
Study of a
2-Dimensional

Aggregation Model
with Non-Linear

Adaptations
by

Eryn Frawley

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science
in the

Faculty of Science
Modelling and Computational Science

University of Ontario Institute of Technology

August 2018

c© Eryn Frawley 2018

ii

Abstract
Study of a 2-Dimensional Aggregation Model with Non-Linear Adaptations

Eryn Frawley
Faculty of Science (Modelling and Computational Science)

University of Ontario Institute of Technology
2018

In this paperwewill explore the impacts on collective animalmotion of addingnon-
linearity to the animals’ turning rate in a 2-dimensional model of aggregation. The
model in question was proposed by Fetecau [6] and implements a dependence on
an individual’s relation to neighbours’ position and the direction in which they are
moving. By utilizing a turning rate formula similar to one proposed by Eftimie [4],
we can retain many of the dependences of the original 2-dimensional model while
ensuring that the turning rate is both bounded and non-linear. The group forma-
tions resulting from this introduction of non-linearity are explored.

iii

iv

Author’s Declaration

I declare that this work was carried out in accordance
with the regulations of the University of Ontario Insti-
tute of Technology. The work is original except where in-
dicated by special reference in the text and no part of
this document has been submitted for any other degree.
Any views expressed in the dissertation are those of the
author and in no way represent those of the University
of Ontario Institute of Technology. This document has not
been presented to any other University for examination
either in Canada or overseas.

Eryn Frawley

Date: August 9, 2018

v

vi

Dedication

I would like first and foremost to dedicate this paper
to my supervisors, Dr. Lennaert van Veen and Dr.
Pietro-Luciano Buono. Your support through the last
two years and our entire academic relationship means
the world to me. Thank you for selflessly giving of your
time and energy to help make this thesis all it could be.

I wish to extend a special thanks to the Ontario Gradu-
ate Scholarship whose funding supported me greatly
in my first year of research.

I would like to thank the University of Ontario Institute
of Technology for the last six years of my academic
career. The opportunities and experiences that I have
received from this institution have changed my life and
I am extremely grateful. The teachers, colleagues, and
friends I have met in your halls have given me more
joy and comfort than I can possibly put into words.

Finally I would like to dedicate this thesis to my friends
and family across Canada who have stood by me
through every up and down, especially my parents,
Beth and Paul, and my brother, Matthew.Without your
encouragement, I could never have come as far as I
have, in not only this academic pursuit, but in every
success I have had. Know that the greatest parts of me
come from you.

vii

viii

Contents

Abstract iii

Author’s Declaration v

Dedication vii

Contents ix

1 Introduction 1

2 2-Dimensional Aggregation Model 7
2.1 Fetecau’s Model . 7
2.2 Adaptations to Implement Non-Linearity 9
2.3 Symmetry of the System . 11

2.3.1 Translation . 12
2.3.2 Rotation . 14
2.3.3 Reflection . 17

3 Solving the Equation with Time-Stepping 23
3.1 ETD2RK . 23
3.2 Fourier Transformation . 25
3.3 ODE Formation . 28

4 Solving the Linear Terms Analytically 31
4.1 Splitting Method . 31
4.2 Circulant Matrices . 33
4.3 Approximate Solution . 35

5 Coding the Time-Stepping in MATLAB 37
5.1 Dimensional Analysis . 37
5.2 Coding a Solution to the Linear Terms 38
5.3 Testing the Code . 39

5.3.1 An Initial Condition with no Spatial Dependence 39

ix

5.3.2 Eliminating the Probability Function 43
5.4 Implementation of the Non-Linear Terms 52

5.4.1 Convolution of Kernels used to Obtain Γ 53
5.4.2 Utilization of Γ and the Non-Linear Terms in the Code 56

5.5 Testing the Non-Linear Terms . 56
5.5.1 Allow only the Alignment Term to have an Effect 57
5.5.2 Allow only the Attraction Term to have an Effect 60
5.5.3 Allow only the Repulsion Term to have an Effect 62

5.6 Results . 64

6 Conclusions 67

Bibliography 69

Appendices 73

A Pseudo Code for ETD2RK 75

B Pseudo Code for Nonlinear Terms 79

x

List of Figures

1.1 The concentric circles indicate the regions at which an individual
will be attracted, repelled, or inclined to align with a neighbour. . . . 3

5.1 The semi-log plot of error when computing the Gaussian approxi-
mation for the probability function w. The number of points in our
discretization of w is equal tom = 2n. 41

5.2 The progression of the 0, 1, andm− 1 Fourier coefficients of density
u, which has a total of 64 coefficients overall. u0 = 1 + cosφ, γ = 0.1,
g1 = 0.2 and g2 = 0.9. The total run time is 8 with a step size of 0.1. . . 42

5.3 The same case as Figure 5.2 for coefficients 1 and m − 1, on a semi-
logarithmic plot. 43

5.4 The density distribution colourmaps at six different times for φ =
−π. γ = 0.1, g1 = 0.2, and g2 = 0.9. 45

5.5 The density distribution at six different time steps for φ = −π and
x = 1. γ = 0.1, g1 = 0.2, and g2 = 0.9. 46

5.6 The density distribution colourmaps at six different times forφ = −π
2 .

γ = 0.1, g1 = 0.2, and g2 = 0.9. 47
5.7 The density distribution colourmaps at six different times for φ = −π

2
and x = 1. γ = 0.1, g1 = 0.2, and g2 = 0.9. 48

5.8 The density distribution colourmaps at six different times forφ = −π
2 .

γ = 1, g1 = 0.2, and g2 = 0.9. 49
5.9 The density distribution colourmaps at six different times for φ = −π

2
and x = 1. γ = 1, g1 = 0.2, and g2 = 0.9. 50

5.10 The density distribution colourmaps at six different times for φ =
−π. γ = 1, g1 = 0.2, and g2 = 0.9. 51

5.11 The density distribution colourmaps at six different times for φ = −π
and y = 1. γ = 1, g1 = 0.2, and g2 = 0.9. 52

5.12 The colourmap of density at two different times. γ = 0, g1 = 0.2,
g2 = 0.9, h = 0.1, and qal = 2. 59

5.13 The colourmap of density at two different times. γ = 0.1, g1 = 0.2,
g2 = 0.9, h = 0.1, and qa = 1. 61

xi

5.14 The colourmap of density at two different times. γ = 0.1, g1 = 0.2,
g2 = 0.9, h = 0.1, and qr = 0.5. 63

5.15 The colourmap of density at two different times. γ = 0.1, g1 = 0.2,
g2 = 0.9, h = 0.1, qal = 2, qa = 1, and qr = 0.5. 65

xii

chapter 1
Introduction

Most animals in naturemove in groups for safety. These groups offer the promise

of survival, as they help animals mate, find food sources, and avoid predators. Be-

ing able to predict animal movement and other types of aggregation can aid with

preventative action. For instance, if we can predict the collective movement of lo-

custs [12], plans can be made in accordance with the destruction they cause.

Animal aggregation has been studied extensively using many different meth-

ods. There are so many papers written on the subject, rather than a literature re-

view, we have chosen to include surveys on the topic to give a brief overview of the

different ways collective motion has been explored.

The simplest form of collectivemotion study comes from individual basedmod-

els [9]. The models in this survey study the collective movement of individual cells,

each of which experience attraction, repulsion, or a combination of the two which

dictates their movement.

The same method of individual based collective motion can be applied to an-

imals [13]. It is stressed in the basic models found in this survey that an animal

1

will move away from a neighbour in order to avoid over crowding, will move to-

wards a neighbour in order to form a group, or will assimilate directionally with

his neighbours in order to align. The survey suggests that all movement of the an-

imal is dependent on the animal’s desire to adhere to any or all of these steering

behaviours.

The literature discussing individual based collective motion is extensive and

we suggest further exploration of these survey papers, but there is much diversity

in aggregation, and the movement of animal groups can also be modelled using

partial differential equations. These equations are not looking at individuals, but

rather the density of individuals located at a position on the domain. Again, the

literature is expansive, andwe suggest [3] for reader interest. These partial differen-

tial equation models depend on similar steering behaviours, simplifying animals’

movements to “towards a neighbour”, “away from a neighbour”, or “in the same

direction as a neighbour”.

One way to model these behaviours and the resulting interactions between dif-

ferent members of the group and is through radii [4].

Assume that the circles in Figure 1.1 are around a particular density. Based on

which concentric circle a neighbour falls in, the animals will be attracted, be re-

pelled, or align with the neighbour. However, there is very rarely only one neigh-

bour in a group, so the individuals located at the centre of the circles will receive

information from all neighbours, which is weighed mathematically and instructs

the individual on how to move.

The 1-dimensional partial differential equationmodel studied byEftimie et al. [4]

simplifies an animal’smovements to either “left” or “right” on a 1-dimensional line.

2

Chapter 1. Introduction

Attraction

Alignment

Repulsion

Figure 1.1: The concentric circles indicate the regions at which an individual will
be attracted, repelled, or inclined to align with a neighbour.

The equations are

∂tu
+(x, t) + ∂x(γu+(x, t)) = −λ+u+(x, t) + λ−u−(x, t),

∂tu
−(x, t)− ∂x(γu−(x, t)) = λ+u+(x, t)− λ−u−(x, t),

u±(x, 0) = u±0 (x), x ∈ R

(1.1)

where u+(x, t) and u−(x, t) are the density of animals moving right and left at posi-

tion x and time t respectively, γ is the constant speed at which animals move and λ+

and λ− are the turning rate of the individual, either right turning left or left turning

right. In this model, λ± is a non-linear function, modelled by

λ±(y±) = λ1 + λ2f(y±[u+, u−]), (1.2)

where f is bounded and increasing to represent the saturation rate of informa-

tion. In her study, Eftimie used some function of the hyperbolic tangent function.

3

y±[u+, u−] contains all the information about neighbours’ positions and directions

y±[u+, u−] = y±r [u+, u−]− y±a [u+, u−] + y±al[u+, u−]. (1.3)

yr, ya, and yal represent the terms that influence an individual’s turn based on re-

pulsion, attraction, and alignment respectively, determined by the information that

an individual receives from the right or left (pr and pl respectively) and the kernels

Kj , for j = a, r, al, which determine howmuch influence each piece of information

has. Expanded, these terms are

y+
r,a[u+, u−] = qr,a

∫ ∞
0

Kr,a(s)(pru(x+ s)− plu(x− s)) ds,

y−r,a[u+, u−] = qr,a

∫ ∞
0

Kr,a(s)(plu(x− s)− pru(x+ s)) ds,
(1.4)

and

y+
al[u+, u−] = qal

∫ ∞
0

Kal(s)(pru−(x+ s)− plu+(x− s)) ds,

y−al[u+, u−] = qal

∫ ∞
0

Kal(s)(plu+(x− s)− pru−(x+ s)) ds.
(1.5)

In these expressions, x is the individual’s position and s is the distance between the

individual and the neighbour. The critical values of s for repulsion, alignment, and

attraction come from the “zones” in Figure 1.1. Each sj is the radius of the circle

corresponding to the region j. For instance, if s is greater than sr, but less than sal,

s is in the alignment zone.

While Eftimie’s paper and those discussed in the aforementioned surveys pro-

vide useful information on a variety of patterns that develop within collective mo-

tion, some types of aggregation can not effectively be modelled in 1-dimension. For

instance, if we were to study most animals moving in a group from an aerial view,

the model of their motion would be in 2-dimensions.

In this thesis, we will be exploring a 2-dimensional model of animal aggrega-

4

Chapter 1. Introduction

tion, and adapting it in order to implement some of the same steps explored as

in Eftimie’s model. We base our analysis on Fetecau’s 2-dimensional aggregation

model [6], which does not lend itself to non-linearity in λ, an addition important to

the demonstration of saturation. Because of this, wewill adapt themodel in order to

implement this non-linearity. These adaptations could, however, lead to variations

between our results and Fetecau’s, as the previous paper exploring the un-adapted

model puts a great deal of importance on the part of the model that we will be

changing.

We will then attempt to solve the newly adapted equation with a combination

of exponential time differencing and time-stepping, resulting in visual simulations

of the solution results.

5

6

chapter 2
2-Dimensional Aggregation Model

2.1 Fetecau’s Model

Fetecau extended the concepts proposed in 1-dimensional aggregation to 2-

dimensions [6]. The model defined a density’s spatial position by X = (x, y) and

extended the direction ofmotion of the density from left or right on a 1-dimensional

line to an angle φ′which can range from−π to π radians. Consequently, each neigh-

bour to the individual will also have a 2-dimensional position (S = (sx, sy)) and

direction (θ). The equation appearing in Fetecau’s paper is

∂tu+ γeφ · ∇Xu = −λ(X,φ)u+
∫ π

−π
T (X,φ′, φ)u(X,φ′, t) dφ′ (2.1.1)

where u is the density of individuals at a specific position and moving in a specific

direction and γ is the constant speed that animals in the systemmove at. The system

operates with periodic boundary conditions in both space and angular direction.

The most interesting variables in the system, however, are λ and T . λ(X,φ) is the

7

2.1. Fetecau’s Model

rate atwhich an individual located at positionX andmoving in directionφ is able to

change directions. T (X,φ′, φ) is the rate at which an individual located at position

X moving in direction φ′ can change directions from φ′ to φ.

Both T and λ contain three functions, each which provide the information with

respect to attraction, alignment, or repulsion respectively. That is,

λ(X,φ) = λal(X,φ) + λa(X,φ) + λr(X,φ),

T (X,φ, φ′) = Ta(X,φ, φ′) + Tr(X,φ, φ′) + Tal(X,φ, φ′),
(2.1.2)

where

λal(X,φ) = qal

∫
R2

∫ π

−π
Kd
al(X − S)Ko

al(θ;φ)u(S, θ, t) dθ dS,

λj(X,φ) = qj

∫
R2

∫ π

−π
Kd
j (X − S)Ko

j (S;X,φ)u(S, θ, t) dθ dS,
(2.1.3)

where j ∈ {a, r}, and

Tal(X,φ, φ′) = qal

∫
R2

∫ π

−π
Kd
al(X − S)Ko

al(θ;φ)wal(φ− φ′, φ′ − θ)u(S, θ, t) dθ dS

Tj(X,φ, φ′) = qj

∫
R2

∫ π

−π
Kd
j (X − S)Ko

j (S;X,φ)wj(φ− φ′, φ′ − ψ)u(S, θ, t) dθ dS.

(2.1.4)

The functions Kd
j and Ko

j represent the distance and orientation kernels respec-

tively. The variable θ is the direction that a neighbour is moving in, similar to the

individual’s φ. The variable ψ appears in the kernels for attraction and repulsion.

Rather than depending on the direction a neighbour is moving in, ψ depends on

the neighbour’s position in relation to the individual in question. Assume that the

neighbour’s position is S = (sx, sy). In order to obtain ψ, we take the vector S −X

to be (u, v). The angle that this vector makes with the x-axis gives ψ as

cosψ = u√
u2 + v2

, sinψ = v√
u2 + v2

.

8

Chapter 2. 2-Dimensional Aggregation Model

What differentiates the double integral in the function T from the function λ

is the presence of w. This function is an approximation of a Gaussian distribution

and depends on two variables. The first is the difference between the direction an

individualwants to turn into (namely, φ′) and the direction it is currentlymoving in.

The second is the difference between φ′ and the direction the neighbour is moving

in, θ, or the angular variable ψ. As is, themodel cannot use a non-linear function for

λ similar to the method used by Eftimie, because for the turning rate Tj , the density

is multiplied by the probability function wj as well as the two kernels within the

double integrals.

As T dictates the rate at which an individual can turn from one direction into

another specified direction, we derive λ, the rate at which an individual can turn

from one direction into an unspecified direction, by integrating T over all possible

direction angles, so that

λ(X,φ) =
∫ π

−π
T (X,φ, φ′) dφ′. (2.1.5)

2.2 Adaptations to Implement Non-Linearity

If possible, we want to include a non-linear λ in the system for two reasons.

First, adding non-linearity complicates the model; therefore, it has the potential for

more interesting and complex solutions. Second, we want to demonstrate satura-

tion in the model. Eventually, the number of neighbours influencing an individual

to turn in a certain direction will become large and any addition to that number

will trivially affect the individual’s decision to move. In the 1-dimensional study of

aggregation, Eftime [4] used the hyperbolic tangent function to demonstrate this

saturation.

In an attempt to adapt Fetecau’s model to use non-linear functions, we first

9

2.2. Adaptations to Implement Non-Linearity

change the dependence of the probability function w. If we eliminate the second

variable in w and have the probability function depend solely on the difference be-

tween the direction an individual wants to turn into and the direction it is currently

moving in, then it will no longer have any dependence on θ or S. Therefore, in this

approximation, w can be removed from the double integral of T with respect to the

alignment, attraction, and repulsion case. Then,

Tal(X,φ, φ′) = qalwal(φ− φ′)
∫
R2

∫ π

−π
Kd
al(X − S)Ko

al(θ;φ)u(S, θ, t) dθ dS

= wal(φ− φ′)λal(X,φ),

Ta,r(X,φ, φ′) = qa,rwa,r(φ− φ′)
∫
R2

∫ π

−π
Kd
a,r(X − S)Ko

a,r(S;X,φ)u(S, θ, t) dθ dS

= wa,r(φ− φ′)λa,r(X,φ).

(2.2.1)

Considering this new adaptation, if we now examine (2.1.5), Fetecau’s relation-

ship simplifies to

λ(X,φ) =
∫ π

−π
T (X,φ, φ′) dφ′ =

∫ π

−π
λ(X,φ)w(φ− φ′) dφ′. (2.2.2)

λ can be removed from the integral on the right hand side of (2.2.2) as it has no de-

pendence on φ′ and the resulting integral
∫ π
−π wj(φ−φ′)dφ′ = 1, asw is a probability

function. Therefore, the equality holds and we can introduce non-linear functions

into λ.

Using a method similar to Eftimie [4], we set

λ(X,φ) = g1 + g2f(Γ− 2), (2.2.3)

where g1 and g2 are constants that weight the turning rate function. The constant g1

is the baseline turning rate and the constant g2 is the bias within the turning rate,

10

Chapter 2. 2-Dimensional Aggregation Model

multiplied by the non-linear function of the neighbours’ influence. Subtracting 2

from Γ insures that for Γ = 0 the turning rate is small. f can be any non-linear

function that satisfies the systems requirements for saturation.For instance

f(Γ) = 1
2 + 1

2 tanh(Γ− 2), (2.2.4)

where Γ contains all information about the individuals neighbours

Γ =
∑

j=a,r,al
qj

∫
R2

∫ π

−π
Kd
jK

o
j u(S, θ, t) dθ dS. (2.2.5)

Γ integrates over all possible neighbours, so that the information is weighted ac-

curately regarding the turning rate of the animal. Consequently, Fetecau’s system

(2.1.1) becomes

∂tu+ γeφ · ∇Xu = −
g1 + 1

2g2 + 1
2g2 tanh(Γ− 2)

u
+

∫ π

−π
w(φ− φ′)

g1 + 1
2g2 + 1

2g2 tanh(Γ− 2)
u(X,φ′, t) dφ′.

(2.2.6)

2.3 Symmetry of the System

One of the benefits of this system is that it is symmetry invariant with respect

to translation, rotation, and reflection. The presence of symmetry indicates that the

animal aggregation only depends on the difference between position and direction

of the moving animals and the location in space where aggregation is occurring is

irrelevant. In order to accept the symmetries in the system, we can prove them for

each of the three types of symmetry. The collection of these symmetries generates

the Euclidean group E(2).

11

2.3. Symmetry of the System

2.3.1 Translation

To show the translational symmetry, let τ be the translational operator acting on

density u and define it as (τu)(X,φ, t) = u(X − τ, φ, t), where τ = (τx, τy).

To show that equation (2.1.1) is translation invariant, we apply τ to all functions

u in the system

∂t(τu) + γeφ · ∇X(τu) = −λ(X,φ)(τu) +
∫ π

−π
T (X,φ′, φ)(τu)(X,φ′, t) dφ′.

With respect to the first term, (τu) does not change the variable t, and therefore

∂t(τu) = τ∂tu. The derivative ofX−τ with respect toX is the same as the derivative

of X with respect to X , and γeφ has no spatial component, so it is τ invariant as

well. Therefore, we can write the entire term as τ(γeφ ·∇Xu). Because both λ and T

depend on u, when looking at the last two terms, wemust first look at the impact of

τ on λ and T . Recall that λ = λal +λa +λr, so−λ(τu) = −λal(τu)−λa(τu)−λr(τu).

With respect to attraction and repulsion

(τλa,r)(X,φ) = qa,r

∫
R2

∫ π

−π
Kd
a,r(X − S)Ko

a,r(S −X;φ)τu(S, θ, t) dθ dS

= qa,r

∫
R2

∫ π

−π
Kd
a,r(X − S)Ko

a,r(S − x;φ)u(S − τ, θ, t) dθ dS,

and with respect to alignment

(τλal)(X,φ) = qal

∫
R2

∫ π

−π
Kd
al(X − S)Ko

al(φ− θ)τu(S, θ, t) dθ dS

= qal

∫
R2

∫ π

−π
Kd
al(X − S)Ko

al(φ− θ)u(S − τ, θ, t) dθ dS.

12

Chapter 2. 2-Dimensional Aggregation Model

In all three cases, if we let Z = S − τ ⇒ S = Z + τ , then we get

(τλa,r)(X,φ) = qa,r

∫
R2

∫ π

−π
Kd
a,r(X − Z − τ)Ko

a,r(Z + τ −X;φ)u(Z, θ, t) dZ dS

= qa,r

∫
R2

∫ π

−π
Kd
a,r((X − τ)− Z)Ko

a,r(Z − (X − τ);φ)u(Z, θ, t) dZ dS

= λa,r(X − τ, φ),

and

(τλal)(X,φ) = qal

∫
R2

∫ π

−π
Kd
al(X − Z − τ)Ko

al(φ− θ)u(Z, θ, t) dZ dS

= qal

∫
R2

∫ π

−π
Kd
al((X − τ)− Z)Ko

al(φ− θ)u(Z, θ, t) dZ dS

= λal(X − τ, φ).

Note, we can change the integral to integrate over Z instead of S because S, and

consequently Z, is on an infinite domain. The entire term for attraction, repulsion,

and alignment becomes

−λj(X,φ)(τu) = −λj(X − τ, φ)u(X − τ, φ, t) = τ [−λj(X,φ)u]

for j ∈ {a, r, al}, which means that we can remove τ from the entire summation

that makes up the third term.

The function T is also the sum of an attraction, repulsion, and alignment com-

ponent, where Tal, Ta, and Tr are identical to their λal, λa, and λr counterparts, save

the addition of the probability function w(φ′ − φ). Because the probability func-

tion doesn’t depend on space, it will be τ invariant, and so the same proof as for

λ’s invariance with respect to τ also proves that T is invariant with respect to τ .

Therefore, the last term will also be invariant with respect to τ .

Because all terms are individually invariantwith respect to τ , the entire equation

13

2.3. Symmetry of the System

is, in fact, invariant with respect to translation.

2.3.2 Rotation

To show the rotational symmetry, let α be the rotational operator acting on den-

sity u and define it as αu(X,φ, t) = u(R−αX,φ− α, t), where

R−αX =

 cosα sinα

− sinα cosα

 x∗

y∗

 =

 x∗ cosα + y∗ sinα

−x∗ sinα + y∗ cosα

 .

To show that equation (2.1.1) is rotation invariant, we apply α to all functions u

in the system

∂t(αu) + γeφ · ∇X(αu) = −λ(X,φ)(αu) +
∫ π

−π
T (X,φ′, φ)(αu)(X,φ′, t) dφ′.

With respect to the first term, (αu) does not change the variable t, and therefore

∂t(αu) = α∂tu.

The second term expands to

γ[x′ cosφ+ y′ sinφ]Rα∇Xu(X,φ, t),

where x′ = ∂x
∂x∗ + ∂x

∂y∗ and y
′ = ∂y

∂x∗ + ∂y
∂y∗ , or x

′ = cosα+sinα and y′ = − sinα+cosα.

Because we use the chain rule on ∇Xu(R−αX,φ, t), we are allowed to move Rα to

the other side of the gradient, so that

γ[x′ cosφ+ y′ sinφ]Rα∇Xu(X,φ, t) = γ[(cosα + sinα)(cosφ) + · · ·

(− sinα + cosα)(sinφ)]Rα∇Xu(X,φ, t)

= γ[(cosα)(cosφ) + (sinα)(cosφ) + · · ·

(− sinα)(sinφ) + (cosα)(sinφ)]Rα∇Xu(X,φ, t).

14

Chapter 2. 2-Dimensional Aggregation Model

Expanding this expression using the fact that cosφ cosα = cos(φ + α) + sinα sinφ,

and sinφ cosα = sin(φ+ α)− cosφ sinα; therefore, we obtain

γ[cos(φ+ α) + sinα sinφ+ sinα cosφ− · · ·

sinα sinφ+ sin(φ+ α)− cosφ sinα]Rα∇Xu(X,φ, t)

= γ[cos(φ+ α) + sin(φ+ α)]Rα∇Xu(X,φ, t).

Recall that Rα changes φ to φ+ α; therefore,

γ[cos(φ+ α) + sin(φ+ α)]Rα∇Xu(X,φ, t) = γ[Rα cosφ+Rα sinφ]Rα∇Xu(X,φ, t).

The entire term can now be rewritten as

Rαγ[cosφ+ sinφ]∇Xu(X,φ, t)

= α[γeφ · ∇Xu(X,φ, t)].

Because both λ and T depend on u, when looking at the last two terms, we must

first look at the impact of α on λ and T . Recall that λ = λal + λa + λr, so −λ(αu) =

−λal(αu)− λa(αu)− λr(αu).

With respect to attraction and repulsion

(αλa,r)(X,φ) = qa,r

∫
R2

∫ π

−π
Kd
a,r(X − S)Ko

a,r(S −X;φ)αu(S, θ, t) dθ dS

= qa,r

∫
R2

∫ π

−π
Kd
a,r(X − S)Ko

a,r(S −X;φ)u(R−αS, θ − α, t) dθ dS

Let σ = θ−α and let Y = R−αS, which means S = RαY , then the previous expres-

sion can be rewritten

qa,r

∫
R2

∫ π

−π
Kd
a,r(X −RαY)Ko

a,r(RαY −X;φ)u(Y, σ, t) dσ dY. (2.3.7)

15

2.3. Symmetry of the System

We can change the integral to integrate over Y instead of S because S, and con-

sequently Y , is on an infinite domain. Similarly, we change the integral to inte-

grate over σ instead of θ because θ, and consequently σ, is a periodic variable. Let

Z = R−αX and write X = RαZ, then equation (2.3.7) becomes

qa,r

∫
R2

∫ π

−π
Kd
a,r(RαZ −RαY)Ko

a,r(RαY −RαZ;φ)u(Y, σ, t) dσ dY. (2.3.8)

Kd is a function that only depends on the distance between Z and Y andKo is a

function that only depends on the angle that Z and Y make together. Therefore,Kd

is invariant to the transformation, as long as both variables undergo the same one.

Similarly, Ko is invariant as long as both variables undergo the same transforma-

tion. We use this property of Kd and Ko here. Let φ = η + α. Then equation (2.3.8)

becomes

qa,r

∫
R2

∫ π

−π
Kd
al(RαZ −RαY)Ko

al(RαY −RαZ; η + α)u(Y, σ, t) dσ dY.

Now all of the variables of Kd and Ko experience the transformation R−α

qa,r

∫
R2

∫ π

−π
Kd
al(Z − Y)Ko

al(Y − Z; η)u(Y, σ, t) dσ dY = λa,r(Z, η)

= λa,r(R−αX,φ− α).

With respect to alignment, the only difference from the attraction and repulsion

terms is that the orientation kernel doesn’t depend on position, but depends on the

direction variable φ. Therefore, after applying the same assumptions to the spatial

16

Chapter 2. 2-Dimensional Aggregation Model

variables we have

qal

∫
R2

∫ π

−π
Kd
al(Z − Y)Ko

al(φ− σ − α)u(Y, σ, t)dσdY

= qal

∫
R2

∫ π

−π
Kd
al(Z − Y)Ko

al((φ− α)− σ)u(Y, σ, t)dσdY

= λal(Z, φ− α)

= λal(R−αX,φ− α).

Therefore, all three terms are rotationally invariant, so the third term is rotationally

invariant.

The fourth term contains the function T which contains a u, and thereforewill be

acted upon by α. In the same fashion as the translational symmetry proof, we notice

that each component of T is identical to its λ counterpart, except for the probability

function w(φ′−φ). While this term does depend on the angle, and will therefore be

impacted by rotation, it is important to note that the term φ′ − φ which is the only

term w depends on is equal to φ′− φ+ α− α⇒ (φ′− α)− (φ− α). Therefore, if we

include this term and follow the same steps done in the proof for the third term, T

under the influence of α will depend on the terms RαX , φ′ − α, and φ − α for all

three T components. α can then be removed from the sum that makes up T , and

the fourth term is rotationally invariant.

As each term is rotationally invariant, the entire equation is rotationally invari-

ant.

2.3.3 Reflection

To show the reflection symmetry, let κ be the reflection operator acting on den-

sity u and define it as κu(X,φ, t) = u(X̃, φ̃, t), where ifX = (x, y), X̃ = (x,−y), and

φ̃ = −φ.

To show that equation (2.1.1) is reflection invariant, we apply κ to all functions

17

2.3. Symmetry of the System

u in the system

∂tκu+ γeφ · ∇Xκu = −λ(X,φ)κu+
∫ π

−π
T (X,φ′, φ)κu(X,φ′, t) dφ′

As with the other two symmetries, the first term, (κu) does not change the vari-

able t, and therefore ∂t(κu) = κ∂tu.

As exploredwhen proving rotational symmetry,we can expand the second term

to

γ[x′ cosφ+ y′ sinφ]κ∇Xu(X,φ, t),

where x′ = ∂x
∂x

and y′ = ∂y
∂y
⇒ x′ = 1 and y′ = −1. Again, because we use the chain

rule on∇Xu(R−αX,φ, t) we are allowed to move κ to the other side of the gradient.

γ[x′ cosφ+ y′ sinφ]κ∇Xu(X,φ, t) = γ[cosφ+ (−1)(sinφ)]κ∇Xu(X,φ, t)

Using the fact that cosine is even and sine is odd, we can rewrite this as

γ[cos(−φ) + sin(−φ)]κ∇Xu(X,φ, t)

= γ[κ cos(φ) + κ sin(φ)]κ∇Xu(X,φ, t)

= κ[γeφ · ∇Xu(X,φ, t)]

Because both λ and T depend on u, when looking at the last two terms, we must

first look at the impact of α on λ and T . Recall that λ = λal + λa + λr, so −λ(αu) =

−λal(αu)− λa(αu)− λr(αu).

18

Chapter 2. 2-Dimensional Aggregation Model

With respect to attraction and repulsion

(κλa,r)(X,φ) = qa,r

∫
R2

∫ π

−π
Kd
a,r(X − S)Ko

a,r(S −X;φ)κu(S, θ, t) dθ dS

= qa,r

∫
R2

∫ π

−π
Kd
a,r(X − S)Ko

a,r(S −X;φ)u(S̃, θ̃, t) dθ dS

We are able to change the integral to integrate over θ̃ instead of θ because θ, and

consequently θ̃, is a periodic variable. We can also integrate over S̃ instead of S

because S, and consequently S̃, is on an infinite domain; therefore, the previous

expression can be written

qa,r

∫
R2

∫ π

−π
Kd
a,r(x− sx, y − sy)Ko

a,r(sx − x, sy − y;φ)u(S̃, θ̃, t) dθ̃ dS̃. (2.3.9)

Notice that

Kd
j = 1

Aj
e−(
√
x2+y2−dj)2/m2

j ,

for j ∈ {a, r, al} where Aj , dj , and mj are constants. Because Kd only depends on

the absolute value of x−sx and y−sy, x−sx and−y+sy will give the same results.

Therefore, we can replaceX −S with X̃ − S̃, where X̃ = (x,−y) and S̃ = (sx,−sy),

then (2.3.9) becomes

qa,r

∫
R2

∫ π

−π
Kd
a,r(X̃ − S̃)Ko

a,r(sx − x, sy − y;φ)u(S̃, θ̃, t) dσ dY. (2.3.10)

Note

Ko
a(φ− ψ) = 1

2π (− cos(φ− ψ) + 1),

and

Ko
r (φ− ψ) = 1

2π (cos(φ− ψ) + 1).

19

2.3. Symmetry of the System

We obtain the variable ψ from the equations

cosψ = u√
u2 + v2

and sinψ = v√
u2 + v2

, (2.3.11)

where S − X = (sx − x, sy − y) = (u, v). If we input S̃ − X̃ , this would give (sx −

x,−sy +y) = (sx−x,−(sy−y)) = (u,−v). When substituted into equations (2.3.11)

we get

cos η = u√
u2 + (−v)2

and sin η = −v√
u2 + (−v)2

.

Because sine is an odd function, sin(η) = − sin(ψ) = sin(−ψ), and because cosine

is an even function, cos(η) = cos(−ψ) as well. Therefore, η = −ψ and changing the

dependence ofKo to S̃ − X̃ will result in a dependence on φ− ψ̃ = φ+ ψ. Because

both Ko
a and Ko

r are even functions, −(φ + ψ) will give the same results as φ + ψ.

Therefore, we can input −φ̃− ψ or φ̃− ψ, and (2.3.10) becomes

qa,r

∫
R2

∫ π

−π
Kd
a,r(X̃ − S̃)Ko

a,r(S̃ − X̃; φ̃)u(S̃, θ̃, t) dθ̃ dS̃ = λa,r(X̃, φ̃)

If we look at λ with respect to alignment, we would use the same proof for the

distance kernel. The orientation kernel, however, depends on θ instead of the spatial

variables. If θ̃ = −θ, then θ = −θ̃, and the term becomes

qal

∫
R2

∫ π

−π
Kd
al(X̃ − S̃)Ko

al(φ+ θ̃)u(S̃, θ̃, t) dσ dY. (2.3.12)

Note that

Ko
al(φ+ θ̃) = 1

2π (− cos(φ− θ̃) + 1).

BecauseKo
al is an even function,−(φ− θ̃) will give the same output as φ− θ̃. There-

fore, we can change the dependence to −φ − θ̃ which equals φ̃ − θ̃. Then, (2.3.12)

20

Chapter 2. 2-Dimensional Aggregation Model

becomes

qal

∫
R2

∫ π

−π
Kd
al(X̃ − S̃)Ko

al(φ̃− θ̃)u(S̃, θ̃, t) dθ̃ dS̃ = λal(X̃, φ̃).

Because all three λ functions can have κ removed from them, the entire third

term is reflection invariant.

As with the first two symmetry proofs, we call upon the fact that each T compo-

nent is equivalent to its λ counterpart except for the probability function. Therefore,

we only must show that w(φ′ − φ) is invariant under the symmetry. w(φ′ − φ) is an

undetermined probability function, but it always depends on the absolute differ-

ence between φ′ and φ. Therefore, an input of−(φ′−φ) would give the same results

as φ′ − φ. We can replace φ′ − φ with −φ′ + φ which is equivalent to φ̃′ − φ̃. Using

this substitution, the function T becomes a function of X̃ , φ̃′, and φ̃.

As each term is invariant with respect to reflection, so too is the entire equation.

21

2.3. Symmetry of the System

22

chapter 3
Solving the Equation with

Time-Stepping

Having adapted the model to include non-linearity, we want to solve equation

(2.2.6) numerically. Matthews and Cox developed amethod to solve ODEs depend-

ing on both linear and non-linear terms [2]. The method implements both time dif-

ferencing and time stepping to solve equations and is called ETD2RK, short hand

for Second Order Exponential Time Differencing Method with Runge-Kutta Time

Stepping. The utilization of the Runge-Kutta method is beneficial as it gives small

errors and doesn’t rely on past evaluations of the non-linear terms.

3.1 ETD2RKMethod

In order to implement ETD2RK to solve (2.2.6) numerically, we first want to de-

rive an ordinary differential equation from the existing partial differential equation.

To obtain this ODE, it is ideal to transform the equation into Fourier space. Once

23

3.1. ETD2RK

transformed, we should have an equation of the form

∂tu = Lu+ F (u, t), (3.1.1)

whereL is a linear operator acting on u andF is a function producing the non-linear

terms in the system.

ETD2RK involves discretizing time, calculating an exact answer for the linear

terms in the systemat each time and then estimating the non-linear terms at a future

time using this solution. For each segment of time, tn, we denote u(tn) = un and

F (un, tn) = Fn. When solving an equation of the form (3.1.1) we first calculate

an = eLhun +M1Fn

where

M1 = L−1(eLh − I).

To calculate the update step, we substitute these values into

un+1 = an +M2(F (an, tn + h)− Fn)/h

where

M2 = L−2[eLh − (I + Lh)].

This method yields a truncation error of only −hF̈/12, and is fairly easy to imple-

ment. Because of this, we want to transform equation (2.2.6) to an ordinary differ-

ential equation.

24

Chapter 3. Solving the Equation with Time-Stepping

3.2 Semi-Discrete Fourier Transformation

With the non-linear terms removed from (2.2.6), our linear system is as follows

∂tu+ γeφ · ∇Xu = −Gu+G
∫ π

−π
w(φ− φ′)u(X,φ′, t) dφ′, (3.2.2)

where G = g1 + 1
2g2 is a constant.

In order to find an exact solution to the linear system, wemust first simplify it as

much as possible. Due to the convolution in the last term on the right hand side, it

is ideal to transform the system to Fourier space by taking the semi-discrete Fourier

transform. To do this, we must first define a basis. Because our system depends on

two spatial variables and one angular variable, wewill need to take a 3-dimensional

Fourier transformation. Therefore, our basis will depend on all three variables

Φk,l,m = ΦkΦlΦm = eikxeilyeimφ = eikx+ily+imφ. (3.2.3)

Applying this basis, we obtain the semi-discrete Fourier transformation and its in-

verse

ûk,l,m(t) = KLM

8π

∫ ∞
−∞

∫ ∞
−∞

∫ π

−π
u(x, y, φ, t)Φ−k,−l,−m(x, y, φ) dφ dx dy, (3.2.4)

u(x, y, φ, t) = 1
KLM

K
2∑

k=−K2 +1

L
2∑

l=−L2 +1

M
2∑

m=−M2 +1

ûk,l,m(t)Φk,l,m(x, y, φ), (3.2.5)

where K, L, and M are the number of discretized x, y, and φ points respectively.

The constant in front of (3.2.4) is applied to ensure that our semi-discrete Fourier

transformation yields the same results as MATLAB’s fully discrete Fourier trans-

formation. We can now replace all functions u in equation (3.2.2) with (3.2.5), in

order to transform our partial differential equation into Fourier space. We will look

25

3.2. Fourier Transformation

at each term in (3.2.2) separately in order to obtain the coefficients.

The first term is the time derivative of u. This derivative has no dependence

on space or direction, so it can be moved into the triple summation, where it is

applied only to ûk,l,m(t). Φk,l,m does not depend on time, and is therefore regarded

as constant. The term then becomes

1
KLM

K
2∑

k=−K2 +1

L
2∑

l=−L2 +1

M
2∑

m=−M2 +1

∂tûk,l,m(t)Φk,l,m(x, y, φ).

The second term is the spatial derivative γeφ ·∇Xu. Note that (̂ux)k,l,m = ikûk,l,m

and (̂uy)k,l,m = ilûk,l,m, because Φ contains the only spatial variables in the inverse

Fourier transform. Because of this, the term ̂(∇X · u) inside the triple summation

would be equal to (ikûk,l,m, ilûk,l,m).
The term eφ ensures that individuals move in a direction across the space at

speed γ, as it provides the x and y direction for the individual derived from the
angle φ [6]. Note that eφ can be rewritten from (cosφ, sinφ) to (eiφ+e−iφ

2 , e
iφ−e−iφ

2i) us-
ing Euler’s formula. This is a more favourable term, as the exponential of φ and
−φ terms are of the same form as our Fourier basis for φ. Therefore, when the dot
product is taken between these two vectors, the second term becomes

1
KLM

K
2∑

k=−K
2 +1

L
2∑

l=−L
2 +1

M
2∑

m=−M
2 +1

γ

[
(eiφ + e−iφ)

2 ikûk,l,m(t) + (eiφ − e−iφ)
2i ilûk,l,m(t)

]
Φk,l,m(x, y, φ).

Wecan simplify this termby cancelling the purely imaginary terms from the second

term in the brackets and removing the common factor of ûk,l,m(t)
2 from the brackets

giving

1
KLM

K
2∑

k=−K2 +1

L
2∑

l=−L2 +1

M
2∑

m=−M2 +1

γ

2 [(eiφ + e−iφ)ik + (eiφ − e−iφ)l]ûk,l,m(t)Φk,l,m(x, y, φ)

We can simplify even further by substituting in Φk,l,m = eikxeilyeimφ. The Φm

component can be combined with the other exponential terms found inside the

26

Chapter 3. Solving the Equation with Time-Stepping

brackets, and the term becomes

1
KLM

K
2∑

k=−K2 +1

L
2∑

l=−L2 +1

M
2∑

m=−M2 +1

γ

2 e
ikx+ily[(ik + l)ei(m+1)φ + (ik − l)ei(m−1)φ]ûk,l,m.(t),

which is the resulting Fourier transform of the second term.

The first term on the right hand side of equation (3.2.2) is simply the function u

multiplied by a constant. The constant −G is not dependent on space or direction,

so, similar to the temporal derivative, the constant can be moved into the triple

summation and rewritten as

1
KLM

K
2∑

k=−K2 +1

L
2∑

l=−L2 +1

M
2∑

m=−M2 +1

−Gûk,l,m(t)Φk,l,m(x, y, φ).

The final term on the right hand side of (3.2.2) was themotivation for transform-

ing the equation into Fourier space. This term is a convolution, so when the Fourier

transformation of the term is taken, it should become a product rather than an in-

tegral. When we substitute in the semi-discrete inverse Fourier transformation for

u(X,φ′, t), we get

∫ π

−π
w(φ− φ′) 1

KLM

K
2∑

k=−K2 +1

L
2∑

l=−L2 +1

M
2∑

m=−M2 +1

ûk,l,m(t)Φk,l,m(x, y, φ′) dφ′.

Except for Φm and w(φ − φ′), which depend on φ′, all terms can be factored from

the integral. It is important to note that the second term on the right hand side

of (3.2.2) depends on φ′ instead of φ because the u term that was originally in the

integral depends on φ′ rather than φ. The entire term then becomes

1
KLM

K
2∑

k=−K2 +1

L
2∑

l=−L2 +1

M
2∑

m=−M2 +1

ûk,l,m(t)eikxeily
∫ π

−π
w(φ− φ′)eimφ′ dφ′.

27

3.3. ODE Formation

If we allow s = φ− φ′, and integrate over s, we get

1
KLM

K
2∑

k=−K2 +1

L
2∑

l=−L2 +1

M
2∑

m=−M2 +1

ûk,l,m(t)eikxeily
∫ π

−π
w(s)eim(φ−s)ds.

We can remove eimφ from the integral and the remaining integral is equal to the

transform of w multiplied by the constant 2π
n
, where n is the size of the discretized

w. Therefore the entire final term becomes

1
KLM

K
2∑

k=−K2 +1

L
2∑

l=−L2 +1

M
2∑

m=−M2 +1

2π
n
ŵ(φ− φ′)ûk,l,m(t)Φk,l,m(x, y, φ),

which is a product as expected. Note that the Φk,l,m(x, y, φ) term is once again com-

plete because of the left over eimφ term.

3.3 Formation of the Ordinary Differential Equation

We can now substitute these four coefficients into equation (3.2.2)

1
KLM

K
2∑

k=−K
2 +1

L
2∑

l=−L
2 +1

M
2∑

m=−M
2 +1

∂tûk,l,m(t)Φk,l,m(x, y, φ) + · · ·

1
KLM

K
2∑

k=−K
2 +1

L
2∑

l=−L
2 +1

M
2∑

m=−M
2 +1

γ

2 e
ikx+ily[(ik + l)ei(m+1)φ + (ik − l)ei(m−1)φ]ûk,l,m(t)

= −G
KLM

K
2∑

k=−K
2 +1

L
2∑

l=−L
2 +1

M
2∑

m=−M
2 +1

ûk,l,m(t)Φk,l,m(x, y, φ) + · · ·

G

KLM

K
2∑

k=−K
2 +1

L
2∑

l=−L
2 +1

M
2∑

m=−M
2 +1

2π
n

̂w(φ− φ′)ûk,l,m(t)Φk,l,m(x, y, φ).

(3.3.6)

The triple summation and the term 1
KLM

are common amongst all terms, and there-

fore can be moved to the front of the equation . Furthermore, Φk(x) and Φl(y) are

28

Chapter 3. Solving the Equation with Time-Stepping

both common in all terms and can be extracted

1
KLM

K
2∑

k=−K2 +1

L
2∑

l=−L2 +1

M
2∑

m=−M2 +1

∂tûk,l,m(t)Φm(φ) + γ

2 [(ik + l)ei(m+1)φ + · · ·

(ik − l)ei(m−1)φ]ûk,l,m(t) +Gûk,l,m(t)Φm(φ)− · · ·

G
2π
n
ŵ(φ− φ′)ûk,l,m(t)Φm(φ)

Φk(x)Φl(y)
 = 0.

(3.3.7)

Φm(φ) can’t be removed from the brackets because it does not appear in the second

term. However, ei(m+1)φ and ei(m−1)φ are equal to Φm+1(φ) and Φm−1(φ) respectively.

To have this equality hold, we need only for the summand to be equal to 0.

Therefore, the equation we need to solve is

∂tûk,l,m(t)Φm(φ) = −γ2 [(ik + l)Φm+1(φ) + (ik − l)Φm−1(φ)]ûk,l,m(t)

−Gûk,l,m(t)Φm(φ) +G
2π
n
ŵ(φ− φ′)ûk,l,m(t)Φm(φ).

(3.3.8)

If we look at (3.3.8) exclusively with respect to φ, we get the equation

∂tûm(t)Φm(φ) = −γ2 [(ik + l)Φm+1(φ) + (ik − l)Φm−1(φ)]ûm(t) + Fjûm(t)Φm(φ),

(3.3.9)

where Fj is equal to −G + G2π
n
ŵj(φ − φ′). It is important to note, however, that

because the equation contained Φm−1 and Φm+1, eventually the equation will call

a Φ that is out of bounds. That is, if m = −M
2 + 1, Φm−1 will equal Φ−M2 , which

is not in bounds. Similarly, if m = M
2 , Φm+1 will equal ΦM

2 +1, which is also not in

bounds. Because Φ depends on φ, the periodic angle indicating the direction the

individual is turning into, then these periodic boundary conditions can be applied

29

3.3. ODE Formation

to the linear operator

∂t

û−M2 +1

û−M2 +2

...

ûM
2

=

F−M2 +1
γ
2 (ik − l) . . . 0 γ

2 (ik + l)
γ
2 (ik + l) F−M2 +2

γ
2 (ik − l) . . . 0

...

0 . . . γ
2 (ik + l) FM

2 −1
γ
2 (ik − l)

γ
2 (ik − l) 0 . . . γ

2 (ik + l) FM
2

û−M2 +1

û−M2 +2

...

ûM
2

.

(3.3.10)

30

chapter 4

Solving the Linear Terms

Analytically

4.1 Splitting Method

ETD2RK relies on the linear terms in the system having an exact solution. The

equation given in (3.3.10) is a simple ODE and has an exact solution. The solution to

the system is u(X,φ, t) = etLu0(X,φ), with initial condition u0 and linear operator

L. If the linear operator L can be diagonalized, then the exponential of the matrix

is equal to the diagonal matrix E, where all entries Ej,j on the diagonal are equal

to eLj,j .

31

4.1. Splitting Method

In its current form, the linear operator matrix

A =

F−M2 +1
γ
2 (ik − l) . . . 0 γ

2 (ik + l)
γ
2 (ik + l) F−M2 +2

γ
2 (ik − l) . . . 0

...

0 . . . γ
2 (ik + l) FM

2 −1
γ
2 (ik − l)

γ
2 (ik − l) 0 . . . γ

2 (ik + l) FM
2

,

is not easily diagonalizable. In order to derive a formula for diagonalizing the ma-

trix A, we call upon the splitting method. Proposed by MacNamara and Strang [8],

the splitting method allows us to approximate the exponential of a matrix if we can

split the matrix into two matrices that each can be diagonalized. The idea is that

eh(A+B) ≈ ehAehB

is first order accurate. However,

eh(A+B) ≈ ehBehA

is equally accurate. Therefore, if we take the average of these two approximations,

the symmetry adds accuracy, and the approximation

eh(A+B) ≈ ehAehB + ehBehA

2

is actually second order accurate.

In order to implement this method, we must be able to split the matrix A into

the sum of two matrices, both of which can be easily diagonalized.

32

Chapter 4. Solving the Linear Terms Analytically

If we take all of the of the terms on the diagonal ofA and put them in a diagonal

matrix, we end up with

A1 =

F−M2 +1 0 . . . 0 0

0 F−M2 +2 0 . . . 0
...

0 . . . 0 FM
2 −1 0

0 0 . . . 0 FM
2

.

This is already a diagonal matrix, so we can easily find eA1 . The remaining matrix

is

A2 =

0 γ
2 (ik − l) . . . 0 γ

2 (ik + l)
γ
2 (ik + l) 0 γ

2 (ik − l) . . . 0
...

0 . . . γ
2 (ik + l) 0 γ

2 (ik − l)
γ
2 (ik − l) 0 . . . γ

2 (ik + l) 0

which is a circulant matrix.

4.2 Circulant Matrices

A circulant matrix is an N ×N matrix of the form

B =

b0 bN−1 . . . b2 b1

b1 b0 bN−1 . . . b2

...

bN−2 . . . b1 b0 bN−1

bN−1 bN−2 . . . b1 b0

where every column’s entries are the previous column’s entries shifted down one.

33

4.2. Circulant Matrices

An important property of circulant matrices is their ability to be diagonized by

the discrete Fourier transform [1]. That is, F−1BF = diag(Fb), where b is equal to

the first column of circulant matrixB and F is theN×N Fourier matrix. Therefore,

the eigenvectors for all circulant matrices are the same and will be of the form

vξ = (1, ei(ξ−1) 2π
N , e2i(ξ−1) 2π

N , · · · , e(N−1)i(ξ−1) 2π
N)T,

where eiξ 2π
n is the nth root of unity. The eigenvalues α will be of the form

αξ = b0 + bN−1e
i(ξ−1) 2π

N + bN−2e
2i(ξ−1) 2π

N + · · ·+ b1e
(N−1)i(ξ−1) 2π

N .

In the case of A2, only bN−1 and b1 are non-zero. Therefore, our eigenvalues are of

the form

αξ = bN−1e
i(ξ−1) 2π

N + b1e
(N−1)i(ξ−1) 2π

N

= bN−1e
i(ξ−1) 2π

N + b1e
(−1)i(ξ−1) 2π

N ei(ξ−1)2π
(4.2.1)

If we substitute in Euler’s formula eix = cos(x) + i sin(x) into (4.2.1), we get

αξ = bN−1

 cos
(ξ − 1)2π

N

 + i sin
(ξ − 1)2π

N

+ b1

 cos((ξ − 1)2π) + i sin((ξ − 1)2π)
 cos

− (ξ − 1)2π
N

 + i sin
− (ξ − 1)2π

N

(4.2.2)

Because ξ will be a whole number from 1 to N , sin((ξ − 1)2π) is equal to 0 and

cos((ξ − 1)2π) is equal to 1. Finally, by implementing the properties of even and

odd functions, we know that cos(−x) = cos(x) and sin(−x) = sin(x). Therefore

34

Chapter 4. Solving the Linear Terms Analytically

(4.2.2) simplifies to

αξ = bN−1

 cos
(ξ − 1)2π

N

 + i sin
(ξ − 1)2π

N

 + · · ·

b1

 cos
(ξ − 1)2π

N

− i sin
(ξ − 1)2π

N

= [bN−1 + b1] cos

(ξ − 1)2π
N

 + i[bN−1 − b1] sin
(ξ − 1)2π

N

(4.2.3)

As previously stated,A2 is a circulantmatrixwith bN−1 = γ
2 (ik−l), b1 = γ

2 (ik+l),

and bn = 0 for all other n. Therefore, the eigenvectors ofA2 will be equal to vξ shown

above with N = M , and the eigenvalues will be

αξ =
γ

2 (ik − l) + γ

2 (ik + l)
 cos

(ξ − 1)2π
M

 + · · ·

i

γ
2 (ik − l)− γ

2 (ik + l)
 sin

(ξ − 1)2π
M

= [γik] cos

(ξ − 1)2π
M

− i[γl] sin
(ξ − 1)2π

M

.
(4.2.4)

Using the discrete Fourier transform, we now have a method for diagonalizing A2

exactly for all wave numbers k and l.

4.3 Approximate Solution to the Linear Terms

Because both A1 and A2 can be diagonalized, and A1 + A2 = A, we can apply

the splittingmethod to obtain a second-order approximation to (3.3.10). To compute

ehA1 , we multiply the entire matrix A1 by step size h. This is still a diagonal matrix.

The exponential of a diagonal matrix will just be a diagonal matrix with e raised

to the diagonal of the original matrix A1. To compute ehA2 , we multiply A2 by the

step size h, and then multiply the resulting matrix on the left by the Fourier matrix

35

4.3. Approximate Solution

and on the right by the inverse Fourier matrix. This will result in a diagonal matrix,

whichwe can take the exponential of the samewaywe did forA1. Beforewe can use

this exponential, however, wemust remember to reverse the Fourier transformation

by multiplying the new matrix by the inverse Fourier matrix on the left and by the

Fourier matrix on the right.

The final approximation for the exponential is

eh(A1+A2) ≈ ehA1F−1(eF (hA2)F−1)F + F−1(eF (hA2)F−1)FehA1

2
(4.3.5)

making the approximate solution to the linear terms

û ≈ ehA1F−1(eF (hA2)F−1)F + F−1(eF (hA2)F−1)FehA1

2 û0. (4.3.6)

36

chapter 5
Coding the Time-Stepping in MATLAB

In order to compute numerical approximations to (2.2.6) using ETD2RK, it is

ideal to use some kind of software to aid in the computations. We use MATLAB for

all computations here, which has a built in fast Fourier transform, useful given the

number of times we implement the Fourier transform.

5.1 Dimensional Analysis

While running simulations of the system, we can obtain time scales from the

dimensional analysis found in Table 5.1

Table 5.1: The dimensions of each of the terms found in (2.1.1)

Dimensional Analysis of the System

Term Dimension

u N/m2radians

g1 1/s

g2 1/s

37

5.2. Coding a Solution to the Linear Terms

Continuation of Table 5.1

Term Dimension

γ m/s

w “probability”/radians

mj m

dj m

Aj m2

Kd
j 1/m2

Ko
j radians

qj m2/N radians

Because the term Γ must be dimensionless, we are able to determine the di-

mensions of all parameters in the system. For the interested reader, the time scales

acquired from Table 5.1 give an idea of how quickly we will see behaviour in the

system based on the magnitude set for each parameter.

5.2 Coding a Solution to the Linear Terms

At the beginning of the code, we must initialize the density u for all space and

directions in the domain. Once we have an initial condition for u we can take the

3-dimensional Fourier transform of the density. For every time step in the code, we

loop through all wave numbers k and l for the two spatial variables. With these

values set, we can extract the decoupled 1×m vector pertaining to these two wave

numbers that depends only on angular direction.

We compute the approximate solution to the linear terms using (4.3.6). We first

compute the matrix A1 using the Fourier coefficients of an approximate Gaussian

distribution and the constants g1 and g2. For each wave number k and l, we are able

38

Chapter 5. Coding the Time-Stepping in MATLAB

to compute the matrix A2. We use the formula (4.3.5) to compute the exponential

of A1 +A2 and multiply this by un to obtain un+1 for times tn and tn+1 respectively.

The vector un+1 corresponds with the same wave numbers k and l and is stored in

a 3-dimensional matrix, in the position associated with the current k and l values.

Once we have computed un+1 for all values of k and l, we can re-establish the

n × n ×m matrix in Fourier space, and then take the inverse Fourier transform to

get our new density.

5.3 Testing the Code Analytically

Once the time stepping method has been implemented into MATLAB, it is im-

portant to check the accuracy of the code. If we look solely at the solution to the

linear parts of the system, it is possible to solve some cases analytically. Because of

this, we first remove the non-linearity from the system and choose two test cases

for the linear terms that could be checked analytically.

These tests were not chosen for realism, but for the sake of simplifying the equa-

tion to a familiar form.

5.3.1 An Initial Condition with no Spatial Dependence

If we assume that the density u has no spatial dependence, then the second term

on the left hand side of (3.2.2), regarding the spatial derivative of u, goes to zero.

This leaves

∂tu = −Gu+G
∫ π

−π
w(φ− φ′)u(X,φ′, t)dφ′.

We transform the remaining terms to Fourier space to simplify the convolution

in the last term to a product

∂tûj = (Gŵj(φ− φ′)−G)ûj(X,φ′, t).

39

5.3. Testing the Code

This is an ordinary differential equation, where (G ̂wj(φ− φ′) − G) can be repre-

sented as a diagonal matrix. There is no need to use the splitting method. The so-

lution to this system is ûj = etAj û0j,where Aj = Gŵj −G. Therefore, we can expect

that in Fourier space, the first coefficient will stay constant and the remaining terms

will decrease exponentially.

Coding the Probability Function w

We require that the condition un = e−G+Gwnu0 is met which would require w0

to be equal to 1. w is a descritized approximation of the Gaussian distribution. In

order for the initial condition to hold, the first component of 2π
m
ŵ in our code must

be equal to 1, where m is the size of w. This is only true when m is large and the

discretized grid for the angle is dense.

Consider the graph given in Figure 5.1 which illustrates the log of error of the

Gaussian approximation as n increases.

40

Chapter 5. Coding the Time-Stepping in MATLAB

Figure 5.1: The semi-log plot of error when computing the Gaussian approximation
for the probability function w. The number of points in our discretization of w is
equal tom = 2n.

41

5.3. Testing the Code

To test our resultswith no spatial dependence in density, we set the initial condi-

tion on density to be u0 = 1+cosφ. The initial condition is chosen for three reasons.

First, it is a non-linear function. Second, it depends only on the direction of the ani-

mal, and not on the position. Finally, the initial conditionmust be periodic to satisfy

the boundary conditions, making sinusoidal functions a good choice.

Figure 5.2: The progression of the 0, 1, and m − 1 Fourier coefficients of density u,
which has a total of 64 coefficients overall. u0 = 1 + cosφ, γ = 0.1, g1 = 0.2 and
g2 = 0.9. The total run time is 8 with a step size of 0.1.

Figure 5.2 shows three graphswith the progression of three different coefficients

of û over time. The 0th coefficient stays constant at 2.621× 105. The other two coeffi-

cients (which are in fact complex conjugates of one another) tend towards 0. Figure

5.3, two semi-logarithmic graphs of the progression of the first and the last coef-

ficients over time, shows that these same two coefficients are actually decreasing

exponentially. This is, indeed, agrees with our expected results.

42

Chapter 5. Coding the Time-Stepping in MATLAB

Figure 5.3: The same case as Figure 5.2 for coefficients 1 and m − 1, on a semi-
logarithmic plot.

5.3.2 Eliminating the Probability Function

If we assume that the probability function w in the system is negligible and set

it to 0, then the last term on the right hand side of the equation goes to zero. This

leaves

∂tu+ γeφ · ∇Xu = −Gu.

Because there is no convolution in this system, it is unnecessary to evaluate it

in Fourier space. This is the inhomogeneous transport equation and can be solved

using characteristics.

If we let ∂t
∂r

= 1, ∂x
∂r

= γ cosφ, ∂y
∂r

= γ sinφ, and t(0; s) = 0, x(0; s) = x0, y(0; s) =

y0, then t = r, x = x0 + γr cosφ, and y = y0 + γr sinφ. Along this characteristic base

curve
du

dr
= dt

dr

∂u

∂t
+ dx

dr

∂u

∂x
+ dy

dr

∂u

∂y
= −Gu, u(0; s) = F (s)

has the solution

u(r; s) = F (s)e−rG.

43

5.3. Testing the Code

Eliminating r and s, one has

u = F (x− γ cos(φ)t, y − γ sin(φ)t)e−tG.

In order to test that the code gives this solution, we first test an initial condition that

only depends on y. For this test, we used the initial conditionF (x, y) = exp(cos(πy))

which is periodic in y and satisfies the boundary conditions. As the solution will

depend not only on y, but on φ, the best way to check the solution is to set the angle

to a constant.

In Figure 5.4, we see the solution for uwith φ = −π. When φ = −π, the solution

simplifies to u(y, t) = F (y− γ sin(−π)t)e−tG = F (y)e−tG. This would imply that the

distribution of the densitywill stay the same, but the density over the entire domain

will decrease exponentially. In Figure 5.4 the density distribution is constant over

x, and periodic over y. The distribution stays the same as time goes to infinity, but

the total number of animals is decreasing exponentially.

Because x is constant in this system, we can set x = 1 and look at how the

solution changes in y over time. In Figure 5.5 we can see that the solution is not

shifting as time increases, but is approaching zero.

44

Chapter 5. Coding the Time-Stepping in MATLAB

(a) Initial density exp(cos(πy)). (b) Density after 10 time steps.

(c) Density after 20 time steps. (d) Density after 30 time steps.

(e) Density after 40 time steps. (f) Density after 50 time steps.

Figure 5.4: The density distribution colourmaps at six different times for φ = −π.
γ = 0.1, g1 = 0.2, and g2 = 0.9.

45

5.3. Testing the Code

Figure 5.5: The density distribution at six different time steps for φ = −π and x = 1.
γ = 0.1, g1 = 0.2, and g2 = 0.9.

If we set φ to a value other than −π, π or 0, the shifting of the distribution be-

comes apparent, such as in Figure 5.6where φ = −π
2 . As sin(−π

2) = 1, themaximum

of sine, this value of φ should actually yield the largest shift. Also, the shift should

be in the upwards direction on our graph as it is a negative shift in the y direction.

Again, in order to see the shift more clearly, we can fix x and see how the solution

changes over time with respect to y in Figure 5.7.

46

Chapter 5. Coding the Time-Stepping in MATLAB

(a) Initial density exp(cos(πy)). (b) Density after 10 time steps.

(c) Density after 20 time steps. (d) Density after 30 time steps.

(e) Density after 40 time steps. (f) Density after 50 time steps.

Figure 5.6: The density distribution colourmaps at six different times for φ = −π
2 .

γ = 0.1, g1 = 0.2, and g2 = 0.9.

47

5.3. Testing the Code

Figure 5.7: The density distribution colourmaps at six different times for φ = −π
2

and x = 1. γ = 0.1, g1 = 0.2, and g2 = 0.9.

While the shift in Figures 5.6 and 5.7 is present, it is difficult to see due to the

step size and the speed. In order to see the shift more clearly, we can set the value

of γ to be 1. In Figures 5.8 and 5.9.

48

Chapter 5. Coding the Time-Stepping in MATLAB

(a) Initial density exp(cos(πy)). (b) Density after 10 time steps.

(c) Density after 20 time steps. (d) Density after 30 time steps.

(e) Density after 40 time steps. (f) Density after 50 time steps.

Figure 5.8: The density distribution colourmaps at six different times for φ = −π
2 .

γ = 1, g1 = 0.2, and g2 = 0.9.

49

5.3. Testing the Code

Figure 5.9: The density distribution colourmaps at six different times for φ = −π
2

and x = 1. γ = 1, g1 = 0.2, and g2 = 0.9.

The shift is far more noticeable in Figures 5.8 and 5.9 with every time step. The shift

is multiplied by speed γ and by the step size h, and as γ increases, the shift is no

longer multiplied by 0.01, but by 0.1. Similar results can be seen when the initial

condition depends only on the spatial varaiable x. If we use an initial condition

with x, say exp(sin(πx)), and leave γ set to 1, we will see a shift when we set φ to

−π as seen in Figures 5.10 and 5.11.

50

Chapter 5. Coding the Time-Stepping in MATLAB

(a) Initial density exp(sin(πx)) (b) Density after 10 time steps.

(c) Density after 20 time steps. (d) Density after 30 time steps.

(e) Density after 40 time steps. (f) Density after 50 time steps.

Figure 5.10: The density distribution colourmaps at six different times for φ = −π.
γ = 1, g1 = 0.2, and g2 = 0.9.

51

5.4. Implementation of the Non-Linear Terms

Figure 5.11: The density distribution colourmaps at six different times for φ = −π
and y = 1. γ = 1, g1 = 0.2, and g2 = 0.9.

This is because the solution to this system is

u = F (x− γ cos(φ)t, y − γ sin(φ)t)e−tG = F (x− γ cos(φ)t)e−tG,

which will have the largest shift when φ is −π, 0 or π.

5.4 Implementation of the Non-Linear Terms

The remaining terms that need to be computed in order to use ETD2RK are

−1
2g2 tanh(Γ− 2)u+

∫ π

−π
w(φ− φ′)1

2g2 tanh(Γ− 2)u(X,φ′, t)dφ′,

52

Chapter 5. Coding the Time-Stepping in MATLAB

where

Γ =
∑

j=a,r,al
qj

∫
R2

∫ π

−π
Kd
jK

o
j u(S, θ, t)dθdS.

In order to compute these non-linear terms in our code, we must first compute

Γ. As Γ is just the sum of three convolutions, it makes sense to compute each convo-

lution in Fourier space using our Fourier transform (3.2.4), then using our inverse

Fourier transform (3.2.5) to obtain Γ in real space.

As the hyperbolic tangent of Γ and uwill both be functions of X and φ (or φ′ in

the case of the second non-linear term), it makes sense to multiply these two func-

tions in real space. Then the first term is a constant multiplied by this number and

the second term is then a convolution between this product and w. We ultimately

want both terms in Fourier space to update the solution, as our linear term updates

in Fourier space.

5.4.1 Convolution of Kernels used to Obtain Γ

Γ is the sumof three convolution terms.With respect to attraction and repulsion,

the terms in the sum are

qa,r

∫
R2

∫ π

−π
Kd
a,r(X − S)Ko

a,r(S;X,φ)u(S, θ, t)dθdS.

Recall that Ko
j relies on the absolute value of the difference between S and X , so

for simplicity’s sake, both Ko
j and Kd

j depend on X − S. If we multiply these two

kernels in real space, we will end up with an integral of the form

qa,r

∫
R2

∫ π

−π
Ka,r(X − S, φ)u(S, θ, t)dθdS.

53

5.4. Implementation of the Non-Linear Terms

If we substitute u for (3.2.5), we get

qa,r

∫
R2

∫ π

−π
Ka,r(X − S, φ) 1

KLM

∑
k1

∑
l1

∑
m1

ûk1,l1,m1(t)Φk1,l1,m1(sx, sy, θ) dθ dS

=
∑
k1

∑
l1

∑
m1

qa,rûk1,l1,m1(t)
∫
R2
Ka,r(X − S, φ) 1

KLM
eik1sx+il1sy

∫ π

−π
eim1θ dθ dS.

(5.4.1.1)

The term
∫ π
−π e

im1θ dθ = δm1,0 is a Kronecker delta distribution, som1 = 0 is the only

non-trivial case. Also, if we allow Z = X − S the term

∫
R2
Ka,r(X − S, φ)eik1sx+il1sydS

becomes ∫
R2
Ka,r(Z, φ)eik1(x−zx)+il1(y−zy)dZ.

We can remove eik1x+il1y from the double integral and the remaining term is equal to

the Fourier transform of the kernel multiplied by the constant 4
n2 . (5.4.1.1) becomes

1
KLM

∑
k1

∑
l1

4
n2 qa,rûk1,l1,0(t)K̂a,r.

As the term is equal to the inverse Fourier transform of the product of the Fourier

transforms, both the attraction and repulsion terms are convolutions in space.

The alignment term in the sum is

qal

∫
R

∫ π

−π
Kd
al(X − S)Ko

al(φ′ − θ)u(S, θ, t)dθdS.

54

Chapter 5. Coding the Time-Stepping in MATLAB

If we substitute u for (3.2.5), we get

qal

∫
R2

∫ π

−π
Kd
al(X − S)Ko

al(φ′ − θ)
1

KLM

∑
k1

∑
l1

∑
m1

ûk1,l1,m1(t)Φk1,l1,m1(sx, sy, θ)dθdS

= 1
KLM

∑
k1

∑
l1

∑
m1

qalûk1,l1,m1(t)
∫
R2
Kd
al(X − S)eik1sx+il1sydS

∫ π

−π
Ko
al(φ′ − θ)eim1θdθ.

(5.4.1.2)

If we allow Z = X − S the term

∫
R2
Kd
al(X − S)eik1sx+il1sydS

becomes ∫
R2
Kd
al(Z)eik1(x−zx)+il1(y−zy)dZ.

We can remove eik1x+il1y from the double integral and the remaining term is equal

to the Fourier transform of the kernel multiplied by the constant 4
n2 .

Similarly, if we allow η = φ′ − θ the term

∫ π

−π
Ko
al(φ′ − θ)eim1θdθ

becomes ∫ π

−π
Ko
al(η)eim1(φ′−ηdη.

We can remove eim1(φ′) from the integral and the remaining term is equal to the

Fourier transform of the kernel multiplied by the constant 2π
m
. (5.4.1.2) becomes

1
KLM

∑
k1

∑
l1

∑
m1

2π
m
qalûk1,l1,m1(t) 4

n2 K̂
d
alK̂o

al. (5.4.1.3)

As the term is equal to the inverse Fourier transform of the product of the Fourier

transforms, the alignment term is a convolution in space and angle. If we substitute

55

5.5. Testing the Non-Linear Terms

these terms into Γ, we get Γ to be an n× n×m array in real space.

5.4.2 Utilization of Γ and the Non-Linear Terms in the Code

To calculate the first of the two non-linear terms, we need only take the hyper-

bolic tangent of Γ − 2 and then multiply it by the density u and the constant g2/2.

As we want all non-linear terms in Fourier space in order to update the solution,

we would take the 3-dimensional Fourier transform of the product.

To calculate the second of the two non-linear functions, first we compute the

hyperbolic tangent of Γ − 2 and multiply the result by the density. If we call this

product P , notice that the resulting term has the form

1
2g2

∫ π

−π
w(φ− φ′)P (X,φ′, t)dφ′

which is a convolutionwith respect to angle. Therefore, if we take the Fourier trans-

form of P , we can multiply it by the Fourier transform of 2π
m
w.

With both terms in Fourier space, we can add them together to get the complete

non-linear component of our equation. This non-linear term is computed twice in

the code. Once using the u that is initialized at the beginning of the time step for

ETD2RK, and then again using an as the density. The difference between these two

non-linear terms is then taken and used to compute each new density at the end of

each time step.

5.5 Testing the Non-Linear Terms

It is much more difficult to test a solution including the non-linear terms in the

system analytically than it was to test the solution to the linear terms. That being

said, it is possible to use some intuition to see if the terms are operating as expected.

56

Chapter 5. Coding the Time-Stepping in MATLAB

When coding the convolution components of Γ, all three are computed sepa-

rately. That is, the attraction, repulsion, and alignment terms are all nested sepa-

rately within the code. Because of this, we are able to systematically remove certain

components and test the effects of each term separately.

The density shown at any point (x, y) is an approximation of the density inte-

grated over all angles at (x, y). That is,

u(x, y) =
m∑
j=1

2π
m
u(x, y, φ(j)),

where φ is discretized from −π to π withm points.

The arrows that appear on this graph are found using the Kuramoto order pa-

rameters [10]. They represent the average direction of individuals located at the

position (x, y) on the graph. To obtain the arrows, first we take the weighted aver-

age of all complex numbers eiφ(j) for every descritized φj from−π to π. Each eiφ(j) is

weighted with the density of individuals at the position (x, y) in question, moving

in direction φ(j)

z(x,y) = 1
m

m∑
j=1

u(x, y, φ(j))eiφ(j).

This equation results in a complex number z. We take the argument of z to be the

angle that the animals are travelling in on average. We take |z| to be the length of

the arrow.

5.5.1 Allow only the Alignment Term to have an Effect

If we eliminate the attraction and repulsion terms by setting qa = qr = 0 and

qal to be non-zero (qal = 2), Γ only depends on the alignment term and we expect

that the results should show groups of animals moving uniformly, based on the

overwhelming force of alignment.

Figure 5.12 shows a groupof animalswith the initial distributionu0 = exp(cos(πx)+

57

5.5. Testing the Non-Linear Terms

cos(πy)). In order to emphasize the influence of the non-linear terms, we set the

speed of animals, γ, to zero. The parameters g1 and g2 are set to 0.2 and 0.9 re-

spectively. It is important to have a large g2, because it weighs the bias from the

non-linear terms.

Notice that all animals appear to align over time. Unsurprisingly, the spatial dis-

tribution of animals does not appear to change over time, as the speed the animals

are moving at is set to zero.

58

Chapter 5. Coding the Time-Stepping in MATLAB

(a) Initial density exp(cos(πx) + cos(πy)).

(b) Density after 100 time steps.

Figure 5.12: The colourmap of density at two different times. γ = 0, g1 = 0.2, g2 =
0.9, h = 0.1, and qal = 2.

59

5.5. Testing the Non-Linear Terms

5.5.2 Allow only the Attraction Term to have an Effect

If we exclude the alignment and repulsion terms by setting qal = qr = 0 and qa

to be non-zero (qa = 1), Γ only contains the attraction term and we expect that the

resulting patterns should show animals moving towards densely populated areas

on the graph, based on the overwhelming force of attraction.

Figure 5.13 shows the average density of animals with the initial distribution

u0 = exp(cos(πx)+cos(πy)). In similar fashion to our alignment test, we set g1 = 0.2

and g2 = 0.9, but unlike the previous test, we cannot set the speed of animals to

zero. If animals are attracted to one another, they will move towards one another.

In order to see this behaviour, the animals must be able to move.

Over time, the density of animals becomesmore concentrated around the initial

highest point of density.

60

Chapter 5. Coding the Time-Stepping in MATLAB

(a) Initial density exp(cos(πx) + cos(πy)).

(b) Density after 100 time steps.

Figure 5.13: The colourmap of density at two different times. γ = 0.1, g1 = 0.2,
g2 = 0.9, h = 0.1, and qa = 1.

61

5.5. Testing the Non-Linear Terms

5.5.3 Allow only the Repulsion Term to have an Effect

If we exclude the alignment and attraction terms by setting qal = qa = 0 and qr

to be non-zero (qr = 0.5), Γ only contains the repulsion term and we expect that

the resulting patterns should show animals moving away from densely populated

areas on the graph, based on the overwhelming force of repulsion.

Figure 5.14 shows the average density of animals with the initial distribution

u0 = exp(cos(πx) + cos(πy)). As in our previous two tests, g1 = 0.2 and g2 = 0.9

and as in the attraction test, speed must be non-zero, in order to demonstrate any

behaviour of repulsion.

Over time, the the highest point of density disperses as the animals a repelled

from one another.

62

Chapter 5. Coding the Time-Stepping in MATLAB

(a) Initial density exp(cos(πx) + cos(πy)).

(b) Density after 100 time steps.

Figure 5.14: The colourmap of density at two different times. γ = 0.1, g1 = 0.2,
g2 = 0.9, h = 0.1, and qr = 0.5.

63

5.6. Results

5.6 Results

In order to compute a solution to the system using as much information and

accuracy as possible, we have the ability to include any combination of the attrac-

tion, repulsion, and alignment terms as are applicable to the particular subject in

question. Figure 5.15 includes the contribution of all three components operating

on a randomly distributed group of animals.

Figure 5.15 uses the same initial condition as the three non-linear test cases,

u0 = exp(cos(πx) + cos(πy)), with g1 = 0.2, g2 = 0.9, γ = 0.1, and step-size h = 0.1.

To test the non-linear components, we set qal = 2, qa = 1, and qr = 0.5.

At different times throughout the simulation, all non-linear components appear

to take effect on the distribution of animals. At times, the animals appear to align,

especially at Time = 2. The attraction and repulsion influences appear to balance

one another to some extent, as there is no apparent overwhelming migration to or

away from the initial high density areas.

Simulations can be runwith different initial conditions, so long as they are peri-

odic in all three variables. Also, the strength parameters qa, qr and qal can be altered

to increase or decrease the impact of the attraction, repulsion, and alignment terms

respectively.

64

Chapter 5. Coding the Time-Stepping in MATLAB

(a) Initial density exp(cos(πx) + cos(πy)). (b) Density after 20 time steps.

(c) Density after 40 time steps. (d) Density after 60 time steps.

(e) Density after 80 time steps. (f) Density after 100 time steps.

Figure 5.15: The colourmap of density at two different times. γ = 0.1, g1 = 0.2,
g2 = 0.9, h = 0.1, qal = 2, qa = 1, and qr = 0.5.

65

5.6. Results

66

chapter 6
Conclusions

Implementing non-linearity into this system is important, but does not come

without a cost. In Fetecau’s paper, therewas a great deal of importance placed upon

the dependence θ−φ′ in the probability functionw. Fetecau definesw(φ′−φ, φ′−θ)

as gα(φ′ − φ− v(φ′ − θ)), where v(φ′ − θ) is some function that has its own strength

coefficient κ. This constant dictates the amount that the neighbour’s direction in-

fluences the individual’s probability of turning.

This dependence indicates that the closer a neighbour’s direction is to the pos-

sible new direction of an individual, the less likely he is to change directions. If

an animal is moving in a direction different from the neighbour’s by 180◦, that is

when he is most likely to readjust his direction to be more similar to that of the

neighbour’s.

In Fetecau’s simulations, he uses the variable κ frequently to increase the effects

of alignment, attraction, and repulsion based on the neighbour’s angular direction.

As our system effectively has κ set to 0, we cannot control the strength of these

forces as easily.

67

This does not to imply, however, the removal of the dependence of φ′ − θ from

w has eliminated the dependence of the neighbour’s direction from the system al-

together. Indeed, θ appears in all three convolutions within Γ, and appears in the

orientation kernel for alignment.

The addition of bounded non-linearity to λ has further influenced the results. It

makes practical sense to bound λ, because there is only so much information that

an individual can take in from neighbours.

It should be noted, removing this dependence from w does not stop the system

from forming patterns. Though not shown in this paper, tests with random initial

conditions form distinct patterns. Depending on how strong the forces are, animals

often seem to take on saddle like formations around areas of high density and low

density, and move in vortices in areas of neither high nor low density.

In order for our system to be applicable to some type of animal with the changes

we made to the probability function, we must look at animals that either can’t see

the direction that their neighbours are moving in, or are indifferent to the infor-

mation. For instance, the phylum Cnidaria contains jellyfish, an animal that has no

head, front or back. While the aggregation of jellyfish depends greatly on exterior

factors [7] and may not have a high correlation with this model, Cnidaria, with

their seeming lack of ability to sense neighbours’ directions, appear to be prime

candidates for the adjustments made to this model.

Similarly, the model could be used to explain the motion of cancer cells. It is

known that cancer and other cells appear to aggregate to form clusters [5, 9, 11],

and it may be worth exploring if this model produces realistic simulations of cell

grouping patterns. As cells have neither a front nor a back, it is possible that the

direction cells aremoving inmay be less perceptible to neighbouring cells, meaning

the changes made here to w could still predict cell migration patterns.

We believe, while the model may have lost some relevance with the adaptations

68

Chapter 6. Conclusions

to w, it is still a very good predictor of animal motion and animal group formation.

Further steps can be taken with this study. With the addition of the non-linear

terms, more analysis can be run to test the accuracy of the results. For instance,

in order to test the alignment term, we should test the correlation length of the

individuals in the domain. In order to test the attraction and repulsion terms, we

can examine the cluster radii in order to explore how the animals move to or from

areas of high density.

The only non-linear approximation of λ used in this paper depends on a hyper-

bolic tangent, but can be replaced with any bounded and increasing function. It

would be interesting to see the patterns that form and the impact of the non-linear

terms if the upper bound of λwas larger.

Also, a deeper look into the types of animals and cells that rely less on the

direction their neighbours are moving in than the mutual distance between ani-

mals would be beneficial in distinguishing the subjects this adapted system could

model.

69

70

Bibliography

[1] M. Chen. On the solution of circulant linear systems. Society for Industrial and

Applied Mathematics Journal, 24:668–683, 1987.

[2] S. M. Cox and P. C. Matthews. Exponential time differencing for stiff systems.

Journal of Computational Physics, 176:430–455, 2002.

[3] R. Eftimie. Hyperbolic and kinetic models for self-organized biological aggre-

gations and modement: A brief review. Mathematical Biology, 65:35–75, 2012.

[4] R. Eftimie, G. de Vries, M. A. Lewis, and F. Lutscher. Modeling group forma-

tion and activity patterns in self-organizing collectives of individuals. Bulletin

of Mathematical Biology, 69:1537–1565, 2007.

[5] T. Elsdale and J. Bard. Collagen substrata for studies on cell behavior. Journal

of Cell Biology, 54:626–637, 1972.

[6] R. C. Fetecau. Collective behavior of biological aggregation in two dimensions:

A nonlocal kinetic model. Mathematical Models and Methods in Applied Sciences,

21:1539–1569, 2011.

[7] S. Fossette, A. C. Gleiss, J. Chalumeau, T. Bastian, C. D. Armstrong, S. Van-

denabeele, M. Karpytchev, and G. C. Hays. Current-oriented swimming by

jellyfish and its role in bloom maintenance. Current Biology, 25:342–347, 2015.

71

Bibliography

[8] S. MacNamara and G. Strang. Operator splitting. In R. Glowinski, S. Os-

her, and W. Yin, editors, Splitting Method in Communications, Imaging, Science,

and Engineering, chapter 3, pages 95–114. Springer International Publishing

Switzerand, 2016.

[9] E. Méhes and T. Vicsek. Collective motion of cells: From experiments to mod-

els. Integrative Biology, 6:831–854, 2014.

[10] D. Q. Nykamp. The Idea of Synchrony of Phase Oscillators, June 2018. https:

//mathinsight.org/synchrony_phase_oscillators_idea.

[11] A. Puliafito, A. De Simone, G. Seano, P. A. Gagliardi, L. Di Blasio, F. Chianale,

A. Gamba, L. Primo, and A. Celani. Three-dimensional chemotaxis-driven

aggregation of tumor cells. Scientific Reports, 5, 2015.

[12] S. J. Simpson, A. R. McCaffery, and B. F. Hägele. A behavioural analysis of

phase change in the desert locust. Biological Reviews, 74:461–480, 1999.

[13] T. Vicsek and A. Zafeiris. Collective motion. Physics Reports, 517:71–140, 2012.

72

https://mathinsight.org/synchrony_phase_oscillators_idea
https://mathinsight.org/synchrony_phase_oscillators_idea

Appendices

73

appendix A
Pseudo Code for ETD2RK

75

Algorithm 1 ETD2RK
1: procedure Computes update step for density (Input: γ, u0, û0, h, g1, g2, k (index

for x), l (index for y),ŵ)
2: for n=0:T

h
do

3: Compute the NLTn using Algorithm 6 and the initial condition u0
4: if n =0 then
5: ûn+1 → ûn
6: tn + h→ tn
7: else
8: û0 → ûn
9: 0→ tn
10: for k=-n/2+1:n/2 do
11: for l=-n/2+1:n/2 do
12: NLT (k, l, :)→ NLTφ

13: ̂u0(k, l, :)→ ûφ0
14: size(ûφ0)→M
15: compute the linear operator with Algorithm 3
16: if k=0 and l=0 then
17: exclude first row and column of L
18: compute eL using Algorithm 4
19: computeM1 using Algorithm 5
20: compute LUP decomposition of L to get L1, U1, P1
21: if k=0 and l=0 then
22: a0(k, l, :) = ûφ0
23: for n=1:T

h
do

24: b = LeLûφ0 +M1N̂LTn
25: d = P1b
26: y = L1\d
27: an(k, l, :) = U1\y
28: else
29: b(= LeLûφ0 +M1N̂LTn
30: d = P1b
31: y = L1\d
32: an(k, l, :) = U1\y

76

Appendix A. Pseudo Code for ETD2RK

Algorithm 2 Continuation of ETD2RK
1: procedure (Still within loop over n)Computes update step for density (Input:
γ, u0, û0, h, g1, g2, k (index for x), l (index for y),ŵ)

2: take the inverse Fourier transform of an
3: Compute NLTn+1 using Algorithm 6 and ifftnan
4: for k=-n/2+1:n/2 do
5: for l=-n/2+1:n/2 do
6: NLTn+ 1(k, l, :)→ NLTφn+1

7: ̂an(k, l, :)→ ânφ
8: compute the linear operator with Algorithm 3
9: if k=0 and l=0 then
10: exclude first row and column of L
11: compute eL using Algorithm 4
12: computeM2 using Algorithm 6
13: compute LUP decomposition of L2 to get L2, U2, P2
14: if k=0 and l=0 then
15: unew(k, l, :) = ân0
16: for n=1:T

h
do

17: b = L2eLânφM2(NLTφn+1 −NLTφ)/h
18: d = P2b
19: y = L2\d
20: ûn+1(k, l, :) = U2\y
21: else
22: b = L2eLânφM2(NLTφn+1 −NLTφ)/h
23: d = P2b
24: y = L2\d
25: ûn+1(k, l, :) = U2\y
26: Take the inverse Fourier transform of un+1

Algorithm 3 L
1: procedure compute the linear operator(Input: γ, g1, g2, k, l,m,ŵ)
2: (g1 + 1

2g2)→ G
3: zeros(m,1)→ F
4: for i=1:m do
5: −G+Gŵ(i)→ F (i)
6: diagF → P
7: zeros(1,M)→ C
8: F → C(1)
9: γ

2 (ik − l)→ C(2)
10: γ

2 (ik + l)→ C(M)
11: turn vector C into a circulant matrix K
12: L = P +K

77

Algorithm 4 eL

1: procedure compute exponential of the linear operator(Input: P , K, h)
2: h ∗ P → newP
3: enewP) → A
4: size(K)→ i
5: Fourier matrix of size i to F
6: h ∗K → newK
7: F ∗ newK ∗ 1

i
F con → diag

8: ediag → B
9: 1

i
F con ∗B ∗ F → D

10: (A ∗D +D ∗ A)/2→ eL

Algorithm 5M1

1: procedure (Input: L, eL,m)
2: M1 = eL − Im

Algorithm 6M2

1: procedure (Input: L, eL, h,m)
2: M2 = eL − (Im + hL)

78

appendix B
Pseudo Code for Nonlinear Terms

79

Algorithm 7 Nonlinear
1: procedureComputes NLT in Fourier Space (Input: u, qal, qa, qr, attraction_kernel

from Algorithm 7, repulsion_kernel from ALgorithm 8, alignment_kernel_d
from Algorithm 9, alignment_kernel_o from Algorithm 10, n,m, g2, ŵ)

2: zeros(n,n,m)→ alignment
3: zeros(n,n,m)→ attraction
4: zeros(n,n,m)→ repulsion
5: zeros(n,n,m)→ Γ
6: Take the 3-d Fourier transform of u for û
7: for j=1:m do
8: attraction_kernel. ∗ û(:, :, 1)→mult1
9: ifft2 mult1→ convo1
10: convo1→ attraction(:,:,j)
11: repulsion_kernel. ∗ û(:, :, 1)→mult2
12: ifft2 mult2→ convo1
13: convo1→ repulsion(:,:,j)
14: alignment_kernel_d.*alignment_kernel_o.*û→mult3
15: ifftn mult3→ alignment
16: qa*attraction+qr*repulsion+qal*alignment→ Γ
17: −0.5 ∗ g2 ∗ tanh(Γ− 2ones). ∗ u→ FirstTerm
18: fftn(FirstTerm)→ FirstTerm_hat
19:
20: tanh(Γ− 2ones)→ hyptan
21: hyptan.* u→ product
22: fftn(product)→ product_hat zeros(n,n,m)→ SecondTerm_hat
23: for k=1:n do
24: for l=1:n do
25: for j=1:m do
26: 0.5 ∗ g2 ∗ ŵ(j)*product_hat(k,l,j)→ SecondTerm_hat(k,l,j)
27:

FirstTerm_hat + SecondTerm_hat→ NLT

80

Appendix B. Pseudo Code for Nonlinear Terms

Algorithm 8 kernel_a
1: procedure Computes the kernel for attraction in Fourier Space (Input:ma, da,
n,m)

2: π ∗ma(ma ∗ exp(−d2
a/m

2
a) +

√
π ∗ da +

√
π ∗ da ∗ erf(da/ma))→ A

3: [-1,1) with n points→ s_x
4: [-1,1) with n points→ s_y
5: [−π, π) with n points→ φ
6: compute K_d using Algorithm 10
7: zeros(n,n)→ K_o
8: zeros(n,n)→ K
9: for j=1:m do
10: for k=1:n do
11: for l=1:n do
12: if sx = 0 and sy = 0 then 0→ ψ

13: else arccos(u/
√
s2
x + s2

y)→ ψ

14: (1/2π) ∗ (− cos(φ(j)− ψ) + 1)→ K_o(k,l)
15:
16: K_d(k,l)*K_o(k,l)→ K(k,l)
17: K_hat(:,:,j)=(2

n
)2*fft2(K)

Algorithm 9 kernel_r
1: procedure Computes the kernel for repulsion in Fourier Space (Input: mr, dr,
n,m)

2: π ∗mr(mr ∗ exp(−d2
r/m

2
r) +
√
π ∗ dr +

√
π ∗ dr ∗ erf(dr/mr))→ A

3: [-1,1) with n points→ s_x
4: [-1,1) with n points→ s_y
5: [−π, π) with n points→ φ
6: compute K_d using Algorithm 10
7: zeros(n,n)→ K_o
8: zeros(n,n)→ K
9: for j=1:m do
10: for k=1:n do
11: for l=1:n do
12: if sx = 0 and sy = 0 then 0→ ψ

13: else arccos(u/
√
s2
x + s2

y)→ ψ

14: (1/2π) ∗ (cos(φ(j)− ψ) + 1)→ K_o(k,l)
15:
16: K_d(k,l)*K_o(k,l)→ K(k,l)
17: K_hat(:,:,j)=(2

n
)2*fft2(K)

81

Algorithm 10 alignment_kernel_d
1: procedure Computes the distance kernel for alignment in Fourier Space. Is

also used to compute the distance kernel for attraction and repulsion, with
their respective m and d. (Input:mal, dal, n)

2: π ∗mal(mal ∗ exp(−dal2/mal
2) +
√
π ∗ dal +

√
π ∗ dal ∗ erf(dal/mal))→ A

3: [-1,1) with n points→ s_x
4: [-1,1) with n points→ s_y
5: zeros(n,n)→ K
6: for k=1:n do
7: for l=1:n do
8:

√
s2
x + s2

y → length
9: 1/A ∗ exp(−(length− d)2/m2)→ K_d(k,l)
10: K_hat=(2

n
)2*fft2(K)

Algorithm 11 alignment_kernel_o
1: procedure Computes the orientation kernel for alignment in Fourier Space

(Input:m)
2: [−π, π) with m points→ θ
3: zeros(1,m)→ K
4: for j=1:m do
5: (1/2π) ∗ (− cos(θ(j)) + 1)→ K(j)
6: K_hat=2∗π

m
)*fft(K)

82

	Abstract
	Author's Declaration
	Dedication
	Contents
	Introduction
	2-Dimensional Aggregation Model
	Fetecau's Model
	Adaptations to Implement Non-Linearity
	Symmetry of the System
	Translation
	Rotation
	Reflection

	Solving the Equation with Time-Stepping
	ETD2RK
	Fourier Transformation
	ODE Formation

	Solving the Linear Terms Analytically
	Splitting Method
	Circulant Matrices
	Approximate Solution

	Coding the Time-Stepping in MATLAB
	Dimensional Analysis
	Coding a Solution to the Linear Terms
	Testing the Code
	An Initial Condition with no Spatial Dependence
	Eliminating the Probability Function

	Implementation of the Non-Linear Terms
	Convolution of Kernels used to Obtain
	Utilization of and the Non-Linear Terms in the Code

	Testing the Non-Linear Terms
	Allow only the Alignment Term to have an Effect
	Allow only the Attraction Term to have an Effect
	Allow only the Repulsion Term to have an Effect

	Results

	Conclusions
	Bibliography
	Appendices
	Pseudo Code for ETD2RK
	Pseudo Code for Nonlinear Terms

