integration. The procedures are in Algorithm.1, and details are

explained in the following subsections. Since the first several periods are not stable, we

only care about the behavior after ttrans, which will be used to compute the score for each

parameter set in the PSO process.

Algorithm 1: Time-step integration referred to Chapter 4.3

input : Initial values X0 = (u0, v0, w0), parameter set,

output: Solution Xtmax = (utmax , vtmax , wtmax) after n periods

1 dt=min(dt, τr/k
step);

2 for j ← 0 to int(tmax/dt) do

3 Implement the trapezoidal rule to solve the nonlinear equations with

Newton’s iteration;

4 Xn+1 ← Xconv
n+1

5 if not converge then

6 exit;

7 end

8 for t > ttrans do

9 Compute the score for each parameter set in the PSO process;

10 end

11 end

4.3.1 dt = min(dt, τr/k
step)

We set dt = 0.05, however, Newton’s iteration cannot converge in some parameter sets.

In Newton’s iteration, we have checked the Jacobian matrix:
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DXi
n+1
G(Xn, X

i
n+1) =


∂ui

n+1
G(1) ∂vin+1

G(1) ∂wi
n+1
G(1)

∂ui
n+1
G(2) ∂vin+1

G(2) ∂wi
n+1
G(2)

∂ui
n+1
G(3) ∂vin+1

G(3) ∂wi
n+1
G(3)

 (4.5)

Where the condition number of 5G is too large that results u cannot converge properly,

which happens around variable u passes the threshold uc. As we know,

∂tu = −Jfi(u; v)− Jsi(u;w)− Jso(u) + Jstim(T ) (4.6)

where

Jfi(u; v) = − 1

τd

v 	 (u− uc)(1− u)(u− uc) (4.7)

Jsi(u;w) = − 1

2τsi

w(1 + tanh[k(u− usi
c )]) (4.8)

Jso(u) =
1

τo

u	 (uc − u) +
1

τr

	 (u− uc) (4.9)

when u passes uc, Jfi(u; v)=0 because u−uc ≈ 0, Jsi(u;w) = 0 because u is much smaller

than usi
c . The only problem is Jso(u). In chapter 4.1, we rewrite the stepwise function as

Eq.(4.10):

	(u− uc) =

 1 u ≥ uc

0 u < uc

=
1

2
+

1

2
tanh(kstep(u− uc)) (4.10)

where we set kstep = 500. We assume when u = uc −
1

2
kstep, 	(u − uc) = 0; when

u = uc +
1

2
kstep, 	(u − uc) = 1; therefore 4u = 1/kstep is the value of the hyperbolic

tangent function changes from 0 to 1. If there are several time steps in this transition

area that can promise Newton’s method convergent, 4t should be:

4t =
4u
u̇

(4.11)
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where 4u = 1/kstep, we take the derivative of u̇ with respect to u, we get:

d

du
u̇ =

1

(2τr(1 + (u− uc)2))
+

u

(2τo(1 + (u− uc)2))
+

(1 + arctan(u− uc))

2τo
(4.12)

where
d

du
u̇ is bigger than 0 when uc−

1

2
kstep ≤ u ≤ uc +

1

2
kstep, so when u = uc +

1

2
kstep,

we can get the maximum value u̇max = 1/τr; therefore, if 4t is smaller than τr/k
step,

there will be some points in this transition area

the smallest time step time τr/k
step can ensure that there are some time steps in the

transition area.

4.3.2 Solve nonlinear equations

In each time step, we execute the forward Euler method to compute a fairly good estimate

of Xn+1 that can be used as the initial guess of Eq.(4.13):

Xn+1 = Xn +
1

2
dt(F (tn, Xn) + F (tn+1, Xn+1)) (4.13)

where X = (u, v, w), F (t,X) is the differential equation of u,v and w with respect to t.

In Algorithm.2, we use Newton’s method to solve Eq.(4.13) to get a better approxi-

mation of Xn+1 in each iteration.

When the error is smaller than errtoller = 10−14, and the residual is smaller than

restoler = 10−14 before the number of iteration reaches itermax = 10, Newton’s method

converges and moves to the next time step; otherwise, exit the time-step integration loop.

4.4 PSO implementation

We have show the F-K model with three variables and thirteen parameters; different

parameter sets will have different behaviors in term of (u, v, w).
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Algorithm 2: Implement the trapzoidal rule to solve nonlinear ODEs in the

F-K model with Newton’s method, referred to Chapter 4.3.2

input : Initial guess X0
n+1

output: Xconv
n+1 , converge=true .OR. false

1 for i← 1 to itermax do

2 Solving nonlinear equation

G(X i
n+1, Xn) = X i

n+1 −Xn −
1

2
dt(F (tn, Xn) + F (tn+1, X

i
n+1)) = 0;

3 residual=||G(X i
n+1, Xn)||;

4 error=||X i+1
n+1 −X i

n+1||;

5 if error ≤ errtoler and residue ≤ restoler then

6 converge=true;

7 else

8 converge=false;

9 end

10 end

11 Xconv
n+1 ←− X i

n+1;
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We implement the PSO process to search parameter space where the domain of each

parameter is shown in Table. 2.1. In each PSO step, the score of each parameter set

is computed by three criteria and the details are explained in Chapter 4.4.3: 1. the

number and the value of peaks of voltage (u) in one period; 2. the stability of the

solution; 3. the behavior of the periodical APD restitution curve. After each PSO step,

the parameter sets and the corresponding stable solutions are updated. The details of

the PSO implementation are shown in the following subsections.

4.4.1 Master-Slave model

To make the PSO process be implemented efficiently and computationally, we apply

OpenMP and Open MPI in the PSO procedure to speed up the searching process.

Since OpenMP and Open MPI are the programming interfaces, we create the Master-

Slave model as shown in Algorithm 3 to implement this process and search a parameter

space as large as possible during the limited time. Master processor assigns different

parameter sets to slaves with Open MPI, and slave processors evaluate scores for the

parameter sets with OpenMP.

Algorithm 3: Master-Slave model in PSO implmentation referred to Chapter

4.4.1
Result: The parameter sets and the stable solutions with score>0

1 if Initialization of Open MPI returns 0 then

2 if process ID = 0 then

3 Call master processor;

4 else

5 Call slave processors;

6 end

7 end
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In Algorithm 3. There are two output files: The first file includes all meaningful

parameter sets and each line shows one parameter set. The second file includes the

solution points, and each row show the last solution point of (u, v, w) after ten periods.

Initialization of Open MPI is to check whether the number of processors is larger than

two because there must be two processors at least where one is master processor and the

other one is slave processor.

Master processor is the stem to initialize data, send the data to slave processors,

receive the results from slaves and update the data with the PSO method. On the other

hand, slave processors receive the data, compute the time-step integration of the F-K

model and the score of the parameter sets; moreover, they send back the results to the

master processor to update the data. We will introduce the implementation that the

master processor and the slave processors work as follows.

4.4.2 Master processor

Algorithm 4 shows the responsibilities of the master processor by order, and the subrou-

tines are explained concretely.

Subroutine: Initialization

According to Table. 2.1, there are thirteen parameters with their domains. We randomly

choose nn = 104 particles that are the parameter sets according to a uniform distribution

between the lower bound and the upper bound in each dimension. In each parameter

set, uv < uc < usi
c .

Subroutine: Round-robin continuous distribution

The Round-robin method is to allocate nn numbers from 1 to nn to mm groups, the size

of each group is either the quotient of nn/mm or the quotient of nn/mm plus 1. Input
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Algorithm 4: Master processor referred to Chapter. 4.4.2

output: Two files: one includes the parameter sets and the other one has the

corresponding stable solutions with scores>0

1 while t < tmax do

2 Call subroutine: Initialization;

3 Call subroutine: Round-robin continuous distribution;

4 MPI broadcast(Sizei, Initial position (u0, v0, w0));

5 for i← 1 to np (outer) do

6 Master sends data to slave processors;

7 Master receives results from slave processors;

8 Call subroutine: Global best;

9 Call subroutine: PSO updating;

10 for j ← 1 to nn do

11 Compute the distance between the previously recorded parameter

set and the current parameter set with the same index;

12 if dist > distmin then

13 Write the updated score, parameter set and the corresponding

stable solution (u, v, w) into disk;

14 end

15 Compute the mean distance between the center of the particles and

all the particles.;

16 if Meandis < Meanmin then

17 exit outer ;

18 end

19 end

20 end

21 end

22 Call subroutine: Stop slaves
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is the total index number n and the number of groups mm, and output is the first index

and the last index in each group. The size of the group is:

Sizei = Indexi
last − Indexi

first + 1 (4.14)

We use the Round-robin method to allocate nn = 104 parameter sets to mm = 31

slave processors; therefore, each slave processor i will only compute its parameter sets

from Indexi
first to Indexi

last in the whole PSO process, and the number of parameter sets

is either 332 or 323.

Master broadcasting, sending and receiving

In Master broadcasting, the master processor sends out the same initial value X0 =

(0, 1, 1) and tell mm = 31 slave processors to take their own parameter sets.

In each PSO step, the master processor sends the parameter sets needed to be com-

puted between Indexi
first and Indexi

last to the slave processor (i) and the local best pa-

rameter sets also need to be updated where a updated local best location is the one with

a higher score between the previous local best position and the current position in each

parameter set. The data received by the master processor is the updated local best pa-

rameter sets, the parameter sets with the computed scores and the corresponding stable

solutions after ten periods.

Subroutine: Global best

The global best parameter is to set the parameter set with the highest score among all

the local best parameter sets in each PSO step.

Subroutine: PSO updating

This subroutine is based on the PSO procedure shown in Eq.(4.15) where we set inertia

weight ω = 0. The details of the PSO process are in Chapter. 3.2.
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P t+1
ij = P t

ij +R1ds(LP
t
ij − P t

ij) +R2ds(GP
t
i − P t

ij) (4.15)

where i is the index of thirteen parameters, j is the index of the parameter set, LP is

the local best parameter set, GP is the global best parameter set among all the local

best parameter sets, ds = 0.1 is the step size, and R1 and R2 are the random numbers

between 0 and 1 according uniform distribution.

There are two new rules in the PSO updating procedure: First, each updated param-

eter value in one parameter set must be in its domain; otherwise, that parameter will not

be updated, but the other parameters can be updated in that parameter set. Second,

the updated values for uv, uc, u
si
c must obey uv < uc < usi

c ; otherwise, they have to keep

the previous values, but the rest of parameters in the problematic parameter set, can be

updated.

Distance and mean distance

After each PSO step, all parameter sets are updated and some parameter sets have the

score bigger than 0. However, there is a problem when some updated particles are very

close to their previous position, and both have the score bigger than 0. As a result, the

previous and current parameter sets have the similar information, and we do not want

to record this redundant information; therefore, we only keep the previous parameter set

and the corresponding solution in disk until the updated parameter set is not very close

to the previous one; then, we write the new parameter set into disc.

The distance between the current position and the previous position of the same

particle can estimate the difference with respect to the information they include. The

normalized distance is given by Eq. (4.16).

Distance =

√√√√i=13∑
i=1

(
P i

curr − P i
prev

Boundup
i − Boundlow

i )2 (4.16)
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where i is the index of thirteen parameters, Boundup and Boundlow are the domains of

parameters. When the distance between the previous position and the current location

is larger than the minimum distance (distmin = 0.01), we add the current parameter set

as new information.

Furthermore, there is another problem: All particles are updated according to the

local best parameter sets, the global best parameter set and the random force. One of

the local best parameter sets is the global best parameter set. If there is one parameter

set with an unexpectedly high score, this parameter set will never be updated according

to Eq.(4.15). Therefore, that particle will always be the global best parameter set in the

whole PSO process, and all other particles will swarm to the position of that particle.

However, our goal is not to optimize the function to find the best solution. Instead, we

want particles to search locally rather than convert to the global best position. In order

to avoid this problem and accomplish our goal, we compute the mean distance between

the center of particles and all particles shown in Eq.(4.17):

Meandis =
1

n

i=n∑
i=1

√√√√j=13∑
j=1

(
P j
i − 1/n

∑k=n
k=1 P

j
k

Boundup
j − Boundlow

j )2 (4.17)

where 1/n
∑k=n

k=1 P
j
k is the center of all the particles.

If the mean distance is smaller than the minimum mean distance set as Meanmin =

0.1 ∗
√

13, we consider that all particles are too close to each other that will result in

the searching procedure stalling. Therefore, we will stop the PSO procedure, go back to

reinitialize n particles with a different random seed and restart a new PSO procedure

until the time reaches the maximum (15 days). In our implementation, when t reaches

tmax, there are 33 times that the PSO process has been restarted.
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4.4.3 Slave processor

After introducing the master processor as a stem of the PSO procedure, let us look at

how slave processors work in Algorithm 5.

Master processor broadcasts the same initial value X0 = (0, 1, 1) to all slave pro-

cessors; nevertheless, the initial value is not the stable solution of each parameter set;

hence, we compute 10 cycle lengths to acquire a stable solution point for each parameter

set. Moreover, after integrating 10 cycle lengths for each parameter set, we can gain the

relatively consistent behavior that can be used to record APDs and peaks to evaluate

the score.

Algorithm 5: Slave processor (Sizei is explained in Algorithm 4) referred to

Chapter 4.4.3

input : Parameter sets from the first index to the last index and the local

best parameter sets

output: Parameter sets with their computed scores and the updated local

best parameter sets with their scores

1 while Receiving tag 6= Exit tag do

2 Slave processor receive data from master processor;

3 Begin OpemMP parallel structure;

4 for j ← 1 to Sizei do

5 Call subroutine: Peak, APDs and Stable solutions;

6 Call subroutine: The score of the parameter set;

7 end

8 End OpenMP parallel structure;

9 Call subroutine: Local best;

10 Salve processor sends back the results to master processor;

11 end
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Slave processors receiving and sending

Exit tag forwarded by master processor is the signal to stop slave processors when the

time is finished. The slave processors receive the parameter sets needed to be computed

and the local best parameter sets ready to be updated. The results sent by the slave

processors include the parameter sets with the scores, the updated local best parameter

sets with the scores, and solutions.

Begin and end OpenMP

Since time-step integration is independent and time-consuming, we use “!$omp parallel

private()” and “!$omp do” commands to implement a parallel structure in each node with

16 threads, which will speed up the computing process in each slave processor around 16

times faster than the processor with only one thread.

Subroutine: Peak, APDs and Stable solutions

In Algorithm 6, we integrate 10 cycle lengths and consider the end of transient time

is 8th cycle length. The implementation of the time-step integration is explained at

the beginning of this Chapter. During the ten periods, we compute and record the

information that we need for estimating the score for each parameter set.

Subroutine: Peak

In the F-K model, there is only one peak of u in each period between depolarization and

repolarization. We record Xt as the peak value (Xmax) in one period if Xt−dt < Xt and

Xt > Xt+dt, and the number of Xmax appearing as the number of peaks in that period.

Subroutine: The score of the parameter set

In Algorithm 7, we compute the scores for parameter sets based on the number of peaks,

the value of peaks, APDs and the stability of the periodic behavior.
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Algorithm 6: Peak, APDs and Stable solutions referred to Subroutine: Peak,

APDs and Stable solutions
input : Initial vales X0 = (0, 1, 1), parameter set,

output: Stable solution, the number of peaks, peak value, APDs in the last

two periods

1 for t← 0 to 10 periods do

2 ttrans = 8 cycle lengths;

3 if t← 8th period to 9th period then

4 Call subroutine : Peak;

5 if u ≥ uc then

6 APD9 = +dt;

7 end

8 end

9 if t← 9th period to 10th period then

10 Call subroutine : Peak;

11 if u ≥ uc then

12 APD10 = +dt;

13 end

14 end

15 end
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Algorithm 7: Compute Score referred to Subroutine: The score of the pa-

rameter set
input : APDs, peaks and parameter set

output: Score

1 Score=0;

2 if APDl ≤ APD9,APD10 ≤ APDu then

3 if npeak9, npeak10 = 1 then

4 if Peakl ≤ Peak9,Peak10 ≤ Peaku then

5 if ‖ Peak9 − Peak10 ‖≤ 0.1(Peaku − Peakl) then

6 Compute score by Eq.(4.18);

7 end

8 end

9 end

10 end



Chapter 4. Implementation 53

In Algorithm 7, APD9 and APD10 are the action potential durations in the last two

periods; APDl = 175ms and APDu = 425ms are the bounds of APDs. Peakl = 1.05 and

Peaku = 1.35 are the bounds of peak values[2][9].

First, APDs must be in the domain between APDl and APDu; otherwise, the score

is 0. Second, there must be only one peak in each period; if not, Score = 0. Moreover,

the peak value must be in the domain from Peakl to Peaku; otherwise, the score still

equals 0. Furthermore, ‖ Peak9 − Peak10 ‖≤ 0.1(Peaku − Peakl) is to check the stability

of the periodical solution; if the distance between the last two peaks is bigger than 10%

of the distance between Peakl and Peaku , Score = 0. Finally, if the parameter set can

satisfy all the criteria mentioned above, we can compute the quantitative score through

Eq. (4.18)

Score = max(1− 2 ‖ APD10 − (APDu + APDl)/2 ‖ /(APDu − APDl), 0) (4.18)

where the score is computed based on the distance between APD10 and the mid-value

between APDl and APDu,and the maximum score is 1 and the minimum score is 0.

Subroutine: Local best

This subroutine is to compare two scores between the local best position and the current

position of one particle. The position with a higher score will be chosen as the updated

local best position for that particle.

4.5 Bifurcation analysis in AUTO

After applying the PSO process in searching the parameter space of the F-K model,

we have tested more than 200 million parameter sets and obtained around 1.5 million

parameter sets having scores bigger than zero; simultaneously, we have recorded the

corresponding solutions for each parameter set at T = 700ms.
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In the PSO implementation, we set T = 700ms that is a relatively slow pacing speed of

the human heart, and we get a repetitive stable behavior for those 1.5 million parameter

sets or so. Then, we increase the pacing frequency from T = 700ms to T = 150ms

per beat and observe where the behavior changes qualitatively. The method we use to

monitor the behavior changing is bifurcation analysis.

We have done the bifurcation analysis on the F-K model 270,000 parameter sets

selected randomly from those 1.5 million sets where the control parameter is T varying

from 700ms to 150ms that can be considered as a physiologically rapid heartbeat.

4.5.1 AUTO: bifurcation code

We ask AUTO to do the bifurcation analysis. AUTO has two functionalities. The first

one is aimed at solving the continuous solutions of the systems of ordinary differential

equations (ODEs); the second one is to perform limited bifurcation analysis of algebraic

problems in a discrete system. [7]

We design the system as a Poincaré map that can be interpreted as a discrete dy-

namical system; therefore, we choose the code in the second family in AUTO to do the

bifurcation analysis.

4.5.2 AUTO: Bifurcation analysis

According to Chapter 3.1 and Chapter 4.3, we know how to solve the linearized ODEs

and nonlinear ODEs of the F-K model. In Algorithm 8, the input is initial value X, and

we implement the time-step integration after one period to obtain output φ(X,T ).

We would like to solve Eq.(4.19) to find the numerical approximation of the fixed

point Z = (X,T ) when the control parameter T varies.
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Algorithm 8: Poincaré map (φ explained in Chapter 3.4.1) referred to Chap-

ter 4.5.2
input : X0, T ,

output: φ(X,T ), DXφ(X,T ), DTφ(X,T ), APD

1 APD=0;

2 while t ≤ T do

3 Solve the nonlinear ODEs of the F-K to get Xt in each time step. Details

are in Chapter 3.1 (Eq.(3.4)) and Chapter 4.3.2 (Eq.(4.13));

4 Solve the linearized ODEs of the F-K to obtain DXφ(X, t) in each time

step. Details are in Chapter 3.1 (Eq.(3.5) and Eq.(3.9)) ;

5 if u ≥ uc then

6 APD = +dt;

7 end

8 φ(X, t)=Xt;

9 t = t+ dt;

10 end
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G(X,T ) = φp(X,T )−X = 0

ψ(X,T ) = 0 (4.19)

where ψ(X,T ) is the phase condition given by AUTO. Details are shown in Chapter

3.4.2.

AUTO uses Newton’s method to solve Eq.(4.19) to gain a successively better approx-

imation of the fixed point Z. The details are shown in Eq.(4.20)

 DXG DTG

DXψ DTψ


 δX

δT

 = −

 G

ψ

 (4.20)

where δX and δT compose a error vector; when ‖ δX ‖<EPSU, ‖ δT ‖<EPSL, Newton’s

method converges. In AUTO, EPSL and EPSU are the convergence criterion for equation

parameters and equation variables in Newton’s method, and the values are in Table. 4.1.

In Eq.(4.20), DTG = DTφ(X,T ) = (u̇, v̇, ẇ) at t = T and DXG are the output in

Algorithm 8. DXψ and DTψ are computed by AUTO.

We can get DXφ(X,T ) after one period T , and DXG = DXφ(X,T )−I. Then we can

solve Eq.(4.20) with Newton’s iteration to obtain the solution curve as control parameter

T varies.

When one of the eigenvalues of DXG passes 1, AUTO will record that value for T

as a fold bifurcation; similarly, as one of the eigenvalues of DXG passes -1, the point is

recorded as a period doubling bifurcation.

4.5.3 AUTO: setting

There are several important setting parameters we need to introduce in AUTO: 1.

unames=(1 : ”u”, 2 : ”v”, 3 : ”w”) are the variables. 2. paranames=(1:“T”, 2:“APD”)

where T is the control parameter and APD is the output parameter. 3. ISW=1 is the
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Table 4.1: Values for parameters in Bifurcation Analysis in AUTO (See Chapter 4.5.3 for the

meaning of the parameters)

Parameter Range(ms) Parameters Range(dimensionless)

EPSL 10−6 EPSU 10−6

EPSS 10−4 ITMX 10

DS -0.5 DSMIN −10−13

DSMAX -1

normal value; however, ISW=-1 is the label to switch the branch to trace another solution

from the period-doubling bifurcation point. 4. EPSS is the relative arclength conver-

gence criterion for the detection of special solutions. 5. ITMX is the maximum number

of iterations of Newton’s method. DS is the pseudo-arclength where it can adjust from

DSMIN to DSMAX. The values of parameters as mentioned above are shown in Table.

4.1.

4.5.4 AUTO: output

There are three output files in AUTO: “Runindex.b”,“Runindex.d”,“Runindex.s”. “Runindex.b”

includes solutions and APD values corresponding to different T that can be used to draw

a bifurcation diagram APDs vs T . “Runindex.d” includes all detailed information, and

parameter IID controls the volume of output including Jacobian matrix, eigenvalues,

residual vectors of variables and parameters and so on. “Runindex.s” is a solution file that

includes solutions, labels and T values at special points, which can be used to switch

branches.
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4.5.5 Problem: Two Special Points

When AUTO switches branches, one eigenvalue of Jacobian matrix passes -1 recorded as

a period-doubling bifurcation point; however, there are a few cases that two eigenvalues

passing -1 at the same T value, the condition number of the Jacobian matrix becomes

really big because Newton’s iteration becomes divergent, and the output of X and T are

not a number anymore. AUTO can not compere a number with a NaN; therefore, AUTO

is stuck in one parameter set, and the computation will access to the infinite. If this

situation happens, we want AUTO to skip this parameter set and read the next parameter

set to do the bifurcation. Therefore, we set the maximum tolerance of error errmax = 1 in

Newton’s method in the AUTO file, when the error is bigger than the maximum tolerant

error. AUTO will exit Newton’s loop and output “not convergence result”. Then, AUTO

will skip the problematic parameter set and continue the bifurcation analysis on the next

parameter set.

4.6 Classification

According to the bifurcation graphs, when T decreases from 700ms to 150ms, there are

three kinds of stables solutions: One to one solution that means each stimulus initiates an

identical response. Two to two alternating solution that represents every other stimulus

can excite the same reaction. The two to one blocking solution means that two stimuli

only can generate one response; In other words, the second stimulus happens when the

ventricular cell that has not recovered yet so it cannot excite another new response.

Algorithm 9 shows the procedure of classifying those 270 thousand parameter sets into

parent families and categorize parameter sets with only one period-doubling bifurcation

into subfamilies based on the bifurcation patterns shown in Chapter 5.2.
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Algorithm 9: Classification of parent families and subfamilies referred to

Chapter 4.6.1

input : Parameter sets, corresponding stable solutions, job array ID

output: Five parent families

1 for IDArr ← 0 to IDmax do

2 for i← IndexIDArr
first to IndexIDArr

last do

3 Read parameter set;

4 Read stable solution;

5 AUTO: Bifurcation analysis on the F-K model;

6 Classify Pi into the right parent family;

7 end

8 for j ← 0 to nPF2 do

9 Read(Parameter set);

10 Read(Stable solution);

11 AUTO: Bifurcation analysis with switching branches on the F-K model;

12 Classify(Pj) into the right subfamily;

13 end

14 end
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4.6.1 Classification based on AUTO results

Because bifurcation analysis on parameter sets is independent, we submit the identical

jobs that take different chunks of parameter sets obtained from the PSO process to do

the bifurcation analysis. In Algorithm 9, IDArr is the job ID that we submit to a shared

computer where these jobs are independent to each other and have their own memory.

According to the memory limitation, we ran 300 independent jobs for 10 days, and each

job includes 900 parameter sets. Each array will read different parts of data including

the parameter sets and the corresponding stable solutions at T = 700ms to do the

bifurcation analysis as T varies and classify the parameter sets into five parent families.

The categorization for parent families is based on the period-doubling bifurcations, which

are shown in Chapter 1.4. If there is not a period-doubling bifurcation, the parameter

set belongs to PF1. The parameter set, with one period-doubling bifurcation, belongs to

PF2. If there are two period-doubling bifurcations, the parameter set is in PF3; If there

are three period-doubling bifurcations, the parameter set belongs to PF4. The parameter

sets with convergence problems or more than three period-doubling bifurcations are in

PF5.

In each job array, after classifying 900 parameter sets into five parent families, it will

continue to read the parameter sets that belongs to PF2 to redo the bifurcation from

T = 700ms to 150ms and switch branches at the period-doubling bifurcation to trace

another solution.

The details of the sub-classification in PF2 are shown in Chapter 1.4. F1 does not have

any bifurcation after switching branches. F2 only has the decreasing fold bifurcation after

switching branches; F3 has the decreasing fold bifurcation, the increasing fold bifurcation;

other parameter sets belong to F4.

After doing the bifurcation analysis, all solutions at the special point are recorded

in “runindex.s” where different special points have different labels. Based on the specific

labels such different types of bifurcations, beginning and terminal points, we use bash
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commands: “grep” and “wc” to extract the rows with different labels. After counting

the number of the rows, we can classify the parameter sets into right parent families and

subfamilies.



Chapter 5

Results

5.1 Distributions and Relations

As the result of the PSO process, a collection of 1,525,833 physiologically meaningful

parameter sets from more than 200 million is available and considered in this study as

a representative sample of physiologically realistic activities of ventricular cells in the

F-K model. The rest parameter can not generate the physiological behavior since the

nonlinear relations among parameters are not satisfied. In the PSO implementation, we

randomly chose values for each parameter from a uniform distribution in their intervals

at the beginning, and the intervals for thirteen parameters were from Table. 2.1. After

implementing the PSO process, we would like to know the distributions of those thirteen

parameters.

From Fig. 5.1, the distributions of parameters are not uniform anymore. Some

parameters have really similar skewed distributions, like τ−v1, τ−v2 and τo; in contrast, some

distributions of parameter values are opposite skewed such as τsi and τ+
w .

It is essential to find whether there are some linear relations among the thirteen

parameters. We use the Pearson correlation coefficient to detect the linear relations.

The Pearson correlation coefficient that is a measure of the strength and direction of the

62
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Figure 5.1: Distributions of thirteen parameters The normalized frequencies of thirteen

parameter values for the analyzed 1,525,833 sets considered as the physiologically meaningful

parameter sets. The number of bins is 500 in each graph
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linear relationship between two variables that is defined as the covariance of two variables

divided by the product of their standard deviations[1]:

ρij =

∑h=ntolt

h=1 (P h
i − Pi)(P

h
j − Pj)√∑h=ntolt

h=1 (P h
i − Pi)2

√∑h=ntolt

h=1 (P h
j − Pj)2

(5.1)

where ntolt is the number of observations and equals 1,525,833. i and j are the index of

thirteen parameters.

According to Table. 5.1, there is a strong linear relation between τr and τsi. τr

controls the slow outward currents Iso that is responsible for the reploarization of the

membrane; in contrast, τsi is a parameter to control the slow inward currents Isi that

balances Iso during the plateau phase of the action potential durations [11]. Therefore,

there is a positive linear relation between τr and τsi. There is also a moderate negative

linear relation between τr and τ+
w as a similar reason that τ+

w controls the slowing gating

variable (w), and the slow gating variable (w) controls Isi like τsi.

To see whether it is possible to reduce the number of effective parameters, we have im-

plemented the principal component analysis (PCA) over the number of 1,525,833 param-

eter sets. The result is illustrated in Fig. 5.2, the percentage of total variance explained

by thirteen principal components is plotted, individually and cumulatively. Primarily,

if the parameter space present strongly linear correlations among the variables, it will

be possible to identify a limited number of components capturing the majority of the

variance, indicating that the number of significant parameters were much less than total

number of dimensions.

According to Fig. 5.2, the thirteen components cumulatively account for the total

variance with low and very similar singular contributions. Therefore, we can not find a

linear combination of parameters that express all properties of the parameter space.
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τ−v1 τ−v2 τ+
v τ−w τ+

w τd τo τr τsi ucrit usi
c uv k

τ−v1 1

τ−v2 1

τ+
v 1

τ−w 1

τ+
w 1 −0.55

τd 1

τo 1

τr 1 0.80

τsi 1

ucrit 1

usi
c 1

uv 1

k 1

strong correlation moderate correlation week correlation no correlation

Table 5.1: Pearson correlation coefficients (ρ) of parameters. The number in the grid

shows the correlation between two parameters where the correlation coefficient is from 0 to 1.

The pink grid shows the strong linear relation between two parameters, where 0.8 < ρ ≤ 1, the

blue grid shows the moderate linear relation between two parameters, where 0.5 < ρ ≤ 0.8, the

green shows the week correlation where < 0.3 < ρ ≤ 0.3 and the blank grind shows very weak

or no correlations, where 0 ≤ ρ ≤ 0.3.
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Figure 5.2: Principal Component Analysis of the model parameter space. The

fraction of total variance of parameters is explained by the thirteen principal components for

1,525,833 parameter sets. Blue bars indicate individual contributions; orange ones represent

their cumulative sum. The evident absence of strong linear correlations within parameter sets

means parameter space cannot be reduced easily to a lower number of effective degrees of

freedom.
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5.2 Classification and Bifurcation diagram

If we want to extract the valuable statistical information, a different, non-standard

method of analysis is needed for which we choose bifurcation analysis. We have done

the bifurcation analysis on 270 thousand sets selected randomly from the global batch,

1,525,833 parameter sets. By drawing the bifurcation plots, we are guided by the exis-

tence of literature pointing to the electric dynamical responses of ventricular cells to the

pacing frequency. For instance, the forcing period (T ) representing the pacing frequency

can be considered as an important parameter, and the periodic APD restitution curves

can be the response.

After doing the bifurcation analysis, we can draw and analyze the bifurcation plots

visually and numerically. The parameter sets are first classified into five “Parent Families”

based on the number of period-doubling bifurcations:

• PF1 has all the parameter sets without any period-doubling bifurcation point, and

one example from PF1 is shown in Fig. 5.3. When the pacing frequency is increasing,

the solution is always a stable one to one solution until the pacing frequency reaches the

minimum value 150ms.

• The parameter sets with only one period-doubling bifurcation are partitioned into

PF2, and one example is in Fig. 5.4. Before the period doubling bifurcation occurs, the

solution is stable one to one solution; if the pacing frequency continuously increases after

the period-doubling bifurcation, the stable one to one solution becomes unstable. The

details will be discussed in the sub-classification.

• The parameter sets with two period-doubling bifurcation points are in PF3; Fig. 5.5

is an example in PF3. Before the first period-doubling bifurcation occurs, the solution

is stable one to one solution. Then the stable one to one solution becomes unstable;

the stable solution bifurcate to a two to two alternating solution or two to one blocking

solution after label 2 in Fig. 5.5. When the second period-doubling occurs, the solution

bifurcates to stable one to one solution again.
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Figure 5.3: Continuation in T of one parameter set in PF1. The interval 150ms ≤

T ≤ 700ms is considered as physiologically meaningful pacing time. The black line represents

stable equilibria. Label 1 denotes the beginning of the continuation; label 2 is the end of the

continuation.
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Figure 5.4: Continuation in T of one parameter set in PF2. Label 1 denotes the

beginning of the continuation; label 2 is the period-doubling bifurcation point; label 3 is the

end of the continuation.
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Figure 5.5: Continuation in T of one parameter set in PF3. Label 1 shows the beginning

of the continuation; label 2 indicates the first period-doubling bifurcation point; label 3 is the

second period-doubling bifurcation; label 4 indicates the end of the continuation.
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Figure 5.6: Continuation in T of one parameter set in PF4. Label 1 indicates the

beginning of the continuation; label 2 is the first period-doubling bifurcation point; label 3 is

the second period-doubling bifurcation; label 4 shows the third period-doubling bifurcation;

label 5 is the end of the continuation.
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Figure 5.7: Percentage and the number of five parent families The total number is

270 thousand parameter sets. The blue part is PF1,the orange one is PF2; the gray one is PF3,

the yellow part belongs to PF4, the green one is PF5.

• PF4 includes all parameter sets with three period-doubling bifurcation points, and

one example is in Fig. 5.6. The behavior of one example in PF4 is similar as that of

the example in PF3 until the third period-doubling bifurcation appears; after the third

period-doubling bifurcation appears, the stable one to one solution becomes unstable

again.

• PF5 has the parameters sets with more than three period-doubling bifurcation

points, or the continuation performed by AUTO cannot converge as T decreases from

700ms to 150ms. There are a few parameter sets that have five or six period-doubling

bifurcations. However, the fifth and sixth period-doubling bifurcation points are close to

each other, which means even there is a stable solution between those two bifurcations,

it exists for a short interval of cycle lengths. The percentage of these five parent families

are in Fig 5.7. We can also tell PF5 only occupies 4.56%

To know how the qualitative behaviors change, we have to switch branches at the

period-doubling bifurcation points and trace the solutions along a new branch. In my

research, branch switching has not been done in all parent families. There are three
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reasons: First, there are different diagrams in PF3, PF4 and PF5. Second, there exist

convergence problems. 3. PF3, PF4 and PF5 only occupy less than 28%. Based on

Fig. 5.7, PF2 and PF1 are more than 70%. Regarding PF1, there is not even one

bifurcation point, so we do not need to switch branches to trace another solution. As for

PF2, it occupies the largest percentage (47.52%). Therefore, the second step is to switch

branches at the period-doubling bifurcation in PF2 to see the qualitative behaviors and

classify PF2 into four subfamilies.

Examples of the continuation are depicted in Figs. 5.8∼5.11, obtained from the batch

of 133,046 sets in PF2. We want to stress that the variations within each subfamily

are extensive: the plots proposed are only schematic indications and are not meant to

exhaustively describe the behaviors of F1, F2 or F3 types. Nonetheless, some general

conclusions can be drawn based on the most commonly appearing dynamical traits in

the continuation in T .

In F1, we can tell from Fig. 5.8, after switching branches at the period-doubling

bifurcation point, the stable one to one solution bifurcates to a stable alternating solution,

and then, the solution becomes stable blocking solution if T is too small. Physiologically

speaking, the blocking phenomenon is different form alternans; however, they are both

alternating solutions in the bifurcation analysis in my research. The only difference

between them happens in the action potential duration (APD) restitution curves. In

the red branch of Fig 5.8, before APD passes the minimum value as T decreases, it is

an alternating solution; after APD passes the minimum value, the solution becomes a

blocking solution. In the following figures, two solutions are differentiated in the same

way. There is another period-doubling bifurcation, Label 4, occurring in the new branch,

which happens in a lot of parameter sets in different subfamilies; however, it always

happens after the blocking time so it is physiologically meaningless.

There are two distinctive representatives in F2, and they are in Fig. 5.9 and Fig.

5.10.
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Figure 5.8: Continuation in T of one parameter set in F1. The interval 150ms ≤ T ≤

700ms is considered physiologically meaningful. The black line is the equilibria in the main

branch, and the red line represents the equilibria of the switched branch where the solid line

represents the stable solution, and the dashed line indicates the unstable solution. Label 1

denotes the beginning of the continuation; label 2 is the period-doubling bifurcation; label 3

and label 5 are the ens of the continuation; label 4 is the period-doubling bifurcation in the

switched branch.
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Figure 5.9: Continuation in T of one parameter set in F2, part 1. Label 1 shows the

beginning of the continuation; label 2 is the period-doubling bifurcation; label 3 and label 6

are the ends of the continuation; label 4 and label 5 are the decreasing fold bifurcations in the

switched branch.
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Figure 5.10: Continuation in T of one parameter set in F2, part 2. Label 1 expresses

the beginning of the continuation; label 2 is the period-doubling bifurcation; label 3 and label

6 are the ends of the continuation; label 4 and label 5 show the decreasing fold bifurcation and

the period-doubling bifurcation in the switched branch.

In Fig. 5.9, if the first period-doubling corresponds to a small value of T . Here, the

stable one to one solution bifurcates to an unstable alternating solution shown as the red

dashed line that can converge to the stable one to one solution or to the blocking solution

when perturbed. We call this behavior bistability that will be discussed in the next

section too. After the decreasing fold bifurcation, the unstable alternating bifurcates to

a stable blocking solution. There are two labels showing the decreasing fold bifurcations

because of numerical error that makes AUTO identify one bifurcation as two extremely

close bifurcation points.
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Figure 5.11: Continuation in T of one parameter set in F3. Label 1 is the beginning of

the continuation; label 2 shows the period-doubling bifurcation; label 3 and label 7 are the ends

of the continuation; label 4 and label 5 are the increasing fold bifurcation and the decreasing fold

bifurcation in the switched branch; label 6 is the period-doubling bifurcation in that branch.

In Fig. 5.10, if the first period-doubling occurs when T is large, the stable one to one

solution bifurcates to an unstable alternating solution shown as the red dashed line that

can converge to stable one to one solution or stable alternating solution when perturbed,

which is also bistability. As T decreases again, the unstable solution becomes a stable

alternating solution, then a stable blocking solution.

In Fig. 5.11, after switching branches at the period-doubling bifurcation, the solution

bifurcates to a stable alternating solution; then it becomes an unstable alternating solu-

tion that can converge to a stable alternating solution or a stable blocking solution, which
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Figure 5.12: Percentage and the number of four subfamilies The total number is

133,046. The blue part is F1, the orange one is F2, the gray indicates F3, and the yellow part

is F4.

still depends on the perturbation in this case. After the decreasing fold bifurcation, the

solution turns into a stable blocking solution.

F4 includes other parameter sets, for instance , those that have too many misiden-

tified bifurcation points on the branches or have convergence problems and so on. The

percentage of these four subfamilies are in Fig 5.12

5.3 Similarities and differences in four subfamilies

By showing the properties of F1, F2 and F3 types of bifurcation diagrams, we can

conclude that all of the 133,046 plots of the preliminary sets in PF2 fall into one of

those four categories. We process the all sets in search of global, statistically relevant

similarities and differences among F1, F2 and F3 regarding the physiological behaviors.

The first global difference among those subfamilies likely happens in the first period-

doubling bifurcation namely the appearance of alternans. According to Fig. 5.13, F1 and

F3 have the similar distributions of the period-doubling bifurcations; however, F2 has a



Chapter 5. Results 79

Figure 5.13: Distributions of the period-doubling bifurcation sorted by subfamilies.

The normalized frequencies of the period-doubling bifurcation values for the analyzed 133,046

parameter sets, with F1 in blue, F2 in orange and F3 in yellow. Average and standard deviation

are (µ = 378.42, σ = 76.45) for F1 and(µ = 206.12, σ = 68.70) for F2 and (µ = 352.79, σ =

85.13) for F3.
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Figure 5.14: Distributions of the decreasing fold bifurcation sorted by subfamilies.

The normalized frequencies of the decreasing fold bifurcation values for the analyzed 133,046

parameter sets, with F2 in blue, F3 in orange. Average and standard deviation are (µ =

312.37, σ = 51.71) for F2 and(µ = 352.04, σ = 65.25) for F3.

distinctively different distribution, and most period-doubling bifurcation values in F2 are

smaller than those in F1 and F3. Physiologically, the ventricular alternans happens at a

slow pacing frequency in F1 and F3 but arrives at a high-speed pacing frequency in F2.

To know when the stable one to one solution becomes sensitive in F2 and F3, we

compare the distributions of the decreasing fold bifurcation in F2 and F3, which results

in the appearance of bistability. When bistability occurs, if we give a finite decimal

perturbation, the stable one to one solution will converge to itself; if we give a large

perturbation, the stable one to one solution will jump to a stable alternating solution or

stable blocking solution. According to Fig. 5.14, the distributions of the decreasing fold

bifurcation are similar in F2 and F3; therefore we can conclude that the bistability of F2

and F3 happens at a similar pacing frequency.

We would like to know how long the bistability exists until the period-doubling bi-

furcation occurs. Fig. 5.15 shows that the bistability in F2 lasts much longer than that



Chapter 5. Results 81

Figure 5.15: Distributions of the difference between the decreasing fold bifurcation

and the period doubling bifurcation with respect to T sorted by subfamilies. The

normalized frequencies of the distances between two bifurcation points for the analyzed 133,046

parameter sets, with F2 in blue, F3 in orange. Average and standard deviation are (µ =

−106.25, σ = 56.95) for F2 and(µ = 0.74, σ = 44.40) for F3.

in F3 because the absolute mean of the distance between the decreasing fold bifurcation

and the period-doubling bifurcation in F2 is much larger than the absolute mean of the

distance in F3.

5.4 Partitioning and distributions of parameters

Besides responses (APDs) to the continuously increasing pacing frequency, we would like

to know three subfamily partition showing that some normalized frequencies of parameter

values exhibit significant differences for F1, F2 and F3. The rationale for this analysis

is to determine the existence of specific parameters which have a predominant influence

in causing the appearance of one subfamily of plots rather than another. In order to

objectively assess these differences, we now compute the square root of the information
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Figure 5.16: Normalized frequencies of thirteen parameters values by subfamilies.

Blue bars are for F1, orange ones for F2 and yellow bars for F3. The total number of bins is

50, within the intervals of physiological validity indicated in Table. 2.1
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radius (also known as the Jensen-Shannon divergence) among the histograms for each

parameter i labeled gij for F1, hij for F2 and kij for F3 with j = 1, ..., nb bins. The

following Eq.(5.2) shows how to compute Jensen-Shannon divergence between F1 and F2

as an example:

di
IR =

√√√√j=nb∑
j=1

[
1

2
(gijlog2gi

j + hijlog2hi
j)−mi

jlog2mi
j]

with mi
j =

1

2
(gij + hij)

j=nb∑
j=1

gi
j = 1 and

j=nb∑
j=1

hi
j = 1 (5.2)

which is a proper metric for the similarity of discrete probability distributions. Note

that for empty bins, one defines 0 log20 ≡ 0. Identical distributions have dIR = 0,

whereas maximal dissimilarity is indicated by dIR = 1.[14] The Jensen-Shannon diver-

gences among F1, F2 and F3 are in Table. 5.2.

According to Table. 5.2, the five largest dissimilarities among the frequency distri-

butions in Fig. 5.16 of three subfamilies are found for the same parameters τ−w , τ−v1, τd,

τ+
v and τ+

w , even though the orders of the magnitude of the dissimilarities are a little dif-

ferent, for example, τ−v1 is that parameter showing the second large dissimilarity between

F2 and F3 but ranks the fourth in the dissimilarity between F1 and F2, and the fifth in

the dissimilarity between F1 and F3.

If a parameter set that belonging to PF2 has large values for τ−w , τ−v1 , τd and small

values for τ+
v , τ+

w , we can likely identify this parameter set as belonging to F1 according

to Fig. 5.16. τ−w should have the most information on the classification because Jensen-

Shannon divergences (dIR of τ−w among three subfamilies are the largest).
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τ−w τ−v1 τd τ+
v τ+

w uv uc

dIR between F1 and F2 0.4714 0.2452 0.2425 0.2004 0.1993 0.108 0.098

dIR between F1 and F3 0.3064 0.138 0.1067 0.0924 0.0953 0.0699 0.0359

dIR between F2 and F3 0.2763 0.1419 0.1649 0.1824 0.1327 0.1241 0.0895

τsi k usi
c τ−v2 τo τr

dIR between F1 and F2 0.0896 0.0821 0.0801 0.0689 0.0404 0.0223

dIR between F1 and F3 0.0486 0.0326 0.0412 0.0337 0.0445 0.0188

dIR between F2 and F3 0.0694 0.0904 0.0825 0.0756 0.067 0.0208

Largest Second large Third large Fourth large Firth large

Table 5.2: Jensen-Shannon divergences (dIR) among three subfamilies. The number

in the grid shows the JensenShannon divergence between two distributions of two subfamilies

where dIR is from 0 to 1. The red grid shows the largest difference between two distributions,

the blue grid is the second large difference, the yellow one represents the third large radius, the

green one indicates the fourth large one and the orange one is the fifth large difference.

5.5 Identification of special points by parameters

In the previous section, according to some parameters or their combinations, we can

determine what subfamily a parameter set in PF2 likely belongs to. Furthermore, we

have introduced the special points like the period-doubling bifurcation that shows the

presence and absence of alternans and the decreasing fold bifurcation that indicates the

onset of bistability. Are there any relations between the parameters and the locations of

the bifurcations in each subfamily? If we can find such relations, are the relations the

same in three subfamilies?

In F1, the only special point is the period-doubling bifurcation showing the appear-

ance of alternans.

Fig. 5.17 shows the relations between the twelve parameters and the location of alter-

nans appearing. After magnifying each plot individually, we found τr and τ−w including
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Figure 5.17: Scatter plots of twelve parameters VS the location of the period-

doubing bifurcation in F1. In F1, the scatter plots of twelve parameters VS the location

of the period-doubing bifurcation where x-axes are parameters and y-axes are the cycle length.

The total number is 83,209, and the values shown in the curved bracket are the intervals.
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Figure 5.18: Scatter plots of τr and τ−w VS the location of the period-doubing

bifurcation. The first plot is τr VS the cycle length where the period-doubing bifurcation

appears, and the second plot is τ−w VS the cycle length at which the period-doubing bifurcation

occurs. The number of total points is 83,209.
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Figure 5.19: Scatter plots of twelve parameters VS the location of the period-

doubing bifurcation and the decreasing fold bifurcation in F2. In F2, the scatter plots

of twelve parameters VS the cycle length at which the period-doubing bifurcation (blue circle)

and the decreasing fold bifurcation (red circle) appear. The total number is 15,434.

some information related to the period-doubling bifurcation. In the first figure of Fig.

5.18, we can see the range of the period-doubling bifurcation is decreasing from (150,650)

to (400,450) as the value of τr increases. In the second graph of Fig. 5.18, it shows the

opposite trend when the value of τ−w increases, the interval of the period-doubling bifur-

cation becomes larger.

In F2, there are two special points where one is the period-doubling bifurcation show-

ing the occurrence of alternans, and the other one is the decreasing fold bifurcation that

indicates the appearance of bistability.

Fig. 5.19 shows the relations between twelve parameters and two special points; τr

is still a parameter that controls the intervals of those two particular points, and the

more interesting result happens in τ+
w . In Fig. 5.20, there is a positive linear relation

between τ+
w and the location of the decreasing fold bifurcation but not the period-doubling
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Figure 5.20: Scatter plots of τ+
w VS the location of two special bifurcation points

in F2. The first plot is τ+
w VS the location of the period-doubing bifurcation and the second

plot is τ+
w VS that of the decreasing fold bifurcation. The number of total points is 15,434.

bifurcation. τ+
w is related to the speed of Ca2+ entering the membrane, and bistability

appears at a relatively slow pacing frequency when τ+
w is large and vice versa.

After observing and magnifying the figures in Fig. 5.21 individually, we can tell τr

and τsi control the ranges of special bifurcation points. Furthermore, there is a positive

linear relation between τ−w and the location of the decreasing fold bifurcation shown in

the second figure of Fig. 5.22; as for the first graph of Fig. 5.22, we can hardly tell the

relation between τ−w and the location of the period-doubling bifurcation.

In conclusion, after partitioning the parameter sets belonging to PF2 to three sub-

families, some parameters like τ−w , τ+
w and τr significantly include the extra information

showing the relations with the appearance of alternans and the presence of bistability.
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Figure 5.21: Scatter plots of twelve parameters VS the location of the period-

doubing bifurcation and the decreasing fold bifurcation in F3. In F3, the scatter plots

of twelve parameters VS the cycle length at which the period-doubing bifurcation (blue circle)

and the decreasing fold bifurcation (red circle) appear. The total number is 22,292.
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Figure 5.22: Scatter plots of τ−w VS the location of two special bifurcation points

in F3. The first plot is τ−w VS the cycle length at which the period-doubing bifurcation occurs

and the second plot is τ−w VS the cycle length at which the decreasing fold bifurcation appears.

The number of total points is 22,292.
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Discussion

6.1 Innovations

We have illustrated how bifurcation diagrams of the F-K model change as one control

parameter T varies.

Compared with limit point diagrams, drawn by time-stepping integration, a model

for a finite number of values of T [16] [9], our bifurcation diagrams can accurately indicate

not only the special points like the period-doubling bifurcations and the decreasing fold

bifurcations but also the unstable equilibria. When the pacing frequency increases, the

response of the ventricular cell in the F-K model is not as simple as being understood

so far. For example, the stable one to one solution can jump to a stable alternating

solution or even a stable blocking solution, depending on the physiologically meaningful

combination of parameters and the perturbation given to the system. Compared with

the papers that do not draw the detailed bifurcation graphs, our research can find some

complex behaviors such as the bistability.

Most papers about phenomenological models of ventricular cells are based on choosing

some specific and optimized combinations of parameters to show the relation between the

APD restitution curves and the increasing pacing frequency. Different results have been

89
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published such as: Guevara et al. (1984) [16] has found alternans existing in some param-

eter sets; Cherry et al. (2004) [4] have shown the blocking phenomenon occurs in some

parameter sets when the pacing is fast; all these results are based on specific parameter

sets. Why do some parameter sets have alternans but some do not? What parameters

play the leading roles to control the cycle length at which the blocking phenomenon or

alternans occur? What information is hidden behind the parameters resulting in the

significantly different behaviors? There is not even one paper that systematically explore

the relation between parameter effects and the behaviors of electric activity in ventricular

cells. In my research, we have have searched the parameter space to obtain physiolog-

ically reasonable combinations of parameters that can simulate almost all the possible

responses in the F-K model. After drawing the bifurcation plots, we can see what qual-

itative behaviors the F-K model can have when the pacing frequency increases. After

partitioning the parameter sets in PF2, with only one period-doubling bifurcation, into

four subfamilies, we have found significant information. For example, τ−w can statistically

identify the different qualitative behaviors among F1, F2 and F3; for instance, if there

is one parameter set where τ−w is between 133ms and 135ms, we can say there is 71.24%

likelihood that this parameter set belongs to F2, 5.33% chance that the parameter set be-

longs to F1 and 23.43% probability that belongs to F3. τr τ
−
w are related to the ranges of

alternans and bistability, and so on. It is common to compare different phenomenological

ventricular cell models (see e.g. [9] [2])with some specific parameter sets; however, these

models are created based on the ion currents and storage between the cells and the body

liquid, and most of them have similar or even some identical parameters. The number of

models is large but the number of parameters is relative small and able to be analyzed.

Rather than comparing different phenomenological ventricular cell models, we explore

one of them to obtain the significant and distinctive information that each parameter

includes and establish the relations between parameters and responses. For example, in

F3, we can conclude that when the value of τ−w is lager, the bistability appears earlier as
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the pacing frequency increases.

Frascoli et al. (2011)[14] first introduced metabifurcation analysis to discover robust

correlations between physiological parameters of a model of electric activity in the cortex

and its dynamical features. In my research, we have taken the idea of the metabifurcation

analysis and implemented it for the F-K model.

6.2 Discussion of the results

It is important to appreciate the generality and simplicity of the methods we have used

here. We have chosen the meaningful parameters for the bifurcation analysis and have

then classified parameter sets into five parent families based on the number of the period-

doubling bifurcations since the period-doubling bifurcation is the appearance and the

disappearance of alternans. Is the classification in parent families reasonable? Phys-

iologically speaking, some second or third period doubling bifurcation happen at the

pacing frequency that is faster than the blocking pacing frequency. If we do not count

the period-doubling bifurcations happening when the pacing is faster than blocking fre-

quency, we can make the classification in parent families more precise. However, there

are two difficulties: The first one is the blocking phenomenon happens at different pacing

frequencies among those 270 thousand physiologically meaningful parameter sets; some

occur after the first period-doubling bifurcation, and some happen after the second period

doubling bifurcation. Therefore, we hardly allocate it. Second, the convergence problem

makes the continuation fail after switching branches at the period-doubling bifurcations,

which make the first problem more difficult to find the the blocking cycle length for each

parameter set.

Due to the aforementioned difficulties, the classification is reasonable in five parent

families based on the number of the period-doubling bifurcations. In terms of the classi-

fication for PF2, we have classified PF2 into four subfamilies based on the three probable
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dynamical patterns. However, more sophisticated criteria for labeling the resulting bifur-

cation plots could be envisaged. For example, subfamilies might have been categorized

by adding more other types of bifurcations, it will result in more families classified; nev-

ertheless, the physiological meaning has to be considered; some parameter sets have a

period-doubling bifurcation that happens in the branch after the blocking period, so it

is not wise to set that as a new criterion. Across a large number of parameter sets, we

have listed and identified most possible diagrams in PF2. A small number of bifurcation

graphs still cannot be classified, and most of them in F4 have the convergence problem

because the two bifurcation points are identified at the same forcing period.

My research can offer a guidance by implementing the dynamical approach. A PCA

on the 1,525,833 analyzed parameter sets turns out to be largely useless. It is also true if

we employ the PCA after dividing the parameter sets belonging to PF2 into subfamilies:

the first three principal components, with the largest factor scores, account for about 41%

of the total variance in F1, F2 and up to 34% in F3. Again, the valuable information on

parameter relations still can not be gleaned by implementing the PCA process in those

subfamilies. If we compare Fig. 5.2 with the clear separation among distributions of

τw− in three families in Fig. 5.16, we can appreciate the strength of the metabifurcation

analysis to tease out hidden correlations in the F-K model.

τw− plays the leading role of partitioning in terms of three subfamilies. The reason

is that the dynamical patterns of three subfamilies basically indicate the different onsets

of alternans, and the appearance of alternans is closely related to diastolic interval(DI)

and recovering time. When the value τw− is large, slow gating variable w needs shorter

time to recover because the effect of reactivation of slow inward currents is not strong,

and a shorter DI needed to ensure the normal behavior; therefore, when we decrease the

forcing period T , alternans appears at a relatively faster pacing frequency compared with

the small value of τw−. We can verify this conclusion by comparing Fig. 5.16 and Fig.

5.13.
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Phenomenological ventricular cell models have been analyzed in some published pa-

pers. By comparing the results that we have obtained, we can not only establish the

confidence in my research but also tell the similarities and differences between both.

Figure 3 in the paper[37] shows the three typical limit point diagrams between in vivo

and in silico based on the OHaraRudy model at a cell level; normal, eye type alternans

and fork type alternans, in the OHaraRudy model, correspond to PF1, PF2 and PF3 in

my research. Those three parent families occupy more than 90%. Furthermore, Figure

2 of the paper[15] illustrates two different limit point graphs, in rabbit ventricular cells,

that are related to PF1 and PF2 accounting for 70%. Because those papers implement

the limit point graphs to capture some dynamical features with some specific parame-

ter sets, we can only see the most common results like graphs in PF1, PF2 and PF3.

However, besides those common dynamical behaviors, there are some more interesting

results. For example, Qu (2010) shows one more exciting bifurcation diagram of one

cardiac model at the cellular level when the control parameter CL decreases; in Figure

3(C) of the paper[27], a one to one solution becomes a two to two alternating solution,

then it becomes a two to one blocking solution and more and more complicated to chaos.

We can see there is an jump between the two to two alternating solution and the one

to two blocking solution. F3 also shows the similar result; in Fig. 5.11, we can see the

alternating solution becomes blocking solution with a jump after Label 4 as T decreases.

F3 only fill around 16% of PF2 and less than 8% of the whole physiological meaningful

parameter sets. Most phenomenological ventricular cell models are created based on the

similar physiological features with more or fewer parameters and variables; therefore,

they will have the similar behaviors like the F-K model, the OHaraRudy model and so

on. The results from other papers can only tell us the tip of the iceberg such as the

graphs belonging to PF1, PF2, PF3 and F3. After doing the metabifurcation analysis,

we can see almost all kinds of results like F1 and F2. Unfortunately, we have not done

the sub-classification in PF3 and PF4 because the complex behaviors after switching
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Figure 6.1: The distributions of the period-doubling bifurcation and the decreasing

fold bifurcation in F2 and F3 The first plot shows two distributions of two bifurcations in

F2 where PD is the period-doubling bifurcation and LP is the decreasing fold bifurcation, the

second plot shows two distributions of two bifurcations in F3

branches at period-doubling bifurcations.

Some interesting and open questions also exist in the results. According to Fig. 6.1,

F2 and F3 have the significantly different distributions of the period-doubling bifurcation;

however, they have the similar distributions of the decreasing fold bifurcations. Are there

some relations between two subfamilies or two bifurcations? In F2, after the bistability

occurs, the behavior is sensitive to the perturbation so the stable one to one solution can

quickly jump to the stable alternating solution. Therefore, the bistability phenomenon

might correspond to the onset of alternans. In F3, both distributions are similar; it also

indicates that bistability phenomenon can be considered as the beginning of alternans

in some degree. If that is true, alternans occurs at the decreasing fold bifurcation rather

than the period-doubling bifurcation, which has not been discovered before, and the first

period-doubling bifurcation has been defined as the onset of alternans in the papers we

have learned on phenomenological ventricular cell models so far.

After partitioning the parameter sets in PF2 into four subfamilies, we have listed

the relations between parameters and the onsets of bistability and alternans. There is
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another essential phenomenon that indicates the important moment, which is blocking

phenomenon . We would like to know how the blocking phenomenon related to some

parameters in some families like the linear relation between τ−w and the bistability in F3?

In some bifurcation diagrams, the decreasing fold bifurcation can indicate the blocking

phenomenon; however, in most bifurcation diagrams, there is not a bifurcation label

can indicate the blocking phenomenon. According to the representatives of bifurcation

diagram from Fig. 5.8 to 5.11, when the value of APD passes the minimum value in

branches, we call that forcing period as the onset of the blocking phenomenon. One way

is to add or rewrite some code in AUTO to allocate the cycle length of the onset of the

blocking phenomenon; the other way is to decompose the output files from AUTO to

write the shell and python scripts to find that minimum value in T as the cycle length

of the block phenomenon.

6.3 Future work

1. The great hurdle is represented by the computational limitation: it is still unfeasible

to process all sets one by one and see all bifurcation diagrams, which will help us increase

our knowledge about the types of dynamics the F-K model can produce. Maybe we can

implement this process in GPU rather than CPU.

2. In the research, we implement the time-step integration of the F-K model to obtain

a Poincaré map. Even the error is 10−14 in each time step and each time step is 0.05ms,

the accumulated error over one period can still cause some convergence problems. Rather

than integrate the OEDs in the F-K model, we can use a discrete map, which will be

computationally cheap and accurate. However, the discrete map[26] is not accurate as

the Poincaré map, and there will be some problems when we implement that to replace

the integration of the F-K model.

3. The horizontal comparison among different models with using metabifurcation
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analysis can be considered. The reason is that different phenomenological models of

ventricular cells are based on both the concentration of ions between cell sap and body

sap and the change of currents. Therefore, most parameters have the similar meaning

among these models. After comparing different models, the results will be more reliable.

One of the difficulties will be in the comparison, in some model, one parameter can

represent one feature; in another model, two, three or even more parameters can express

the same property; how to combine the parameters to let them comparable regarding the

same property?

4. The F-K model can also be extended from the single cell level to the tissue level,

which will result in solving the PDEs numerically. The computational time of the time-

step integration in two or three dimensions will be exponentially longer. How to make

the computational process efficient and the results reliable will be a big challenge. We

have used AUTO to do the bifurcation analysis and draw the bifurcation diagram in

the research; however, AUTO has not supported to solve PDEs numerically to do the

bifurcation analysis yet, which means that we have to write our code to do the bifurcation

analysis.

5. K-means clustering can be implemented to give another piece of information in the

future research. Now, we know the distributions of parameters but we can not generate

a sample parameter set in the given family. If we use the K-means clustering after the

classification, we can parse the data and generate a physiologically meaningful parameter

set in that given family.
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