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Abstract

In this thesis, we consider downlink multicast beamforming in massive multi-input-

multi-output (MIMO) multi-cell networks. Both non-cooperative and cooperative

beamforming scenarios are considered. For the non-cooperative scenario, aiming at

maximizing the minimum signal-to-interference-plus-noise (SINR) among users, we

propose two multicast beamforming structures: weighted maximum ratio transmis-

sion (MRT) and weighted zero-forcing (ZF). Based on the weighted MRT beamforming

structure, we propose a multicast beamforming design that transforms the beamform-

ing problem into an optimization problem of weights and solve it via semi-definite

relaxation (SDR) and successive convex approximation (SCA). To further reduce the

computational complexity and the communication overhead, a distributed weighted

MRT beamforming design based on signal-to-leakage ratio (SLR) is developed. Fur-

thermore, we propose a distributed ZF beamforming design to maximize the minimum

SINR among users based on the weighted ZF structure. The asymptotically optimal

solution for the weighted ZF method with infinite number of antennas is derived.

We also extend our work to the cooperative beamforming scenario and develop the

weighted MRT approach for cooperative beamforming.

Compared with the traditional method which directly solves beamforming prob-

vii



viii

lem via SDR approach, our proposed methods have a low computational complexity

for massive MIMO systems. Particularly, the computational complexity of weighted

MRT methods does not grow with the number of antennas. Therefore our proposed

methods are suitable for multi-cell networks equipped with large scale of antennas.

Simulation results show that our proposed multicast beamforming solutions yield com-

parable or better performance than existing approaches but have significantly lower

complexity for practical systems with a large but finite number of antennas.
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Chapter 1

Introduction

1.1 Overview

Owing to the fast development of wireless applications as well as the increase in the

number of users and multimedia contents, there has been a tremendous growth in data

traffic over the past decade, particularly in mobile networks. Video data for mobile

devices has been playing a significant role in the growth. According to the Csico

Visual Networking Index forecast for 2016-2021 [1], wireless data will increase at a

compound annual growth rate of 46 percent, and video data is anticipated to account

for 82 percent of all consumer internet traffic by 2021, growing from 73 percent in

2016. The emerging technologies such as virtual reality, autonomous vehicle and cloud

service, will also have higher requirements for wireless communication. In order to

cater the surging demand, numbers of wireless communication techniques have been

studied and developed. Recently, multicasting has been emerging as the efficient

transmission to delivered common data to multiple users [2]. It is considered as a

promising technique for next generation wireless communication.

Over the past decade, the multiple-input-multiple-output (MIMO) communica-

tion technique has been an important area of research due to its potential for high
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throughput, increased diversity, and interference suppression. A MIMO system is a

network with multiple transmit antennas and receiver antennas, e.g., a transmitter

with multiple antennas and multiple receivers with one antenna. In a MIMO system,

there are multiple signal paths between a transmitter and a receiver. When channel

information is known, MIMO beamforming can be used to improve the signal gain

at the receiver. Recently, massive MIMO has been envisioned as a key technology

for next generation communication. As a scaled up version of the MIMO system, the

massive MIMO system comprises a large number of antennas, e.g. a base station (BS)

equipped with over a hundred antennas. The massive MIMO technique can reap all

the benefits of conventional MIMO technique but in a much larger scale. Besides,

there are other benefits including the use of inexpensive low-power components, low

latency and improved robustness [3].

Multicast beamforming in a massive MIMO system is a promising solution for high

data rate transmission of popular contents [4]. By beamforming, signal energy can

be focused into a small region of space to achieve a huge improvement in throughput

and transmission energy efficiency. The multicast beamforming problem is generally

a NP-hard problem [5], and the conventional approach for finding near-optimal so-

lutions is semidefinite relaxation (SDR). However, the computational complexity of

SDR approach increases significantly as the number of antennas grows, which pre-

vents its application in a massive MIMO system. Moreover, the large number of

antennas also induces higher cost for BS coordination and cooperation to exchange

channel information. Low complexity approaches for massive MIMO beamforming

are desirable.
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In this thesis, we investigate the downlink multicast beamforming in massive

MIMO systems. To address the aforementioned challenges, we propose a weighted

max ratio transmission (MRT) approach and a weighted zero-forcing (ZF) approach

for multicast beamforming in massive MIMO multi-cell networks. Low complexity

solutions based on weighted MRT and weighted ZF are derived. Furthermore, we

extend the weighted MRT approach to cooperative multicast beamforming in massive

MIMO systems, where BSs can form a cluster to send common contents cooperatively

to a group of users.

1.2 Multicast Beamforming Techniques

Nowadays mobile networks have been shifted from users-centric to content-centric,

which is manifested by the huge traffic of live streaming and popular video sharing.

To handle this new challenging feature, multicasting has become a promising approach

to cater the increasing demand [6]. In contrast to the traditional users-centric unicast

technique, which transmits the separate signal to each individual user, multicasting

can deliver the common contents to a group of users synchronously. By exploiting the

broadcast nature of the network, multicasting is able to lower transmission burden

and to improve energy efficiency.

Early in 2005, the Multimedia Broadcast/Multicast Service (MBMS) standard for

terminal, radio network and user service was defined by Third Generation Partnership

Project (3GPP). Lately, evolved MBMS (eMBMS) was developed from MBMS for

Long-Term Evolution (LTE). The higher bit rates and the more flexible network

operation in LTE enable eMBMS to bring improved performance to cellular networks.
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For example, eMBMS can reduce network backhaul by delivering premium video

content to multi users, and by pushing content services via user equipment caching [7].

As video contents continue to grow as a dominant part of mobile usage, multicasting

becomes an increasingly attracting solution for future networks.

In order to guarantee the quality of service (QoS) at each user in multicast net-

works, multicast beamforming is applied at the transmitter. Similar to unicast beam-

forming, transmission power minimization and maximization of minimum signal-to-

interference-plus-noise ratio (SINR) are two main beamforming problems for multi-

casting. In the power minimization problem, the optimal beamforming vector, which

minimizes the transmission power while subject to specific SINR constraints at users,

is desired. In the maximization of minimum SINR problem, the optimal beamforming

vector needs to be obtained to maximize the minimum SINR at users under trans-

mission power constraints. Transmit power minimization problem and maximization

of minimum SINR problem are two parallel optimization problems, and both are NP-

hard. Numerical algorithms and signal processing techniques have been sought to

obtain approximately optimal solutions.

1.3 Massive MIMO System

With the rapid development of internet applications and the increase in number of

wireless devices, the wireless network has become more crowd than ever, especially for

dense urban area. However, available spectrums for wireless communication remain

limited in regardless of the increasing demand. Due to the growing number of devices

in a limited spectrum, interference becomes a crucial limiting role in mobile networks.
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There are two conventional techniques used by cellular networks to mitigate intra-cell

interference. One is transmitting signal to each user in different time slots (time-

division multiplexing, TDM), the other one is transmitting signal to each user over

different frequency bands (frequency-division multiplexing, FDM). Recently, massive

MIMO has been emerging as a promising key technology for the 5th generation wire-

less system [3,8]. By equipping a large number of antennas at the transmitter, massive

MIMO can achieve spatial multiplexing, which enables transmitting different signal

to multiple users over same time and frequency resources. By applying beamforming

at transmitter side, each transmit antenna can shape its emitting signal according to

the channel condition. As the signals are received by receiver antennas, signals from

different path add up constructively at its target users, while it add up destructively

at the unintended users. Therefore, intra-cell interference can be suppressed without

consuming extra time or frequency resources.

Massive MIMO systems come with many benefits and potentials. By spatial mul-

tiplexing, massive MIMO can significantly improve the SINR at users, and the network

capacity can increase over 10 times [9]. Moreover, energy efficiency is dramatically

improved. At the limit of infinite number of antennas, the power consumption at

transmitter can be reduced to arbitrary small. In terms of cost, massive MIMO is

economic for using a number of small and low cost antennas instead of a few large

and high quality antennas. The transmitter in a massive MIMO system can comprise

over a hundred independent hot-swappable antennas, making it extremely robust and

low cost to maintain.
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1.4 Motivation and Objectives

As two of the promising techniques for future communication, multicast beamform-

ing and massive MIMO have been increasingly popular in recent research. However,

few works have consider multicast beamforming in massive MIMO systems, which is

the combination of the two techniques. With the increasing demand and the forth-

coming 5G communication era, it is important to develop massive MIMO multicast

beamforming techniques for performance maximization.

Multicast beamforming for MIMO systems faces many challenges. The beam-

forming problems, to minimize transmit power subject to meeting prescribed SINR at

users, or to maximize the minimum SINR at users under transmit power constraints,

are both known to be NP-hard.

The conventional approach for multicast beamforming is applying SDR to re-

lax the beamforming problem, and then solve the relaxed problem via semidefinite

programming (SDP). Eventually a good sub-optimal beamforming vector is recov-

ered from the solution given by SDP. For massive MIMO systems which comprise

over a hundred antennas, the convention SDR approach incurs extremely high com-

putational complexity as the problem size becomes large, making it impractical for

massive MIMO systems. Low complexity approaches for massive MIMO multicast

beamforming are required.

Multi-cell interference mitigation is also one of challenges for the multicast beam-

forming in cellular networks. Beamforming with BS coordination or BS cooperation in

a MIMO system can shape the beam width to reduce interference. A recent study [4]
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on multi-cell massive MIMO multicast shows that, the inter-cell interference vanishes

as the number of BS antennas goes to infinity, and the asymptotically optimal beam-

forming solution is obtained in closed-form as a linear combination of the channel

vectors. However, both existing studies [10] and our study show that the multicast

inter-cell interference vanishes at a rather slow rate as the number of BS antennas

increases, and the asymptotically optimal beamforming solution is rather suboptimal

and may not be a good choice for practical systems with a large but finite number of

antennas.

Considering all above factors, we investigate the multicast beamforming in mas-

sive MIMO multi-cell networks. Our goal is to design a low-complexity multicast

beamforming solutions to maximize the minimum SINR of all users subject to trans-

mitting power constraints. BS coordination and cooperation will be considered to

mitigate interference and to improve signal gain.

1.5 Contributions

In this thesis, we focus on the downlink multicast beamforming in massive MIMO

multi-cell networks. We aim to develop low complexity multicast beamforming so-

lutions for maximizing the minimum SINR among users under transmitting power

budgets. Both non-cooperative and cooperative multicast beamforming scenarios are

considered.
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1.5.1 Non-Cooperative Scenario

For non-cooperative multicast beamforming scenarios, We propose two multicast

beamforming structures: weighted MRT and weighted ZF. Based on the two struc-

tures, we develop centralized and distributed beamforming design for coordinated

multicasting.

Centralized Approach

Using the weighted MRT structure, we develop a centralized beamforming approach

that transforms the multicast beamforming optimization problem into a optimization

problem of weights. The optimal weights can be obtained via the SDR approach, or

be obtained via successive convex approximation (SCA). The problem size of weighted

MRT method is independent of the number of antennas, thus it is suitable for massive

MIMO multi-cell networks.

Distributed Approach

• SLR-Based Weighted MRT

We develop a distributed beamforming design using the signal-to-leakage ratio

(SLR) as the design metric. The SLR-based design converts the centralized multi-

cast beamforming problem into individual beamforming problems, where each BS

maximizes the minimum SLR at its serving users. Again using weighted MRT struc-

ture, the individual beamforming problem is then transformed into a optimization

problem of weights and solved by the SDR approach. This distributed solution re-

quires no communication or information sharing among BSs. The complexity of the

SLR-based weighted MRT method does not grow with the number of BS antennas
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and is suitable for massive MIMO systems.

• Weighted ZF

The ZF approach can eliminate inter-cell interference while no BS communication

is needed. Using weighted ZF structure, we develop a distributed beamforming

method that transforms the multicast beamforming optimization problem into a

optimization problem of weights. The weight optimization problem can be solved

by the SDR approach. Furthermore, we develop the asymptotically optimal solution

for the weighted ZF method at the limit of infinite antennas.

1.5.2 Cooperative Scenario

We proposed a weighted MRT beamforming structure for cooperative multicast beam-

forming scenarios, which allow a cluster of BSs cooperatively sending common sig-

nals to a group of users. Similarly, the beamforming problem is transformed into a

optimization problem of weights, which is then solved by the SDR approach. Com-

pared with solving beamforming problem directly with SDR approach, our proposed

weighted MRT method has a significantly smaller problem size in massive MIMO

systems, and its complexity does not grow with the number of antennas.

Simulations show that our proposed solutions deliver comparable performance to

the traditional direct SDR approach but with significantly lower complexity for mas-

sive MIMO systems. Additionally, our proposed solutions substantially outperform

the non-coordinated solutions such as the traditional single-cell direct SDR approach

and the existing asymptotically optimal beamforming solution.
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1.5.3 Publications

• J. Yu and M. Dong, “Low-Complexity Weighted MRT Multicast Beamforming in

Massive MIMO Cellular Networks,” in Proc. 2018 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Apr 2018.

• J. Yu and M. Dong, “Distributed Low-Complexity Multi-cell Coordinated Multicast

Beamforming with Large-Scale Antennas,” in Proc. 2018 IEEE 19th International

Workshop on Signal Processing Advances in Wireless Communications (SPAWC),

Kalamata, Jun 2018.

1.6 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, a literature review on re-

lated wireless communication techniques is present. In Chapter 3, the weighted MRT

and weighted ZF beamforming structures are proposed for non-cooperative massive

MIMO multicasting. Centralized and distributed beamforming designs are developed

based on our proposed structures. In Chapter 4, the cooperative weighted MRT beam-

forming approach is proposed. The conclusion of the thesis is provided in Chapter

5.

1.7 Notation

In this thesis, transpose, Hermitian and trace of A are denoted by AT , AH and

tr[A]. Notation vec(A) denotes vectorizing a matrix A = [a1, . . . , aN ] into a vector

[aT1 , . . . , a
T
N ]T . Notion bldg[A1, . . . ,AN ] indicates constructing a block diagonal ma-

trix by A1, . . . ,AN . A N × N identity matrix is denoted by IN . A semi-definite
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matrix A is denoted as A � 0. Notion x ∼ CN (a,Y) means x is drawn from the

complex Gaussian distribution with mean a and covariance matrix Y. E[x] stands

for the expected value of variable x.



Chapter 2

Literature Review

2.1 Beamforming Techniques

The classical beamforming originated in the early spatial filters design, which forms

pencil beams in order to receive a signal radiating from a specific location and to

attenuate signals from other locations [11]. Beamforming is applicable to both trans-

mission and reception.

In downlink transmission, beamforming is a technique used in multi-antenna sys-

tems to improve the signal-to-noise ratio (SNR) at receiver and to suppress co-channel

interference. By exploiting spatial characteristics of propagation channels, the spec-

trum efficiency and power effieincy in a MIMO system can be improve by beamform-

ing [12–15].

Nowadays, beamforming is a versatile technique for transmitting and relaying

signals in the multiple-antenna systems [16–28]. Based on the transmitting strategies,

beamforming can be classified into unicast beamforming and multicast beamforming.
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2.2 Unicast Beamforming

Downlink unicast beamforming is a traditional beamforming technique in cellular

networks, where the transmitter equipped with multiple antennas uses different beam

vectors to send independent data to each user [12]. Such beamforming is considered

as space-division multiple access (SDMA).

For the scenario where the antenna array is only applied at the transmitter side,

downlink beamforming approaches are proposed in [29–31] for minimizing the trans-

mission power while satisfying the QoS at each receiver. Convex optimization is

introduced in [32] to solve the beamforming problems of [30] and [31]. Beamforming

optimization approaches are developed in [33,34] for maximizing the minimum SINR

among receivers under transmit power constraints.

The more general scenario is studied in [35–38], where both the transmitter and

the receivers are equipped with multiple antennas. Beamforming problems with dif-

ferent objectives and constraints have been studied. In [37], beamforming vectors

are jointly optimized to minimize transmission power under SINR constraints at the

receivers. Other optimization objectives, such as maximizing spectral efficiency un-

der SINR constraints are studied in [35]. Under the constraints of fixed transmission

power, authors in [36] develop the beamforming scheme to maximize spectral effi-

ciency. Zero-forcing methods for downlink beamforming in multi-user MIMO chan-

nels are proposed in [38] to optimize the maximum transmission rate and to minimize

transmission power problem.

Unicast beamforming is also considered in relay networks. A rank-two Alamouti-
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based distributed relay beamforming scheme is proposed in [25] to minimize per relay

power. Authors in [27] propose a low complexity cooperative beamforming scheme

for multi-cluster relay interference networks. In [23, 26], beamforming problems for

multi-antenna relay processing are investigated.

Channel state information (CSI) is required to perform downlink beamforming.

However, in the practical wireless systems, CSI must be estimated and estimation

error exists. To counter the erroneous channel knowledge, robust beamforming designs

based on convex optimization are developed in [39] and [40].

2.3 Multicast Beamforming

As content-centric applications such as video streaming become prevailing, multicast

transmission is considered as a promising technique to delivery such contents.

A seminal work for multicast beamforming is performed by [5], which investigates

the transmission power minimization problem and the max-min SINR problem in a

single group single cell environment. The researchers prove that both optimization

problems are NP-hard, and the SDR approach is used to solve the problems [41].

Other approaches, such as stochastic beamforming (SBF) and Alamouti-based beam-

forming are proposed in [42] for the multicast beamforming optimization. A low com-

plexity approach based on channel orthogonalization and local refinement is proposed

in [43] for the system with a large number of users. Multicast beamforming in the

system with large scale of antennas is studied in [44]. To find a low complexity beam-

forming solution, authors in [44] develop a successive convex approximation (SCA)

strategy to arrive a convergent iterative second-order cone programming (SOCP) so-
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lution.

Multicast beamforming for multi-group single cell environment is investigated

in [45–49]. In [45] both the transmission power minimization problem and the max-

min SINR problem are considered. For the case where dirty paper precoding is em-

ployed at the transmitter, a beamforming scheme with an optimal power allocation

strategy is proposed in [47]. Multicast beamforming for the max-min SINR prob-

lem under per-antenna constraints is studied in [46], and the SDR approach is used to

give an approximate solution. For the scenario where the transmitter is equipped with

large scale of antennas, authors in [49] propose a low complexity algorithm by leverag-

ing the alternating direction method of multipliers together with the convex-concave

procedure (CCP).

In a multi-cell network, inter-cell interference is taken into consideration for multi-

cast beamforming. Coordinated multicast beamforming, where beamforming vectors

among multiple cells are jointly designed to reduce inter-cell interference, is considered

in [50, 51] for maximizing the minimum SINR among users. Cooperative multicast

beamforming, where BSs form a cluster to transmit common data to a group of users,

is recently considered jointly with caching to minimize the network cost in [6]. In

these works, conventional finite number of BS antennas is assumed, and the SDR

approach is adopted to find the good suboptimal beamforming vectors.

Multicast beamforming designs for dual-hop relay networks are also investigated

recently. A Lagrangian dual approach is proposed in [24] to find an approximate

solution. In [52], an iterative algorithm is developed to minimize the maximal mean-

squared error of the signal waveform estimation among all receivers.
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2.4 Beamforming Design Objectives

Many different design objectives have been proposed for multicast beamforming by

researchers. However, the most commonly studied multicast beamforming optimiza-

tion problems are the power minimization problem and the maximization of minimum

SINR problem.

2.4.1 Power Minimization Problem

In the power minimization problem, beamforming vectors are optimized to minimize

the transmission power while satisfying the QoS level at receivers. The SINR is the

most commonly considered metric for QoS in this problem.

For traditional unicast beamforming, The power minimization problem is studied

in [31, 33, 38, 53, 54] with different strategies and approaches. Semi-definite program-

ming (SDP) is proposed to solve the power minimization problem in [32, 55]. In [56]

the power minimization problem with per-antenna power constraints is investigated.

The power minimization problem in multicast beamforming is originally studied

in [5], where it is proven to be NP-hard and approximated by SDR and Gaussian

randomization techniques. In [57], a distributed SCA method is proposed to solve the

power minimization problem in relay networks. Multicast beamforming to cochannel

user groups is investigated in [58], and SDR and Gaussian randomization is applied

to yield a quasi-optimal solution to the power minimization problem.
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2.4.2 Maximization of Minimum SINR Problem

In the maximization of minimum SINR problem, beamforming vectors are optimized

jointly to maximize the minimum SINR among users in the network under trans-

mission power constraints. For simplicity, we refer to the maximization of minimum

SINR problem as the max-min fair problem.

Many approaches are proposed for the max-min fair problem in traditional unicast

beamforming. A iterative approach to solve the max-min fair problem is studied

in [59, 60]. In [61, 62], l1-norm optimization is proposed to find suboptimal solutions.

A power allocation algorithm for multiuser orthogonal frequency division multiplexing

(OFDM) to minimize total transmission power is proposed in [63]. SDP is introduced

to solve the max-min problem in [32,55], where the researchers shows SDP relaxation

achieves the global optimum.

For multicast beamforming, the max-min fair problem is proven to be NP-hard

in [5]. The optimal solution is approximated by the SDR and Gaussian randomization

techniques. Beamforming for the max-min fair problem in the multigroup scenario is

studied in [46,64], where per-antenna constraints are applied. Coordinated beamform-

ing with a single group per cell is investigated in [51], where a distributed beamforming

approach for the max-min fair problem is derived. In [65], a distributed beamform-

ing approach is proposed by applying the alternating direction method of multipliers

(ADMM). The researchers in [65] further propose a simple distributed beamforming

design for the max-min fair problem with per-antenna constraints.



18

2.5 Coordinated Multipoint Transmission

The history of BS cooperation dates back to previous decades, where the concept of

macroscopic diversity was proposed [66]. To date, coordinated multipoint (CoMP)

transmission, where multiple BSs cooperate by exchanging signaling and/or user data

with the core or backhaul networks, has proven to be a very beneficial solution for

interference management [67]. To be specific, the BS cooperation for downlink trans-

mission can be divided into two categories: coordinated beamforming and joint trans-

mission/ cooperative beamforming.

Coordinated beamforming in the cellular network allows BSs to transmit sig-

nal coordinately to reduce inter-cell interference, thus the SINR at users can be im-

proved effectively. In coordinated beamforming, there is no need for sharing of the

transmission data or signal-level synchronization among BSs. Therefore, it just re-

quires a relatively small amount of backhual communication, and can be considerably

beneficial for a MIMO system with plenty users [68]. In [69], a beamforming scheme

is proposed to mitigate the multi-cell interference by exploiting signal leakage infor-

mation. A distributed coordinated beamforming design to minimize the maximum

BS antenna power without user data exchange between BSs is discussed in [70]. Au-

thors in [71] propose a distributed method to minimize sum transmission power under

given QoS requirements. In [72], a decentralized method is developed to maximize the

minimum rate for users and to cancel inter-cell interference. Authors in [73] give fast

iterative algorithms to maximize the minimum user rate. The optimal assignment of

each mobile to a BS station has been studied in [74].
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Cooperative beamforming allows BSs to form a cluster to transmit a common

data to users simultaneously in order to improve signal strength and to reduce inter-

cell interference. By cooperative beamforming, a BS is able to turn its inter-cell

interference into signaling for a users in other cell, and a user can receive its desired

data from more than one BS. To enable MIMO cooperation, BSs are connected by

high-capacity delay-free links to a central processor (CP). Both CSI and data signals

for intended users are shared among BSs, and their beamforming vector are jointly

designed. Cooperative downlink transmission is consider in [75] for a capacity-limited

backhaul and partial channel knowledge at BSs and users. Authors in [76] study the

overall capacity requirements for a backhaul network for supporting different CoMP

schemes. The relation between the desired SINR at users and the required backhaul

capacity is investigated in [77]. Authors in [78] evaluate the data rates the user can

achieve in a CoMP system with constrained backhaul. In [79], the CoMP performance

on a topologically constrainted backhaul, where links exist only between neighbor BSs,

is studied.

2.6 Massive MIMO System

In the MIMO systems, spatial diversity and spatial multiplexing are two techniques for

improving performance [80]. These two techniques can be combined with beamform-

ing to obtain the spatial diversity gain, the spatial multiplexing gain and the array

gain simultaneously in a MIMO system. Although there are transmission schemes

composed with both spatial diversity and spatial multiplexing, authors in [81] show

that there is a fundamental tradeoff between how much of each technique can get.
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Multi-user MIMO beamforming with a large number of antennas at the BS is

advocated in [82, 83] for the time-division duplex (TDD) scenario. Recently, massive

MIMO systems have been increasingly popular in research [84–87].

Pilot symbol is used in massive MIMO systems to acquire channel CSI. However,

due to the frequency reuse, pilot contamination will occur in cellular networks, re-

sulting in the imperfect acquisition of channel CSI. A TDD protocol with pilots is

proposed in [83] for massive MIMO systems. A compressive sensing-based channel

estimation approach is proposed in [88]. In [83], the acquisition of CSI and the lim-

itation imposed by pilot contamination are studied for a noncooperative multi-cell

massive MIMO system. It is shown that in the limit of infinite antennas, the effects

of uncorrelated noise vanishes, and only the inter-cell interference caused by pilot

contamination remains. The impact of pilot contamination when the number of an-

tennas at BS and the number of users grow to infinity while maintaining a fixed ratio

is studied in [89, 90].

Energy and spectral efficiency of massive MIMO systems are investigated in [91,

92]. In [91] it is shown that in the uplink transmission ZF generally outperforms MRC

by its ability to eliminate intra-cell interference. However, the performance difference

becomes unobvious as pilot contamination grows strong. The Antenna selection for

improving energy efficiency is investigated in [93,94], where circuit power is considered.

A general guideline for massive MIMO designs is drawn in [95], for configurations

of different numbers of users, different numbers of antennas, and different coherence

interval lengths. Performance of different combination of transmission approaches is

studied, where different transmission techniques (unicast or multicast), pilot assign-
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ment strategies (dedicated or shared pilot assignment) and beamforming techniques

(MRT or ZF) are combined.

For the single cell scenario, a low complexity singe group multicast beamforming

approach is proposed in [44] by using SCA and SOCP. An ADMM-based fast algorithm

for multi-group multicast beamforming is developed in [96]. In [97], a two-layer low

complexity beamforming algorithm for massive MIMO systems is proposed, and the

duality between the power minimization problem and the max-min SINR problem is

presented.

For the multi-cell scenario, coordinated multicast beamforming is studied in [4,98],

where it is shown that, the inter-cell interference vanishes as the number of BS anten-

nas goes to infinity, and the asymptotically optimal beamforming solution is obtained

in closed-form as a linear combination of the channel vectors. However, both existing

studies [10] and our study show that the multicast inter-cell interference vanishes at

a rather slow rate as the number of BS antennas increases, and the asymptotically

optimal beamformer is rather suboptimal and may not be a good choice for practical

systems with a large but finite number of antennas. In [99–101] the beamforming

designs take practical antenna array structures into account.

There is a great potential for multicast beamforming in massive MIMO systems.

However, low complexity beamforming schemes are in need of further research, espe-

cially for practical systems with a large but finite number of antennas. Therefore, our

goal in this thesis is to develop low complexity approaches for multicast beamforming

in massive MIMO systems.



Chapter 3

Low Complexity Non-Cooperative
Multicast Beamforming for
Massive-MIMO Multi-Cell
Networks

In this chapter, based on the multi-cell downlink multicasting scenario, we propose two

beamforming designs to maximize the minimum SINR among users in the network,

which have the considerably low complexity compared to the conventional approach.

Our proposed designs also allow base station (BS) coordination to mitigate the inter-

cell interference, therefore outperform non-coordinated beamforming approaches sig-

nificantly.

3.1 System Model

We consider the downlink multicasting in a cellular network consisting of N cells and

a group of K users per cell. The BS in each cell is equipped with M antennas, where

M � 1 for a massive MIMO system. Each user is equipped with a single antenna.

We assume that all BSs and users are perfectly synchronized in time and use the same

spectrum for transmission.
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Inter-cell interference

Figure 3.1: A multi-cellular downlink non-cooperative multicast beamforming scenario.

Each BS sends the common data to the group of K users in its own cell, as shown

in Fig. 3.1. Define N , {1, ∙ ∙ ∙ , N},and K , {1, ∙ ∙ ∙ , K}. Let hnjk denote the M × 1

channel vector from BS n to user k in cell j, for n, j ∈ N and k ∈ K. Cell j is defined

by the cell which BS j serves. Let sn denote the multicast information symbol from

BS n with E[|sn|2] = 1. Let wn denote the M × 1 multicast beamforming vector at

BS n. The received signal at user k in cell n is given by

ynk =hHnnkwnsn +
N∑

i 6=n

hHinkwisi + nnk, k ∈ K, n ∈ N (3.1)

where nnk is the receiver additive white Gaussian noise at user k in cell n with zero

mean and variance σ2. The first term in (3.1) is the desired signal for user k and the

second term is the interference from the BSs of the neighboring cells. The transmit

power at BS n is limited by its maximum power Pn, and we have ‖wn‖2 ≤ Pn, for

n ∈ N .
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From (3.1), the received SINR at user k in cell n is given by

SINRnk =
|hHnnkwn|

2

∑N
i 6=n |h

H
inkwi|2 + σ2

. (3.2)

For multicast beamfroming, the performance at each cell is characterized by the min-

imum SINR among all users in the cell. Our objective is to design the beamforming

vectors {wn} of all BSs to maximize the minimum SINR of the network, under the

transmit power constraints. The optimization problem is formulated by

PNC : max
{wn}

min
k∈K,n∈N

|hHnnkwn|
2

∑N
i 6=n |h

H
inkwi|2 + σ2

s.t. ‖wn‖
2 ≤ Pn, n ∈ N . (3.3)

3.2 Weighted MRT Approach

The optimization problem PNC is a non-convex and NP-hard problem, and the op-

timal solution typically cannot be obtained. To find a good sub-optimal solution, a

typical approach is to apply the SDR approach to find a sub-optimal {wn}. However,

the complexity of the SDR approach grows with the size of the problem which is

determined by M . For massive MIMO systems, as M � 1, the SDR approach incurs

very high computational complexity, thus directly obtaining {wn} through SDR is

not suitable for large-scale antenna systems. Below, we first propose a low complexity

multicast beamforming design via a special multicast beamforming structure to find a

sub-optimal solution {wn} whose complexity does grow with the number of antennas.

Since the proposed design is a centralized method, we then develop a distributed low

complexity method to find {wn} to further reduce the complexity and communication

overhead.
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3.2.1 Weighted MRT Multicast Design

Instead of directly solving for {wn} in problem PNC, we propose the structure of wn

at each BS n as a weighted sum of the channel vectors between BS n and its each

serving users, given by

wWMRT
n ,

K∑

k=1

ankhnnk, n ∈ N . (3.4)

where ank is the complex weight for the channel between BS n and its user k. We

name this as the weighted MRT structure.

Define Hnn , [hnn1, ∙ ∙ ∙ ,hnnK ] as theM×K channel matrix between BS n and its

serving user group. Define an , [an1, ∙ ∙ ∙ , anK ]T as the K×1 weight vector associated

with the beamforming vector wWMRT
n at BS n. Based on wWMRT

n in (3.4), the SINR

expression in (3.2) can now be rewritten as

SINRnk =
|hHnnkHnnan|

2

∑N
i 6=n |h

H
inkHiiai|2 + σ2

=
aHn Annkan

∑N
i 6=n(a

H
i Ainkai) + σ2

(3.5)

where Aink , HHii hinkh
H
inkHii, i, n ∈ N . The transmitting power of BS n can be

written as

‖wWMRT
n ‖2 = ‖Hnnan‖

2 = aHn Bnan (3.6)

where Bn , HHnnHnn.

The optimization problem PNC is now transformed into a optimization problem

of weight vectors {an}n∈N for the same objective. The max-min SINR optimization

problem PNC can now be rewritten as

PWMRT1 : max
{an}

min
k∈K,n∈N

aHn Annkan
∑N
i 6=n(a

H
i Ainkai) + σ2
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s.t. aHn Bnan ≤ Ptot, n ∈ N .

Note that the problem size of PWMRT1 is NK based on the optimization variables in

{an}, as opposed to NM in PNC. The number of constraints in both PWMRT1 and PNC

is same. The problem size of PWMRT1 is independent of the number of BS antennas

M , making this approach especially attractive for massive MIMO systems. Problem

PWMRT1 can be further transformed into the following

PWMRT2 : min
{an}
t

s.t.
aHn Annkan

∑N
i 6=n(a

H
i Ainkai) + σ2

≥
1
t
, k ∈ K, n ∈ N

aHn Bnan ≤ Pn, n ∈ N ,

t > 0.

Although PWMRT2 is a problem with much a smaller size, it is still a non-convex and

NP-hard problem. In the following subsections, we consider two approaches to find a

good sub-optimal solution {an}.

Solving for {an} with SDR Approach

The SDR approach can be applied to solve PWMRT2 . Define Xn , anaHn , n ∈ N , and

drop the rank constrain Rank(Xn) = 1, we relax PWMRT2 into the following problem

PWMRT3 : min
{Xn},t

t

s.t. tr
[
tAnnkXn −

N∑

i 6=n

AinkXi
]
≥ σ2, k ∈ K, n ∈ N

tr
[
BnXn

]
≤ Ptot, n ∈ N ,

Xn � 0,
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t > 0.

Although PWMRT3 is not jointly convex w.r.t. Xn and t, when t is fixed, it is convex

w.r.t. Xn. Thus, we are able to find {Xn} by applying the bi-section search over t,

along with solving a feasibility test problem, given by

Find {Xn}

s.t. tr[tAnnkXn −
N∑

i 6=n

AinkXi] ≥ σ
2, k ∈ K, n ∈ N

tr[BnXn] ≤ Ptot, n ∈ N ,

Xn � 0,

t > 0.

The above problem is a semi-definite programming (SDP) problem which can be

solved efficiently with standard SDP solvers by applying interior point methods [102].

After the good sub-optimal solution {X∗n} is obtained. We need to recover the optimal

weight vectors {a∗n} from the solution. If X∗n is rank one, the weight vector a∗n for BS

n can be directly recovered from X∗n = anaHn . Otherwise, the Gaussian randomiza-

tion method [42] can be applied to find a good sub-optimal solution. Details of the

Gaussian randomization procedure for recovering {a∗n} is shown in Algorithm 1.

Solving for {an} with Successive Convex Approximation (SCA).

The SDR approach with Gaussian randomization shown above can provide a good

approximate solution when the problem size is small. However,the performance of

the SDR approach deteriorates as the problem size becomes large. Therefore, for a

system with a larger number of users per group K, the SDR approach may not have



28

Algorithm 1 Recovering {a∗n} from {X
∗
n} with Gaussian Randomization Procedure

1: Set L.
2: for n = 1 . . . N do
3: if rank(X∗n) == 1. then
4: Directly obtain a∗n by X∗n = a∗na

∗H
n .

5: Let a(l)
n = a∗n, l = 1 . . . L.

6: else
7: Generate the i.i.d random weight vector â(l)

n ∼ CN (0,X∗n), l = 1 . . . L.
8: Scale â(l)

n to satisfy the power constraint by

a(l)
n =

√√
√
√ Pn

â(l)H
n Bnâ

(l)
n

â(l)
n , l = 1 . . . L.

9: end if
10: end for
11: Calculate the minimum SINR with {a(l)

1 , . . . , a
(l)
N } by

SINR(l)
min = min

k∈K,n∈N

aHn Annkan
∑N
i 6=n(a

H
i Ainkai) + σ2

, l = 1, . . . , L.

12: Let l∗ = arg maxl=1...L SINR(l)
min; Set a∗n = a(l∗)

n , n = 1, . . . , N .

the desirable performance. In this section, we consider using a SCA approach to solve

PWMRT2. The optimization problem PWMRT2 can be written equivalently as

PWMRT4 : min
{an},t

t

s.t.
N∑

j 6=n

aHj Ainkaj − ta
H
n Annkan ≤ −σ

2, k ∈ K (3.7)

aHn Bnan ≤ Pn,

t > 0.

Since Annk is a positive semi-definite matrix, for any arbitrary vector vn ∈ CK×1, we

have the following property (an−vn)HAnnk(an−vn) ≥ 0. By re-arranging the terms

we have

−aHn Annkan ≤ −2Re(vHnAnnkan) + vHnAnnkvn, (3.8)
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where the equality holds when an = vn. Based on (3.7) and (3.8), we consider the

following inequalities

N∑

j 6=n

aHj Ajnkaj − 2tRe(vHnAnnkan) ≤ −tv
H
nAnnkvn − σ

2, k ∈ K (3.9)

Note that if {an} satisfies (3.9), then it satisfies (3.7) as well. Thus given any vn,

using (3.9) instead of (3.7), we approximate PWMRT4 by the following problem

PWMRT5 : min
{an},t

t

s.t.
N∑

j 6=n

aHj Ajnkaj − 2tRe(vHnAnnkan) ≤ −tv
H
nAnnkvn − σ

2, k ∈ K (3.10)

aHn Bnan ≤ Pn, (3.11)

t > 0.

According to the inequality (3.8), we see that any feasible solution for PWMRT5 is

also feasible for PWMRT4, as well as for PWMRT2. Note when vn = an, (3.8) holds with

equality, (3.10) is equivalent to (3.7), and PWMRT5 and PWMRT4 are equivalent.

Note that, when t is fixed, PWMRT5 is convex in {an}. To solve PWMRT5, do bi-

section search on t, and solve the feasibility problem. Let {a∗n} denotes the optimal

solution for PWMRT5. By setting vn = a∗n in PWMRT5, a new problem with updated

vn is formed, marked by P+
WMRT5. Again, with bi-section search and feasibility check,

a new optimal solution {a∗n} for the new problem P+
WMRT5 can be obtained. By

iteratively updating vn = a∗n and solving the updated PWMRT5, we can eventually

obtain a good sub-optimal solution for PWMRT4 and PWMRT2. Based on the above

discussion, we summarize in Algorithm 2 the SCA method to solve PWMRT2 .

In the following, we show the iteration in Algorithm 2 converges. Note that in

the ith iteration of Algorithm 2, by applying (3.8) into (3.10) in PWMRT5, we will have
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Algorithm 2 SCA Method for Weighted Multicast Beamforming PWMRT2

1: Initialization : Set i = 0 and ε. Choose arbitrary {v(0)
n } such that v(0)H

n Bnv(0)
n ≤

Pn, for n ∈ N .
2: Solve the following problem via the bi-section search over t and feasibility check;

obtain optimal solution {a∗(i)n }.

PWMRT5 : min
{an},t

t

s.t.
N∑

j 6=n

aHj Ajnkaj − 2tRe(v(i)H
n Annkan) ≤ −tv

(i)H
n Annkv

(i)
n − σ

2, k ∈ K, n ∈ N ,

aHn Cnan ≤ Pn,

t > 0.

3: Set v(i+1)
n = a∗(i)n .

4: i← i+ 1.
5: If maxn∈N

‖a∗(i)
n −v(i)

n ‖

‖a∗(i)
n ‖

≤ ε, stop; otherwise, repeat Steps 2− 5.

the following inequalities

N∑

j 6=n

a∗(i)Hj Ajnka
∗(i)
j − t

∗(i)a∗(i)Hn Annka
∗(i)
n ≤ −σ2, k ∈ K, n ∈ N , (3.12)

where a∗(i)n and t∗(i) are the optimal solutions for PWMRT5 in the ith iteration. In the

(i+1)th iteration, since v(i+1)
n = a∗(i)n , the constraint (3.10) in PWMRT5 can be written

as

N∑

j 6=n

aHj Ajnkaj − 2tRe(a∗(i)Hn Annkan) ≤ −ta
∗(i)H
n Annka

∗(i)
n − σ

2, k ∈ K, n ∈ N .

(3.13)

By choosing a(i+1)
n = a∗(i)n , t

(i+1) = t∗(i) in (3.13) , we have (3.12), i.e. (3.10) in

the (i + 1)th iteration is reduced to (3.12), which is satisfied from the ith iteration.

Thus, ({a∗(i)n }, t
∗(i)) is a set of feasible solution for the (i+ 1)th iteration for PWMRT5

, and PWMRT2. Consequently, we always have t∗(i+1) ≤ t∗(i). Therefore, by doing

the successive iteration, the optimal objective t of PWMRT5 is non-increasing and

eventually the iteration is guaranteed to converge.
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3.2.2 SLR-Based Distributed Coordinated Multicast Design

There are two main challenges in solving PNC. First, because the problem is NP-

hard, and the complexity of numerical algorithms is often sensitive to the problem

size, and becomes high for M � 1, traditional algorithms are not suitable for large-

scale antenna systems. Secondly, the coordinated beamforming design in PNC is a

centralized solution which requires the knowledge of channels between all BSs and

users to jointly optimize {wn}. This can create significant communication overhead,

backhaul traffic burden and additional delay. The first challenge is well addressed by

our proposed approach in Section 3.2, where the problem size is significantly reduced

by the weighted MRT structure. However, weighted MRT approach is still a central-

ized solution, which demands inter-BS communication. Distributed low-complexity

algorithms at each BS n to determine wn are desirable, especially for M being large.

In order to find a low complexity distributed beamforming solution, we consider the

signal-to-leakage ratio (SLR) under the beamforming vector at each BS, and optimize

the multicast beamforming vector to maximize the minimum SLR among users.

Distributed SLR-Based Multicast Beamforming

With beamforming vector wn at BS n, the interference caused to the unintended

user(s) is defined as leakage. We consider three types of leakage:

• Type 1 (T1): Consider the interference to individual user from BS n to user i

in cell j. The SLR for user k in cell n to user i in cell j is given by

SLR(T1)
nk,ji =

|hHnnkwn|
2

|hHnjiwn|2 + σ2
, (3.14)



32

where |hHnjiwn|
2 is the interference caused to user i in cell j.

• Type 2 (T2): Consider the interference to cell j from BS n. The SLR for user

k in cell n to cell j is given by

SLR(T2)
nkj =

|hHnnkwn|
2

∑
i∈K |hHnjiwn|2 + σ2

, (3.15)

where
∑
i∈K |h

H
njiwn|

2 is the total interference caused to users in cell j.

• Type 3 (T3): Consider the interference to all other cells from BS n. The SLR

for user k in cell n to all other cells is given by

SLR(T3)
nk =

|hHnnkwn|
2

∑
j∈N ,j 6=n

∑
i∈K |hHnjiwn|2 + σ2

, (3.16)

where
∑
j∈N ,j 6=n

∑
i∈K |h

H
njiwn|

2 is the total interference caused to all users in other

cells.

Instead of considering the minimum SINR in the network, we design beamforming

vectors {wn} to maximize the minimum SLR in the network, under the transmit power

constraints. Using SLR(T3)
nk of type T3 as an example, the SLR-based optimization

problem is formulated by

max
{wn}

min
k,n

|hHnnkwn|
2

∑
j∈N ,j 6=n

∑
i∈K |hHnjiwn|2 + σ2

s.t. ‖wn‖
2 ≤ Pn, n ∈ N .

Since SLR(T3)
nk , for k ∈ K, is only a function of wn, the coordinated multicast beam-

forming optimization can be separated into the sub-problems, one for each wn to be

solved at each BS n independently. Similar conclusion holds for SLR T1 and T2.

Thus, beamforming vector wn optimization at BS n is formulated as follows
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1) Maximizing the minimum SLR to each user:

PT1
1 : max

wn
min
k,i,j,j 6=n

|hHnnkwn|
2

|hHnjiwn|2 + σ2

s.t. ‖wn‖
2 ≤ Pn. (3.17)

2) Maximizing the minimum SLR to each cell:

PT2
1 : max

wn
min
k,j,j 6=n

|hHnnkwn|
2

∑
i∈K |hHnjiwn|2 + σ2

s.t. ‖wn‖
2 ≤ Pn. (3.18)

3) Maximizing the minimum SLR to all other cells:

PT3
1 : max

wn
min
k

|hHnnkwn|
2

∑
j∈N ,j 6=n

∑
i∈K |hHnjiwn|2 + σ2

s.t. ‖wn‖
2 ≤ Pn. (3.19)

Note that to solve for the wn at each BS n in each problem above, only the

channel vectors between BS n and the users are needed. Thus, using SLR metric,

each BS can solve for its multicast beamforming vector distributively ,while the BS

coordination to mitigate inter-cell interference is maintained.

Distributed SLR-Based Multicast Beamforming withWeighted MRT Struc-
ture

Again, the complexity of the SDR approach grows with the size of the problem.

For a large-scale antenna system with M � 1, directly using the SDR approach for

PT1
1 − P

T3
1 still incurs high computational complexity, therefore it is not suitable for

large M . Instead, we apply our proposed weighted MRT structure in Section 3.2.1

for wn, e.g.
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wWMRT
n ,

K∑

k=1

ankhnnk, n ∈ N . (3.20)

which will convert the beamforming vector optimization into a optimization problem

of weights, thus the computational complexity does not grow with M .

Recall that an = [an1, ∙ ∙ ∙ , anK ]T is the K × 1 weight vector associated with

beamforming vector wn at BS n. Denote Hnj , [hnj1, ∙ ∙ ∙ ,hnjK ] as the M × K

channel matrix between BS n and the user group in cell j. The SLR expression in

(3.14) for T1 can now be rewritten as

SLR(T1)
nk,ji =

|hHnnkHnnan|
2

|hHnjiHnnan|2 + σ2

=
aHn (HHnnhnnkh

H
nnkHnn)an

aHn (HHnnhnjih
H
njiHnn)an + σ2

. (3.21)

The corresponding SLR expressions for T2 and T3 in (3.15) and (3.16) can be similarly

obtained, respectively. The transmission power of BS n is accordingly rewritten as

‖wn‖
2 = ‖Hnnan‖

2 ≤ Pn. (3.22)

Based on the above, the optimization problems PT1
1 − P

T3
1 can be reformulated and

are equivalent to the following weight optimization problems for an at each BS n:

PT1
2 : min

an
t

s.t.
aHn (HHnnhnnkh

H
nnkHnn)an

aHn (HHnnhnjih
H
njiHnn)an + σ2

≥
1
t
, k, i ∈ K, j ∈ N , j 6= n

aHn HHnnHnnan ≤ Pn, t > 0.

PT2
2 : min

an
t
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s.t.
aHn (HHnnhnnkh

H
nnkHnn)an

aHn HHnnHnjH
H
njHnnan + σ2

≥
1
t
, k ∈ K, j ∈ N , j 6= n

aHn HHnnHnnan ≤ Pn, t > 0.

PT3
2 : min

an
t

s.t.
aHn (HHnnhnnkh

H
nnkHnn)an

aHn
(∑
j∈N ,j 6=nHHnnHnjH

H
njHnn

)
an + σ2

≥
1
t
, k ∈ K

aHn HHnnHnnan ≤ Pn, t > 0.

Note that there are K optimization variables in the above problems instead of M in

PT1
1 −P

T3
1 , which provides significant complexity reduction in the large-scale antenna

systems.

To solve the above problems, we apply the SDR approach. In the following, we

focus on PT3
2 ; the other two problems can be solved similarly. Define

Xn , ana
H
n , n ∈ N (3.23)

Cn− ,
∑

j∈N ,j 6=n

HHnnHnjH
H
njHnn, (3.24)

and again, define

Anjk , HHnnhnjkh
H
njkHnn (3.25)

Bn , HHnnHnn. (3.26)

By removing the rank-1 constraint on Xn, we transform and relax PT3
2 into the fol-

lowing problem

PT3
3 : min

Xn,t
t

s.t. tr[tAnnkXn −Cn−Xn] ≥ σ
2, k ∈ K
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tr[BnXn] ≤ Pn

Xn � 0, t > 0.

For a fixed t, the above problem becomes a feasibility test problem given by

Find Xn (3.27)

s.t. tr[tAnnkXn −Cn−Xn] ≥ σ
2, k ∈ K

tr[BnXn] ≤ Pn,

which is a semi-definite programming (SDP) problem and can be solved efficiently with

standard SDP solvers by applying interior point methods. Thus, PT3
3 can be solved

by applying the bi-section search over t, along with solving the above feasibility test

problem for each t.

Let X∗n denote the optimal solution for PT3
3 . The optimal weight vector solution

a∗n can be obtained from X∗n. The weight vector a∗n can be directly recovered from

X∗n = anaHn , if X∗n has rank one. Otherwise, a Gaussian randomization procedure [42]

similar with Algorithm 1 can be applied to find a good suboptimal solution. The

beamforming vector wn is then obtained at each BS n by (3.4), i.e.

wWMRT
n ,

K∑

k=1

ankhnnk, n ∈ N .

In addition, the SCA approach in Section 3.2.1 can be similarly applied to solve

PT1
2 − P

T3
2 as well.

3.3 Weighted ZFMulticast Beamforming Approach

In massive MIMO multi-cell networks, despite the narrower beam formed by the large

antenna array, multi-cell interference is still a main issue causing performance degra-
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dation. The Orthogonalization of transmit beamformer to the interference channel is

realized only for M being very large (M > 1000). Our study reveals that multi-cell

interference decline at a rather slow rate over the increase in antenna number M,

and the interference is nonnegotiable. A ZF approach, which eliminates the inter-cell

interference, may be effective for achieving a good performance in large scale antenna

systems. In this section, we propose a low-complexity weighted ZF beamforming

method for BS to distributively maximize the minimum SINR among users in a cell.

3.3.1 Weighted ZF Multicast Design

We propose a beamforming structure wWZF
n at BS n based on the weighted sum of

orthogonal vectors {znk} to interference space, given by

wWZF
n ,

K∑

k=1

bnkznk, n ∈ N . (3.28)

where {bnk} are the complex weights. Since znk is the orthogonal vector to interference

channels, the following equation holds

zHnkGn− = 0, n ∈ N , k ∈ K, (3.29)

where

Gn− , [Hn1, . . . ,Hn(n−1),Hn(n+1), . . . ,HnN ] (3.30)

is aM×(N−1)K interference channel matrix, which includes all interference channel

vectors from BS n to other-cell users. We construct znk by projecting the channel

vector hnnk into the nullspace of Gn− for BS n, given by following [95]

znk , (IM −Gn−(GHn−Gn−)−1GHn−)hnnk for k = 1 ∈ K. (3.31)
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Vectorize the weights {bnk} in (3.28) into a K× 1 vector by bn , [bn1, ∙ ∙ ∙ , bnK ]T .

Then the SINR expression in (3.2) can be rewritten as

SINRnk =
|hHnnkZnbn|

2

σ2
=

bHnDnkbn
σ2

, (3.32)

where

Zn , (IM −Gn−(GHn−Gn−)−1GHn−)Hnn, (3.33)

Dnk , ZHn hnnkh
H
nnkZn. (3.34)

Note that the interference part is eliminated since the beamformer is zero-forced by

(3.31). Define E , ZHn Zn, the transmission power at BS n is given by

‖wn‖
2 = ‖Znbn‖

2 = bHn Enbn. (3.35)

From (3.28) and (3.35), the optimization problem PNC is transformed into a

optimization problem of weights and can be decoupled into the following distributed

problems at each BS n

PWZF1 : max
an

min
k∈K

bHnDnkbn
σ2

s.t. bHn Enbn ≤ Pn, n ∈ N .

Again, note that the number of optimization variables in PWZF1 is the number of users

in group, instead of the number of antennas M . Furthermore, the problem size of

PWZF1 is also smaller than problem size of PNC because of its distributed structure,

especially for number of BSs N is large. Having a considerably smaller problem size,

our proposed weighted ZF method could achieve a significant complexity saving for
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massive MIMO systems, where M � 1 and NM > K. PWZF1 also consists of fewer

constraints than PNC, which is a benefit from its distributed structure.

To solve PWZF1, a SDR approach similar to Section 3.2.1 can be applied. We

define Xn , bnbHn . The optimization problem PWZF1 can rewritten as following

PWZF2 : min
Xn,t
t

s.t. tr
[
tDnnkXn

]
≥ σ2, k ∈ K

tr
[
EnXn

]
≤ Pn, Xn � 0,

Rank(Xn) = 1, t > 0. (3.36)

By applying the SDR approach, we drop rank one constraint of PWZF2, and then turn

the problem into a SDP problem by fixing t, given by

Find Xn (3.37)

s.t. tr[tDnnkXn] ≥ σ
2, k ∈ K

tr[EnXn] ≤ Pn .

The SDP problem can be efficiently solved by SDP solvers. By applying the bi-

section search over t, a optimal solution X∗n for PWZF2 can be obtained. The weight

vector bn can be recovered from X∗n in a gaussian randomization procedure similar

with Algorithm 1.

3.3.2 Asymptotic ZF Approach

To further reduce the computational complexity, in this section, we develop an asymp-

totical approach for the weighted ZF method, for the number of antennas M → ∞.

As M grows, the channels between BS and users become asymptotically orthogonal
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to each other. Therefore, by exploiting the orthogonality between channels in mas-

sive MIMO systems, we propose the asymptotically optimal solution for weighted ZF

beamforming.

The asymptotically optimal beamforming vector is a linear combination of the

channels between the BS and its serving users [4], given by

wABF
n =

K∑

k=1

bnkhnnk , (3.38)

where bnk is the weight for each channel. Assume hnjk =
√
βnjkgnjk, where gHnjk ∼

CN (0, IM), and βnjk is large scale channel attenuation from BS n to user k in cell j.

Consider the ZF beamformer znk in (3.31). As M →∞, the ZF beamformer znk

converges to the channel itself,

lim
M→∞

znk = lim
M→∞

(IM −G−n(G
H
−nG−n)

−1GH−n)hnnk (3.39)

= lim
M→∞

hnnk −G−n(G
H
−nG−n)

−1GH−nhnnk (3.40)

= hnnk , (3.41)

where to arrive (3.41), we use

lim
M→∞

Gn−hnnk = 0. (3.42)

Therefore, the linear combination of znk is also a asymptotically optimal beamforming

structure for massive MIMO systems, given by

wAZF
n =

K∑

k=1

bnkznk . (3.43)

Note that wAZF
n = wABF

n in the limit of infinite number of antennas M .
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By applying (3.43) into (3.32) and let M → ∞, we can derive the asymptotic

SINR for user k in cell n as following

lim
M→∞

SINRnk = lim
M→∞

|hHnnkwn|
2

σ2

= lim
M→∞

|hHnnk(
∑K
i=1 bnizni)|

2

σ2

= lim
M→∞

|hHnnk(
∑K
i=1 bnihnni)|

2

σ2

= lim
M→∞

|bnkhHnnkhnnk|
2

σ2

= lim
M→∞

|bnkhHnnkhnnk|
2

σ2

=
b2nkβ

2
nnkM

2

σ2
(3.44)

Similarly, the transmission power at BS n has the following structure

lim
M→∞

‖wn‖
2 = lim

M→∞
‖
K∑

i=1

bnizni‖
2

= lim
M→∞

‖
K∑

i=1

bnihnni‖
2

= lim
M→∞

(
K∑

i=1

bnih
H
nni)(

K∑

i=1

bnjhnni)

=
K∑

i=1

b2niβnniM . (3.45)

From observation we can see that there is a relation between the power constraint at

BS n and the sum of SINRs of its serving users. Define

λnk ,
b2nkβnnkM

Pn
, n ∈ N , k ∈ K . (3.46)

The SINR at user k in cell n can be rewritten as

lim
M→∞

SINRnk =
λnkβnnkMPn
σ2

, (3.47)
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And the transmission power can be rewritten as

lim
M→∞

‖wn‖
2 =

K∑

i=1

λniPn . (3.48)

By applying (3.47) and (3.48), asymptotically the optimization problem PNC can be

transformed into a distributed optimization problem over {λni} at BS n, given by

PAZF1 : max
{λni}

min
k∈K

λnkβnnkMPn
σ2

s.t.
K∑

i=1

λni ≤ 1, n ∈ N .

Note that the inequation constraint in PAZF1 is attained at equality for the optimal so-

lution {λ∗ni}. Thus, we can replace the inequality sign with the equal sign. Therefore,

PAZF1 becomes an optimization problem given by

PAZF2 : max
{λnk}

min
k∈K

λnkβnnkMPn
σ2

s.t.
K∑

i=1

λni = 1, n ∈ N .

It can be shown that the optimal solution {λ∗nk} for PAZF2 is obtained when all users’

SINRs are equal, ie,

λn1βnn1MPn
σ2

= . . . =
λnKβnnKMPn

σ2
. (3.49)

Thus, the optimal solution {λ∗nk} is given by

λ∗nk =
1

βnnk
∑K
i=1

1
βnni

, k ∈ K . (3.50)

Substituting (3.50) into (3.46), we can obtain the optimal weights {bnk} , given by

b∗nk =

√√
√
√

Pn

Mβ2
nnk

∑K
i=1

1
βnn1
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=
1
βnnk

√
Pnun
M
, k ∈ K , (3.51)

where

un ,
1

∑K
i=1

1
βnni

. (3.52)

Bringing the above solution into (3.38), we obtain the asymptotically optimal ZF

beamforming vector, given by

wAZF∗
n =

K∑

k=1

b∗nkznk

=
K∑

k=1

1
βnnk

√
Pnun
M

znnk (3.53)

=

√
Pnun
M

K∑

i=1

1
βnnk

znnk . (3.54)

The asymptotically minimum SINR at BS n can be obtained in a similar way, given

by

min SINRn =
λnkβnnkMPn
σ2

=
MPn
unσ2

, ∀ k ∈ K . (3.55)

For a MIMO system with finite but large number of antennas M , e.g. M ≥

100, we can approximately obtain wAZF
n using (3.54), where the large scale channel

attenuation βnjk is statistically obtained at BS n. Since wAZF
n is a closed-form solution,

the computational complexity is dramatically simplified compared with solving the

optimization problem PWZF1 to obtain the optimal weights.

3.4 Complexity Analysis and Comparison

3.4.1 Centralized Multicast Beamforming via Weighted MRT

The centralized weighted MRT method largely reduces the problem size of multicast

beamforming problem for a massive MIMO systems, where M � 1 and M > K. The
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Computational complexity of weighted MRT depends on K and N , and it does not

grow with M . Specifically, to solve PWMRT2 with the SDR approach, the complexity

to solve each SDP in PWMRT3 is O(K5N3), as opposed to O(M4KN 3) for directly

using the SDR method to solve PNC. Compared with directly solving the beamforming

problem with the SDR approach, whose complexity grows with M , the computational

saving of the weighted MRT method is significant. Instead of using the SDR approach,

weighted MRT can also be solved by applying the SCA iteration to find the optimal

solution. The complexity and performance of weighted MRT via SCA will be shown

in the simulation.

3.4.2 Distributed SLR-based Coordinated Multicast Beam-
forming via Weighted MRT

The SLR-based distributed method allows a BS to independently solve for its beam-

forming vector without sharing information with other BSs. The problem size of

the SLR-based beamforming problem only depends on K and is independent of M .

Compared with the centralized weighted MRT method, the distributed structure of

SLR-based method can significantly reduce communication overhead without sacrific-

ing BS coordination to mitigate the multi-cell interference. Computational complexity

is further reduced by the SLR-based method, which has a smaller number of variables

than centralized weighted MRT method. The number of optimization variables in

PT3
1 is K, compared to NK in PWMRT1 and NM in PNC.

The complexity and performance of the SDR approach depend on the number

of constraints. Comparing the three problems PT1
1 − P

T3
1 , we note that PT1

1 has the

largest number of constraints (N − 1)K2 + 1, while PT3
1 has the lowest number of



45

constraints K + 1. Thus the PT3
1 has the lowest complexity. Thus, from the aspect

of computational complexity, SLR in T3, i.e., measuring the total leakage to all the

neighboring cells in the SLR, is the preferred metric, and accordingly, PT3
1 is the

preferred SLR-based distributed multicast beamforming method.

It is worth mentioning that the number of constraints in PWMRT1 and PNC is

NK + 1, which is nearly N times of that in PT3
1 . Specifically, the computational

complexity to solve each SDP for PT3
2 is O(K5), as opposed to PWMRT2 in O(K5N3)

and O(M4KN 3) in PNC. Therefore, the computational complexity in PT3
1 is even

further reduced when compared with PWMRT1, which is a result of fewer constraints.

3.4.3 Distributed Coordinated Multicast Beamforming via
Weighted ZF

As a distributed beamforming design, the weighted ZF method also allows a BS to

solve for its beamforming vector independently, thus it shares the same benefits from

distributed structure like the SLR-based method. The main computational complexity

of weighted ZF method comes from two parts. Part (1) is from PWZF1 by solving

the SDP problem after the relaxation. Complexity of solving PWZF1 is similar with

solving PT3
1 , given that they have the same number of variables and the same number

of constraints. Part (2) is from (3.31), where the inversion of a (N − 1)K× (N − 1)K

matrix is needed. Matrix inversion has low complexity in the software simulation

but may incur high computational complexity in the hardware implementation. The

realization of matrix inversion could be rather complicated and less accurate in the

aspect of practical applications Thus, in the weighted ZF method, matrix inversion

is also considered as one source of complexity, especially for practical applications.
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The asymptotic ZF method provides a asymptotically optimal closed-form solution,

thus its main complexity is only from part (2) the matrix inversion. Since Matlab can

solve matrix inversion efficiently, the complexity for part (2) is very low. Thus the

asymptotic ZF method has the lowest computational complexity among our proposed

methods in the simulation.

3.5 Simulation and Results

For the simulation study, we consider a multi-cell environment with 3 BSs (N = 3)

conducting multicast beamforming. Each cell has a unit cell radius. We randomly

drop K users in each cell. The default transmission power is set such that Pn/σ2 = 10

dB, ∀n. the channel vectors between each BS and each user hnik are i.i.d. generated

as complex Gaussian with zero mean and covariance βnikI, where variance βnik is

determined by the pathloss model βnik = Kod
−κ
nik, with dnik being the distances between

BS n and user k in cell i, and κ being the path loss exponent set to κ = 3.5. Constant

Ko is set such that with a single antenna under unit transmission power at BS, the

received SNR at the edge of each cell is −5 dB. Performance is averaged over random

channel realizations and user drops.

For comparison, we consider the following existing beamforming methods:

i) Centralized coordinated method:

C1) Using SDR to jointly solve for {wn} in PNC directly, namely direct SDR.

ii) Distributed/decentralized methods:

D1) Using SDR to solve the multicast beamforming problem directly for single
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cell (i.e., non-coordinated) [5], namely distributed direct SDR.

D2) Asymptotic multicast beamforming (BF) solution asM →∞ (non-coordinated)

[51], namely asymptotic BF.

Note that these two distributed methods are non-coordinated methods. (e.g single-cell

solution)

3.5.1 Perfect CSI Setup

In this section, we assume all the channel state information (CSI) are perfectly known

at each BS.

Weighted MRT Method

We first discuss the performance of weighted MRT via the SDR approach. In the

simulation, we consider SDR as the default approach for weighted MRT. Simulation

of Weighted MRT via the SCA method will be discussed later for comparison.
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Figure 3.2: Minimum SINR vs. M for the single cell case.
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Figure 3.3: Minimum SINR vs. M for the non-cooperative scenario (N = 3, K = 3).

We first consider a single-cell setup without inter-cell interference with K = 3

users. In Fig. 3.2, we plot the minimum SINR performance versus M for the weighted

MRT method, the direct SDR method and the asymptotic BF method. We see

that all three methods provide very close performance to each other. However, their

computational complexity is substantially different, which can be seen later. Fig. 3.2

indicates that the three methods provide the same-level performance when there is

no interference. However, their performance under interference varies, which will be

shown next.

Fig. 3.3 shows the performance of different methods in a multi-cell scenario with

N = 3 and K = 3. The SDR-based upper bound is plotted as a benchmark. We see

that our proposed weighted MRT method results in a small loss (∼ 1 dB) compared

with the centralized direct SDR method (C1) for M ≤ 200, while using the latter
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M Weighted MRT (s) SLR T3 (s) Weighted ZF (s) Direct SDR (s)

10 6.02 3.61 3.51 9.68

20 5.92 3.34 3.55 24.08

40 5.84 3.53 3.32 153.2

50 5.87 3.56 3.34 311.5

100 5.87 3.54 3.32 2487

200 5.87 3.57 3.34 18339

500 5.93 3.61 3.32 N/A

Table 3.1: Comparison of average computation time for non-cooperative scenario (N = 3).

for M > 200 becomes computationally prohibitive. The asymptotic BF (D2) method

and distributed direct SDR (D1) method have very similar performance, and our

proposed method significantly outperforms the two methods by about 4 dB. The

reason is that the inter-cell interference reduces at a very slow rate as M increases,

and the asymptotic solution (assuming inter-cell interference vanishes) is considerably

sub-optimal for practical large value of M . The average computation time for the

weighted MRT and the direct SDR method are shown Table. 3.1. The complexity of

weighted MRT is low and is almost unchanged as M increases, while the complexity

of direct SDR increases significantly with M and becomes impractical for finite but

large M .

In contract to the single cell scenario, the performances of different methods

diverge in the multi-cell scenario, where inter-cell interference exists. Asymptotic BF

(D2) and distributed direct SDR (D1) become less effective in the multi-cell scenario,

because of their lack of interference control. Our proposed weighed MRT method

remains comparable performance as the direct SDR (C1) method.
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Now we discuss the performance and complexity difference between solving prob-

lem PWMRT2 with the SDR approach and the SCA approach. Fig. 3.4 shows the

performance of the weighted MRT method via the two approaches as the number of

users per cell K increases. Performance of weighted MRT via the SCA approach has

the similar performance with the SDR approach when K is small, such as K = 3.

However, weighed MRT via the SDR approach starts to deteriorate as the number of

constraints grows with K, showing around 1dB loss to its upper bound and 0.7dB loss

to the SCA approach for K = 15. Although the SCA approach appears beneficial for

the system with larger K, the simulation shows the computation time for the SCA

approach is significantly higher than SDR approach, as can be seen in Fig 3.5.
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Figure 3.4: Minimum SINR vs. K for weighted MRT via different approaches (N = 3).
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Figure 3.5: Comparison of average computation time for the SDR and SCA approaches
(N = 3).

Distributed SLR-Based Methods

Fig. 3.6 shows the minimum SINR vs. M by the three SLR-based methods for K =

3, along with previously proposed methods as comparison. As we can see, among

the three different SLR metrics, T3 gives the best performance. Therefore, from

the aspect of computational complexity and performance, T3 is our preferred metric

and the default method for SLR-based beamforming in the rest of simulation. As

shown in Fig. 3.6, comparing the performance of the SLR T3 method with centralized

beamforming methods, for M ≤ 200, the SLR T3 method results in around 1 dB loss

compared to the centralized weighted MRT , and an additional 1 dB loss compared

to the centralized SDR approach (C1) (and upper bound). The loss in the former
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Figure 3.6: Minimum SINR vs. the number of antennas M (N = 3, K = 3).

is due to the SLR-based distributed method instead of joint optimization, and the

latter is due to the weighted MRT beamforming structure. As we can see, the loss

is relatively small. The SLR-based method does not require any channel information

sharing and joint processing among BSs, thus it significantly reduces the network

burden. Furthermore, compared with the two distributed methods (D1 and D2), our

proposed SLR T3 method significantly outperforms them by more than 2.5 dB.

Fig. 3.7 shows the average computation time for the three SLR methods T1-T3.

The complexity of the SLR-based methods remain approximately unchanged as the

number of antennas M increases, which is due to the weighted MRT beamforming

structure. This is in sharp contrast with the conventional direct SDR methods (C1

and D1) where the complexity grows significantly with M , and for M > 200, they
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Figure 3.7: Comparison of average computation time for SLR metrics T1-T3 (N = 3,
K = 3).

become computationally prohibitive to obtain a solution. Among T1-T3, we see that

the average computation time of using T3 is the lowest among the three due to

substantially fewer constraints.

Fig. 3.8. shows the performance of different methods as the number of users per

cell K increases. We see that the performance gap between the distributed SLR T3

method and the centralized weighted MRT method remains roughly unchanged for

different K. The SDR-based upper bound is given for M = 50, while obtaining the

upper bound for larger M value is computationally prohibitive. Fig. 3.9 shows the

performance for different transmission power Pn/σ2 for M = 100, 200, 500. Increasing

the transmission power causes higher inter-cell interference, and potentially more

performance loss for the distributed method. We see from Fig. 3.9 that, for Pn/σ2
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from 0 dB to 15 dB, the minimum SINR increases, and the additional loss by the SLR-

based method is mild, which indicates that the SLR-based method can sufficiently

suppress the interference to prevent more performance deterioration.
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Figure 3.8: Minimum SINR performance at different K (N = 3).
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Figure 3.9: Minimum SINR performance at different Pn/σ2 (N = 3,K = 3).

Weighted ZF Method

In Fig. 3.10, we plot the minimum SINR vs. M by the weighted ZF method, along

with centralized SDR, weighted MRT and asymptotic BF as comparison. As we can

see, although weighed ZF performs worse than weighed MRT for M ≤20, when the

number of antenna M increases, the performance of the weighted ZF improves and

is very close to the centralized direct SDR method (C1) and the upper bound. For

M > 20, the weighted ZF method outperforms the weighted MRT method. There is

only ∼ 0.2 dB loss compared to the centralized SDR method and the upper bound

at M = 100. The improvement for the weighted ZF method over M is due to the

higher degree of freedom. When the number of user per cell K is fixed, for larger

M the orthogonal space to interference channels has a higher dimension, with the

higher degree of freedom to optimize the beamforming vector. In other words, zero
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forcing allows the BS to further exploit the channel diversity in order to find a good

sub-optimal beamforming vector.
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Figure 3.10: Minimum SINR vs. the number of antennas M (N = 3, K = 3).

Computation time for the weighted ZF method over different numbers of anten-

nas M is shown in Fig. 3.11 and Table 3.1. As we can see, weighted ZF has the

lower complexity than weighted MRT, and has similar computation time with the

SLR T3 method. The saving is due to its distributed structure, which results in fewer

constraints and a smaller problem size than PNC with weighted MRT and the central-

ized direct SDR method. As can be seen, the computation time of the weighted ZF

method keeps almost unchange as M increases in the simulation. Note that although

the computational complexity for weighted ZF is low in the simulation, it may be

undesirable in practical hardware implementation because of large matrix inversion.
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Figure 3.11: Comparison of average computation time for different methods (N = 3,
K = 3).
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Figure 3.12: Minimum SINR performance at different K (N = 3).

Fig.3.12 shows performance of weighted ZF and weighed MRT as the number of
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Figure 3.13: Minimum SINR performance at different K (N = 3, M = 100).

user per cell K increases. For a system with M = 100 antennas and K = 3 users per

cell, there is a 0.9 dB advantage for weighted ZF against weighted MRT. However,

the advantage for the weighted ZF method diminishes as K increases. As the number

of users per cell K is large, the weighted ZF method requires a larger M to maintain

its performance advantage. This is because when K increases, the dimension of the

orthogonal space to interference channels decreases, and a lower dimension in the

orthogonal space leads to a limitation in the beamforming optimization. Performance

of weighted ZF and weighted MRT with equal weights is plotted in Fig. 3.13 for

comparison. Note that when the weights are equal, weighted ZF and weighted MRT

are reduced to the conventional MRT method and the conventional ZF method for

multicast. Equal weight methods have more than 3 dB loss when compared with

weighted ZF, and the gap continues to widen as K increases. Thus our proposed
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weighted methods significantly outperform the conventional MRT method and the

conventional ZF method for multicast.

Fig. 3.14 shows the performance of weighted ZF and weighted MRT as the trans-

mission power to noise Pn/σ2 ratio increases. As we can see, when Pn/σ2 is small,

weighted ZF and weighted MRT have the similar performance. As Pn/σ2 increases,

the performance gap between weighted ZF and weighted MRT is widened. There is an

advantage of more than 1 dB for weighted ZF against weighted MRT at Pn/σ2 = 15dB.

In Fig. 3.15, the performance for weighted ZF and weighted MRT with equal weights

is plotted. There is a 2.5dB loss for equal weighted ZF, compared to our proposed

weighted ZF method. We can see that equal weight methods have considerably big

performance loss to our proposed methods.
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Figure 3.14: Minimum SINR performance at different Pn/σ2 (K = 3).
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Figure 3.15: Minimum SINR performance at different Pn/σ2 (N = 3, M = 100).

Asymptotic ZF method

Fig. 3.16 shows the performance of asymptotic ZF method as M increases, along with

the previously proposed methods for comparison. As we can see, the performance

of asymptotic ZF lies between weighted ZF and weighted MRT, with 0.4 dB loss to

weighted ZF and 0.5 dB advantage against weighted MRT. Since the asymptotic ZF

method provides a closed-form solution for the beamforming vector, it offers the simple

computation complexity like asymptotic BF, but it has a 4.5dB gain in minimum SINR

against the latter.
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Figure 3.16: Minimum SINR vs. the number of antennas M (N = 3, K = 3).

3.5.2 Imperfect CSI Setup

In practical network systems, a BS can not obtain the CSI perfectly. Imperfect CSI

might impact the performance of different beamforming methods. We assume the

channel estimation error to be Gaussian independent to the channel. In Section 3.3.2,

the channel between BS n and user k is generated by the path loss modeled as hnik ∼

CN (0, βnkI), where βnk is a function of distance dnk. Thus, it is equivalent to write

the channel model as a function of dnk, given by hnik ∼ CN (0, β(dnk)I). We assume

the cell radius to be r. The channel estimation can be modeled as following

ĥnik = hnik + ȟnik , (3.56)

where ȟnik ∼ CN (0, μβ(r)I) is the channel estimation error, and μ indicates the

level of estimation error. Based on this model, the channel estimation will be more
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inaccurate for distant users while the opposed for nearby users, which is consistent

with the pilot-based channel estimation performance.

Partial Interference

We first consider the scenario where BSs have perfect CSI for its serving users but

imperfect channel estimation for users in other cell, and we name this scenario as

partial interference.

Fig. 3.17 and Fig. 3.18 show the minimum SINR of our proposed methods, with

estimation error factor μ = 0.2, 0.4, respectively. Performance of the centralized

direct SDR method (C1) and the asymptotic BF (D2) is also plotted for comparison.

Note that the asymptotic BF method is not affected by partial interference CSI, since

it only requires channel information of its serving users. As we can see, when the

estimation error μ increases, the minimum SINR of all methods reduces. The weighted

MRT method appears more sensitive than the other methods, and its performance

reduces to the same level with the SLR T3 method for μ = 0.4. The weighted ZF

method keeps the close performance to the centralized direct SDR method (C1) for

different μ. The performance of weighted MRT and weighted ZF over μ is shown

in Fig. 3.19. As we can see, the decrease rate of their performance over μ becomes

slower as μ increases. Fig. 3.20 and Fig. 3.21 show the performance of the asymptotic

ZF method and the equal weight methods for different μ. Asymptotic ZF only has a

small loss to weighted ZF, but has a over 2 dB advantage against asymptotic BF for

μ = 0.4. The equal weight methods perform significantly sub-optimal compared with

our proposed methods. For μ = 0.4, asymptotic BF has similar performance with
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equal weight ZF.
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Figure 3.17: Minimum SINR vs. M for partial interference (N = 3, K = 3, μ = 0.2).
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Figure 3.18: Minimum SINR vs. M for partial interference (N = 3, K = 3, μ = 0.4).
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Figure 3.19: Minimum SINR vs. M with different μ for partial interference (N = 3,
K = 3).
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Figure 3.20: Minimum SINR vs. M for partial interference (N = 3, K = 3, μ = 0.2).
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Figure 3.21: Minimum SINR vs. M for partial interference (N = 3, K = 3, μ = 0.4).

Fully Imperfect CSI

For the fully imperfect CSI scenario, all channel information obtained by a BS is

disturbed and represented by the estimation channel model ĥnik. In this case, channel

estimation error exists for the channels between BS and all users. However, due to

the estimation model the estimation is more accurate for its own users than the users

in other cell.

Fig. 3.22 and Fig. 3.23 show the minimum SINR vs. the number of antennas M

for μ = 0.2, 0.4, respectively. We can see that the performance gaps between different

methods shrink as μ increases, but the relative performance of different methods keeps

unchanged. Similar to the partial interference scenario, the SLR T3 method appears

to be more robust against the channel estimation error than weighted MRT. The

weighted MRT method and the SLR T3 method have similar performance for μ = 0.4
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in the fully imperfect CSI case.
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Figure 3.22: Minimum SINR vs. M for fully imperfect CSI (N = 3, K = 3, μ = 0.2).
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Figure 3.23: Minimum SINR vs. M for fully imperfect CSI (N = 3, K = 3, μ = 0.4).
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3.6 Summary

In this chapter, we considered the non-cooperative multicast beamforming designs in

a massive MIMO multi-cell networks. Aiming to maximize the minimum SINR among

users, we proposed the weighted MRT beamforming approach which can be optimized

through a weight optimization problem via the SDR approach, whose problem size

is independent of the number of BS antennas. To further reduce the computational

complexity and BS communication , we have considered the SLR metric and have pro-

posed a coordinated multicast beamforming design to maximize the minimum SLR

among users. This allows coordinated beamforming problem to be solved distribu-

tively and independently at each BS for its own beamforming vectors. The weighed

ZF structure is proposed as another distributed beamforming design to maximize the

minimum SINR among users. The weighted ZF method can eliminate the inter-cell

interference, which is effective in a interference heavy network. The asymptotically

optimal solution for weighted ZF is given in closed-form. Simulation shows the perfor-

mance of our proposed methods are comparable to the centralized direct SDR method

but with much lower complexity. Our proposed solutions also significantly outperform

the conventional non-coordinated methods.



Chapter 4

Low Complexity Cooperative
Multicast Beamforming for
Massive-MIMO Multi-Cell
Networks

In cooperative massive MIMO multicast networks, BSs are clustered together to

jointly transmit the signal to a group of users. The cooperations among BSs enable

them to achieve higher data rates and diversity than individual transmission [103–105].

In this section, we propose the weighted MRT approach for cooperative multicast

beamforming in massive MIMO multi-cell networks.

4.1 System Model

In the cooperative multicasting scenario, multiple BSs form a cluster to cooperatively

multicast data to users, as show in Fig. 4.1. We consider the general case where

users are divided into groups, with J users per group. Each user group is served by a

cluster of BSs. This setup includes the case where users requesting the same content

in different cells are considered in a same group and served by a specific cluster of

BSs.
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Inter-group interference

Figure 4.1: A multi-cellular downlink cooperative multicast beamforming scenario.

Assume there are N BSs, forming C clusters, where C ≤ N . Each BS cluster

serves one user group, and each user group is only served by one particular BS cluster.

Due to this one-one correspondence, we use the same index for the user group and

its serving BS cluster. Denote the sets of BS cluster indexes and the user indexes

per group as C = {1, ∙ ∙ ∙ , C} and J = {1, ∙ ∙ ∙ , J}. Let Qc denote the set of BS

indices for BS cluster c, where Qc ⊆ N , for c ∈ C (N = {1 . . . N} as defined in

Chapter 3). Note that a BS could be in multiple BS clusters to serve multiple user

groups simultaneously. Thus, the sets Q1 . . .Qc may overlap with each other. Let Bn

denote the set of cluster indexes that BS n belongs to, i.e., Bn = {c : n ∈ Qc, ∀c ∈ C}.

Let w̃nc denote the beamforming vector at BS n for BS cluster c. Let h̃ncj denote the

channel vector from BS n to the user j in group c. The received signal at user j in

group c from BS cluster c, for c ∈ C, j ∈ J , is given by

ycj =
∑

n∈Qc

w̃Hnch̃ncjsc +
C∑

i 6=c

∑

n∈Qi

w̃Hnih̃ncjsi + ncj (4.1)
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where sc is the common multicast symbol from BS cluster c, and ncj is the received

Gaussian additive noise at user j in group c. The transmission power constraint at

BS n is given by

∑

c∈Bn

‖w̃nc‖
2 ≤ Pn. (4.2)

Note that there can be multiple beamforming vectors at BS n for different BS clusters.

Therefore, the transmission power at BS n is the sum of the transmit power by

different beamforming vectors at BS n.

Based on (4.1), the SINR at user j in group c under the cooperative multicasting

is given by

SINRcj =
|
∑
n∈Qc w̃Hnch̃ncj |

2

∑C
i 6=c |

∑
n∈Qi w̃

H
nih̃ncj |2 + σ2

, j ∈ J , c ∈ C. (4.3)

Our goal is to maximize the minimum SINR among all users in the network. The

optimization problem is formulated by

PCP : max
{w̃nc}

min
j∈J,c∈C

|
∑
n∈Qc w̃Hnch̃ncj |

2

∑C
i 6=c |

∑
n∈Qi w̃

H
nih̃ncj |2 + σ2

s.t.
∑

c∈Bn

‖w̃nc‖
2 ≤ Ptot, n ∈ N . (4.4)

4.2 Cooperative Weighted MRT Multicast Design

The optimization problems PCP is a non-convex and NP-hard problem, and the op-

timal solutions typically cannot be obtained. To find a good sub-optimal solution

again, a typical approach is to apply the SDR approach to find a sub-optimal solution

{w̃nc}. However, similar to the non-cooperative case in Chapter 3, the complexity of

the SDR approach grows with the number of antennas M . For massive MIMO sys-

tems, asM � 1, the SDR approach incurs very a high computational complexity, thus
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directly obtaining {w̃}nc through SDR is not practical for massive MIMO systems. In

the following, we propose a low complexity cooperative multicast beamforming design

for massive MIMO systems via the special mutlicast beamforming structure similar to

the one proposed in Chapter 3, to find a good sub-optimal solution, whose complexity

does not grow with the number of antennas.

Similar to the non-cooperative scenario, we construct the beamforming vector

w̃nc as a weighted sum of the channel vectors between BS n and its serving users in

group c, given by

w̃nc ,
J∑

j=1

ãncjh̃ncj , n ∈ Qc, c ∈ C (4.5)

where α̃ncj is the complex weight for the channel vector between BS n and user j in

group c.

Define H̃nc , [h̃nc1, ∙ ∙ ∙ , h̃ncJ ] as the channel matrix between BS n and user group

c. Define ãnc , [ãnc1, ∙ ∙ ∙ , ãncJ ]T as the weight vector for the beamforming vector of

BS n to group c. The SINR of user j in group c in (4.3) can now be rewritten as

SINRcj =
|
∑
n∈Qc h̃HncjH̃ncãnc|

2

∑C
i 6=c |

∑
n∈Qi h̃

H
nijH̃niãni|2 + σ2

. (4.6)

To facilitate the notations, let Qc = |Qc|, i.e. the size of BS cluster c, and we

denote the BS indices in the BS cluster set as Qc = {n1, ∙ ∙ ∙ , nQc}, where nk is

the BS index for kth BS in BS cluster c, for k = 1, ∙ ∙ ∙ , Qc. We further define

ãc , vec([ãn1c, ∙ ∙ ∙ , ãnQcc]) as the weight vector associated with the beamforming

vectors for BS cluster c. Define gicj , vec([H̃Hn1i
h̃n1cj , ∙ ∙ ∙ , H̃

H
nQc i

h̃nQccj ]). Note that

vector gccj contains the correlation of the channel vector from each BS cluster c to

its user j and the channel vectors from that BS to all users in group c. Using ãc and
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gicj , the SINRcj expression in (4.6) can be further rewritten as

SINRcj =
ãHc Ãccj ãc

∑C
i 6=c ã

H
i Ãicj ãi + σ2

(4.7)

where Ãicj , gicjgHicj . Similarly, the transmission power at BS n can be rewritten as

∑

c∈Bn

‖w̃nc‖
2 =

∑

c∈Bn

ãHncH̃
H
ncH̃ncãnc =

∑

c∈Bn

ãHc Fncãc (4.8)

where Fnc , bldg(0, ∙ ∙ ∙ , 0, H̃HncH̃nc, 0, ∙ ∙ ∙ 0) is a block diagonal matrix consisting of

Qc diagonal blocks of size J × J each; Matrix H̃HncH̃nc is located at the kth diagonal

block, where k is determined by the inverse mapping from BS index n to the kth

element in Qc = {n1, ∙ ∙ ∙ , nQc}, where nk = n. The rest diagonal blocks are J × J

zero matrices.

Using (4.7) and (4.8), the optimization problem PCP for the cooperative multi-

casting scenario is now transformed to

PCP2 : min
{ãc}
t

s.t.
ãHc Ãccj ãc

∑C
i 6=c(ã

H
i Ãicj ãi) + σ2

≥
1
t
, j ∈ J , c ∈ C

∑

c∈Bn

ãHc Fncãc ≤ Pn, n ∈ N ,

t > 0.

Compared with the original problem PCP, the transformed problem PCP2 is of size

J
∑C
c=1Qc based on the optimization variables {bc}, which only depends on N and

J and is independent of the number of BS antennas M . This makes the cooperative

weighted MRT approach particularly suitable for massive MIMO systems.

Now PCP2 has a very similar structure as PNCP3 in the non-cooperative case in

Chapter 3. Likewise, we define Yc , ãcãHc , c ∈ C, and use the SDR approach to find
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a solution for PCP2 as

PCP3 : min
{Yc},t

t

s.t. tr
[
tÃccjYc −

C∑

i 6=c

ÃicjYi
]
≥ σ2, j ∈ J , c ∈ C

tr
[ ∑

c∈Bn

FncYc
]
≤ Pn, n ∈ N ,

Yn � 0, n ∈ N

t > 0.

Note that PCP3 is not jointly convex w.r.t Yc and t. However, when t is fixed,

PCP3 is convex w.r.t Yc. A good sub-optimal solution for Yc can be obtained by

applying bi-section search over t along with a feasibility test problem, given by

Find {Yc}

s.t. tr[tÃccjYc −
C∑

i 6=c

ÃicjYi] ≥ σ
2, j ∈ J , c ∈ C

tr[
∑

c∈Bn

FncYc] ≤ Pn, n ∈ N ,

Yc � 0, n ∈ N

t > 0.

The above problem is a SDP problem and can be efficiently solved by standard

SDP solvers. Along with interior point methods [102], a good sub-optimal solution

{Y∗n} can be obtained by SDP solvers. The weight vector {ã∗c} can be extracted

from {Y∗c}. If Y∗c is rank one, the weight vector ã∗c can be directly recovered from

Y∗c = ã∗c ã
∗H
c . Otherwise, a sub-optimal solution can be obtained by the Gaussian
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Algorithm 3 Recovering {ã∗c} from {Y
∗
c} with Gaussian Randomization Procedure

1: Set L.
2: for c = 1 . . . C do
3: if rank(Y∗c) == 1. then
4: Directly obtain ã∗c by Y∗n = ã∗c ã

∗H
c .

5: Let ã(l)
c = ã∗c , l = 1 . . . L.

6: else
7: Calculate the power constraint for beamformer in cluster c at BS n

Pnc = tr
[
FncYc

]
n ∈ Qc.

8: Generate i.i.d random weight vector â(l)
c ∼ CN (0,Y∗c), l = 1 . . . L.

9: Scale â(l)
c to satisfy the power constraint given by follow

â(l)H
c Fncâ

(l)
c = Pnc, n ∈ Qc, l = 1 . . . L.

10: Let ã(l)
c = â(l)

c .
11: end if
12: end for
13: Calculate the minimum SINR with {ã(l)

1 , . . . , ã
(l)
C } by

SINR(l)
min = min

j∈J ,c∈C

ãHc Ãccj ãc
∑C
i 6=c(ã

H
i Ãickãi) + σ2

, for l = 1, . . . , L.

14: Let l∗ = arg maxl=1...L SINR(l)
min; Set ã∗c = ã(l∗)

c , c = 1, . . . , C .

randomization procedure [42]. Details of the Gaussian randomization procedure for

recovering {b∗c} is provided in Algorithm 3.

4.2.1 Complexity Discussion

The problem size of PCP2 only depends on J and N , but independent ofM . Therefore,

the complexity of the proposed weighted MRT method does not grows with M . To

be specific, the complexity to solve each SDP in PCP3 is O(J5(
∑C
c=1 |Qc|)

2C), while

it is O(M4J(
∑C
c=1 |Qc|)

2C) in directly solving PCP with the SDR approach. It is

considerably smaller than that of PCP for a network with large scale of antennas,

where M � 1 and M > J . Compared with directly solving PCP with the SDR
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Non-cooperative Cooperative

M Weighted
MRT (s)

Direct
SDR (s)

Weighted
MRT (s)

Direct
SDR (s)

10 6.02 9.68 5.12 42.1

20 5.92 24.08 5.06 338.7

40 5.84 153.2 7.85 3510

50 5.87 311.5 5.23 5094

100 5.87 2487 5.26 N/A

200 5.87 18339 5.60 N/A

500 5.93 N/A 5.72 N/A

Table 4.1: Comparison of Average Computation Time (N = 3).

approach, whose complexity grows with M , the computation saving of the weighted

MRT method is significant, especially for the cooperative scenario where multiple

beamforming vectors need to be jointly optimized.

4.3 Simulation Results

For simulation, we set the transmission power at BS n to Pn/σ2 = 10 dB, ∀n. The

channel vectors between each BS and each user hncj are i.i.d. generated as complex

Gaussian with zero mean and covariance βncjI, where variance βncj is determined by

the path loss model βncj = Kod
−κ
ncj , with dncj being the distances between BS n and

user j in group c, and κ being the path loss exponent set to κ = 3.5. Constant Ko

is set such that with a single antenna under unit transmission power at the BS, the

received SNR at the edge of each cell is −5 dB. Performance is averaged over random

channel realizations and user drops.

We consider N = 3 and set C = 3 clusters, where each cluster includes all 3
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BSs, and each cluster is serving a group of users with J = 3 users per group. For

comparison, we consider the direct SDR method to obtain {w̃nc} in PCP, which is

directly solving PCP with the SDR approach. The minimum SINR among users vs.

the number of antennasM by different beamforming methods is shown in Fig. 4.2. As

can be seen, the performance gap between direct SDR and weighted MRT is about

1.5 dB at M = 50. However, as will be shown later the weighted MRT method

has the considerably much lower complexity. Performance of the direct SDR method

with M > 50 is computational prohibitive due to its high complexity. Similar to

the non-cooperative scenario, we can derive the cooperative asymptotically optimal

beamforming solution as M → ∞. Its performance is shown in Fig. 4.2, which is

significantly worse than the weighted MRT, as well as the asymptotical BF solution

in the non-cooperative scenario in Chapter 3. This is due to the increased interference

when a BS participates multiple clusters, which decreases very slowly with M and

cannot be captured in the asymptotic solution for finite but large M .

Comparing the performance of the weighted MRT method in the non-cooperative

scenario shown in Fig. 3.3 and the cooperative scenarios shown in Fig. 4.2, we observe

that there is about 1dB gain due to cooperation among 3 BSs.

The average computation time for the weighted MRT method and the direct

SDR method are shown in Table. 4.1. As we can see, the computation time for

the weighted MRT method in the cooperative scenario remains relatively small and

nearly unchanged overM . However, the computation time for the direct SDR method

increases dramatically over M . Comparing the noncooperative and cooperative sce-

narios, we can see that the computation time for weighted MRT remains the same
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level for both cases. However, the computation time for direct SDR in the cooperative

scenario is much higher than that in the non-cooperative scenario due to the larger

problem size introduced by the BS cooperation.
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Figure 4.2: Minimum SINR vs. M for the cooperative scenario (N = 3, J = 3).

The CDF of the minimum SINR among different channel realizations for different

methods is shown in Fig. 4.3. As we can see, the weighted MRT method and the

direct SDR method get a steep CDF curve. The asymptotic BF method has a wider

CDF distribution of the minimum SINR, thus it might result in a higher probability

of poor SINR at users. The more concentrated CDF distribution of the minimum

SINR with the weighted MRT method shows that our proposed method provides the

higher and also more consistent performance and thereby improves the overall network

performance.
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Figure 4.3: Comparison of CDF of minimum SINR for the cooperative scenario (N =
3, J = 3).

Fig.4.4 shows the minimum SINR as the power to noise ratio Pn/σ2 grows. As we

can see, the addition loss of our proposed method to the direct SDR method is mild

as Pn/σ2 increases, which indicates that the weighted MRT method can keep good

performance though interference is strong.
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Figure 4.4: Minimum SINR vs. power to noise ratio (N = 3, J = 3).

The performance of weighted MRT vs. number of users per cluster J is shown in

Fig.4.5. As can be seen, the minimum SINR of the weighted MRT method decreases

as the J increases, but the performance gap for weighted MRT with different M

remain constant over J . Fig.4.6 shows the computation time of weighted MRT as J

increases. The computation time grows as J increases because of the larger problem

size in PCP2, but it is still considerably low when compared to the direct SDR method.
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Fig.4.7 shows the performance of weighted MRT with different user grouping

strategies. Besides the three groups cooperative cluster/grouping setup we described

at the beginning of Section 4.3, we also consider two other grouping strategies for

comparison. The one group cooperative is a strategy where all users in the three cells

form a group in the network. In this case, all users are requiring the same content, and

the three BSs form a cluster to jointly multicast to all users simultaneously. Note that

there is no interference in this grouping strategy since the whole network is considered

as a cluster. The non-cooperative weighted MRT method is also considered, where

the users are served by the nearest BS. As we can see, the one group strategy has a

small performance advantage against the three groups strategy for M less than 100.
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However, for M > 100, the three group strategy outperforms the one group strategy

since the inter-group interference reduces as M grows.

4.4 Summary

In this chapter, we proposed the weighted MRT beamforming design for coopera-

tive multicast in massive MIMO multi-cell networks. The weighted MRT structure

transforms the beamforming problem into a low complexity optimization problem of

weights, whose problem size is independent with the number of antennas M . There-

fore, compared to the conventional SDR method, the weighted MRT method largely

reduces the computation complexity of multicast beamforming in massive MIMO sys-

tems. Simulation results show that the performance of the weighted MRT method

is comparable to direct SDR method. However, weighted MRT has the significantly

lower computational complexity, making it attracting for multi-cell networks with

large scale of antennas at the BS.



Chapter 5

Conclusion

In this thesis, we considered the non-cooperative and cooperative multicast beam-

forming in massive MIMO multi-cell networks. Aiming to maximize the minimum

SINR among users under transmission power constraints, we proposed low complex-

ity beamforming approaches for finding good sub-optimal beamforming solutions.

We first considered the non-cooperative multi-cell scenario. Two beamforming

structures, namely weighted MRT and weighted ZF, were proposed. Applying the

weighted MRT structure, we transformed the beamforming problem into a optimiza-

tion problem of weights, which can be solved by the SDR approach or the SCA

approach. To further reduce the computation complexity and BS communication, we

have considered the SLR metric and have proposed a distributed multicast beamform-

ing method with weighted MRT to maximize the minimum SLR among users. This

allows the coordinated beamforming to be solved distributively and independently at

each BS. Our proposed weighted MRT methods have very low computational com-

plexity that does not depend on the number of antennas. Furthermore, based on the

weighted ZF structure, we have proposed a low complexity distributed beamform-

ing method to maximize the minimum SINR among users while eliminating inter-cell
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interference. Additionally, the asymptotically optimal solution for the weighted ZF

method was derived in closed-form. The ZF methods have low complexity and require

no BS communication.

We then extended our work to the cooperative massive MIMO beamforming

scenario. We proposed the weighted MRT structure and derived a low complexity

beamforming method for the cooperative scenario to maximize the minimum SINR

among users. Similarly, the cooperative beamforming problem was transformed into

a optimization problem of weights, then it was solved by the SDR approach. Simu-

lation shows that our proposed methods result in good performance comparable to

the traditional method directly using the SDR approach , but the complexity of our

methods is significantly lower. Additionally, our proposed methods outperform the

equal weighted MRT method, the equal weighted ZF method and the non-coordinated

methods.

5.1 Feature Work

There are more problems to be investigated for the multicast beamforming in massive

MIMO systems. The following future work can be considered. Firstly, the weighted

ZF beamforming approach will be extend to the cooperative scenario. It is inter-

esting to derive the asymptotically optimal solution for the cooperative weighted ZF

approach as the number of antennas goes to infinity. Secondly, for solving the weight

optimization problems in the proposed methods, the algorithms with lower complex-

ity than SDR approach can be applied, e.g., the ADMM algorithm. Furthermore, the

proposed methods can also be extended to the multi-group-multi-cell scenarios.
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