
StoryTIME: Development of a Tangible Interface for
Storytelling

by

Michael Gharbharan

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science

in

Computer Science

The Faculty of Science

University of Ontario Institute of Technology

August 2018

© Michael Gharbharan, 2018

Contents

1 Introduction 2
1.1 Production Pipeline for 3D Animation 2

1.1.1 Pre-Visualizations . 3
1.2 Tangible Interactive Media Environment 6

1.2.1 StoryTIME . 8
1.3 Tangible User Interfaces . 8
1.4 Augmented Reality . 9
1.5 Research Contributions . 12
1.6 Thesis Structure . 12

2 Related Work 13
2.1 Prototyping Animated Sequences . 13

2.1.1 Tangible User Interfaces for Prototyping 16
2.2 Augmented Reality Technology . 20

2.2.1 Object Identification and Tracking 20
2.2.2 Displaying Augmentations . 23

3 StoryTIME 26
3.1 System Requirements . 27
3.2 System Setup . 28
3.3 System Architecture . 29

3.3.1 Initialization . 31
3.3.2 Image Acquisition . 32
3.3.3 Object Tracking . 35
3.3.4 Calibration . 44
3.3.5 Recording and Playback . 49

3.4 The Transformation Pipeline . 50
3.5 User Interface . 56
3.6 Summary . 61

4 Evaluation of StoryTIME 62
4.1 Research Questions and Hypotheses 62
4.2 Experimental Setup . 63
4.3 Methodology . 65

4.3.1 Phase 1: Introduction . 66

i

4.3.2 Phase 2: Prototyping an Animated Sequence 68
4.3.3 Phase 3: Alpha Beta Test and Debriefing 70

4.4 Results . 71
4.4.1 Demographics . 71
4.4.2 The Positive and Negative Affect Scale (PANAS) 71
4.4.3 The System Usability Scale (SUS) 75
4.4.4 Post Activity Questionnaire 76

4.5 Discussion . 77

5 Conclusions 82
5.1 Contributions . 82
5.2 Limitations and Future Work . 83

References 85

A HP Sprout Hardware Details 91

B Surveys, Questionnaires and Ethics 92
B.1 Consent Form . 92
B.2 Demographics Survey . 95
B.3 Positive and Negative Affect Schedule 109
B.4 System Usability Scale . 111
B.5 Post Activity Questionnaire . 115

ii

List of Figures

1.1 A graphical breakdown of the 3D animation pipeline from idea to final
product [1] . 4

1.2 An example of a pre-vis used in the film "Rise of the Planet of the
Apes". Top left: Technical render from the camera point of view vi-
sualizing scene depth. Top right: Render of a frame in the pre-vis.
Bottom left: Top-down view of the scene. Bottom right: Virtual rep-
resentation of what the physical set will look like.[2] 5

1.3 The concept of the TIME suite of development stations. Each station
would provide a tangible interface for specific development tasks. . . . 7

1.4 Screenshot from PokemonGo!, a game that uses augmented reality. In
this image a virtual character is overlaid on top of an image of the real
world. [3] . 9

1.5 Visualization of the augmentations displayed using a Hololens. The
user is wearing the head mounted display and is interacting with virtual
augmentations. [4] . 10

1.6 Demonstration of Spatial Augmented Reality the model on the left is
augmented using projectors to visualize texture and variable lighting
conditions. [5] . 11

2.1 Example of thumbnail board (top) and a revised storyboard (bottom).[6] 16
2.2 The pioneering works in the field of Tangible User Interfaces 17
2.3 TUI examples . 19
2.4 Depiction of a HMD used to provide a worker with assembly instruc-

tions. The worker is on the left, the "goggles" in-front of their face is
a display. The "drill here" instruction on the right is an example of a
virtual instructional overlay. This overlay is visible to the user wearing
the HMD. [7] . 21

2.5 Summary of the tracking process for fiducial markers, (a) Input from
camera, (b) Result from binarization (c) Result of contour detection,
(d) Result of square fitting, (e) Example of reference marker, (f) Binary
representation of marker [8]. 22

2.6 The steps to image registration. The first step is to detect features
in the image. The second step is to match those features to known
features on the object. The third step is to solve the spatial transfor-
mation that maps the detected features to the known features. 23

iii

3.1 High level diagram of the data flow and system architecture of StoryTIME.
. 30

3.2 Initialization process, this is a detailed view of box 1 from Figure 3.1. 33
3.3 CameraSensorBase is the interface that abstracts the image acquisiton

process for various camera APIs. In this diagram we see three camera
APIs that were used during the development of StoryTIME. Each of
these APIs implement the CameraSensorBase interface. 34

3.4 Overview of the polling and queuing image acquisition methodologies. 36
3.5 High level diagram of the image acquisition process. 37
3.6 UML diagram for the ObjectTrackerBase interface that abstracts the

object tracking process for various object tracking technologies. All
object trackers ultimately return two things: a unique identifier for
the object and the objects 3D pose. 39

3.7 UML diagram for the TrackedObjectBase base class that provides a
common interface to obtain object poses regardless of the underlying
tracking technology. 40

3.8 Early experiment with particle filter based tracking using natural fea-
tures. This image demonstrates the alignment of a virtual chair (blue
points) with its physical counterpart (grey points). 42

3.9 Example of a trackable StoryTIME prop. An AR marker is affixed to
the object. 43

3.10 Early prototype of the AR marker cube. 44
3.11 Pinhole projection for a camera and projector. If a point in the world

can be observed by a camera and a projector, we can determine the
extrinsic transformation between the two coordinate systems. (a), (b)
and (c) are described in Figure 3.12 45

3.12 Demonstration of the different images used to perform calibration . . 47
3.13 Demonstration of the spatial augmentations in StoryTIME. 48
3.14 Example of the recorded animation data. 50
3.15 Visualization of the different coordinate spaces in the transformation

pipeline. A is the colour camera, this space is referred to as "RGB
camera space". B is the depth camera, this space is referred to as
"Depth camera space". C is the projector, this space is referred to
as "Projector space". D is the physical object, this is referred to as
"object space". E is the AR marker, this is referred to as "marker
space". 52

3.16 The physical objects used in the StoryTIME tangible user interface.
Objects 1,2 and 3 are beds. Object 4 is a special object representing a
camera. Object 5 is Goldilocks. Object 6 is a light. 58

3.17 Demonstration of the UI elements in StoryTIME. 60

iv

4.1 Experimental setup used for the StoryTIME user study. (1) and (2) are
cameras used to record the session. (3) is the projector camera setup
on the HP Sprout. (4) Microphone used to record audio. (5) Secondary
display used during the A/B test. (6) The primary display. (7) The
physical props used by participants in the StoryTIME condition. (8)
The StoryTIME interaction area. (9) Keyboard and mouse used with
in the Unity condition. 64

4.2 Study procedure . 67
4.3 The two scenes participants were asked to re-create. The path for

the animated character is shown in yellow. The top image shows the
virtual recreation of the scene from the point of view of the virtual
camera. The middle image shows a top-down layout of the scene. The
bottom image shows an example of how the scenes are created using
the tangible props. 69

4.4 Demonstration of the A/B conditions. 70
4.5 Summary of the frequency using specific prototyping tools when cre-

ating a virtual environment. Results are from a Likert scale where 1
= Never and 5 = always. 72

4.6 PANAS descriptive statistics. 73
4.7 PANAS paired-sample t-Test result 74
4.8 Summary of SUS scores . 75
4.9 Paired samples T-test for SUS scores 76
4.10 Summary of post activity questionnaire responses. 77

v

List of Tables

3.1 StoryTIME core interfaces . 31

vi

Abstract

The production of 3D digital animated sequences is an iterative process where ideas
are scrutinized by members of the production team until they are finalized. Produc-
tion teams are comprised of many individuals with varying levels of expertise in a
broad spectrum of disciplines such as screen writing, animating and directing. It is
imperative that everyone involved understands the development tasks for the pro-
duction. To facilitate the communication of ideas, the prototyping process typically
begins with the development of a storyboard that is then turned into a 3D pre-
visualization. This process requires specialized training to be effective. This thesis
presents StoryTIME, a system designed to simplify the storyboarding and digitaliza-
tion process by leveraging tangible interfaces and projected augmented reality. The
presented system works by capturing and recording the motion of physical props such
as small toys and figurines which are then applied to a virtual counterpart. We discuss
the design and development of the system followed by a user study that investigates
its effectiveness with respect to traditional animation prototyping systems.

1

Chapter 1

Introduction

Creating computer generated animations is an extensive process requiring expertise

in a broad spectrum of disciplines. The process begins with the inception of an

idea and ends with a playable clip bringing the idea to life [1, 9]. The disciplines

needed to achieve this range from non-technical roles such as screen-writing to very

technical roles such as rigging and animating. It is crucial that individuals involved

with the production are able to quickly and accurately express their ideas among

each other. The premise of this work is to examine traditional techniques used to

prototype ideas in the early production stage of computer animation projects and

propose a system which aims to promote collaboration, reduce iteration time and

simplify communication. The proposed system is intended for use by members of

the animation’s production team and will try to make tasks commonly reserved for

animators accessible to everyone.

1.1 Production Pipeline for 3D Animation

The production pipeline for 3D animation is similar to the pipeline of traditional film

production [9]. A visual diagram of a typical production pipeline can be seen in Figure

1.1. While this figure shows the steps a typical production will follow, it is important

2

to remember these steps are more of a guideline and can vary between productions.

Figure 1.1 shows the pipeline we will focus on for the context of this thesis. The

pipeline starts in pre-production where the planning, designing and research of the

3D production takes place [1]. This thesis focuses on the pre-production stage. In

this stage, production team members need to convey ideas among each other. To

help facilitate this, visual representations of the script are produced. The first visual

depiction is usually in the form of a storyboard (see Figure 1.1). A storyboard is a

2D creation of the script which resembles a comic book and consists of shot-by-shot

sketches of the plot. Depending on the nature of the production, the next step is

to develop an animatic or a 3D pre-visualization or sometimes both. An animatic

is essentially an animated version of the storyboard with primitive audio cues and

animations. A pre-visualization by definition is similar to an animatic with the key

difference being that it is in 3D. Pre-visualizations are especially useful when making

3D productions as they allow developers (animators, screenwriters, directors etc.) to

map out the movement and staging of objects and characters in a scene.

The production and post-production stages of the pipeline are where the actual

production ready assets are developed with maximum fidelity (discussed in Chapter

2.1). While these stages are crucial in production, they are not the focus of this thesis

and will not be discussed in further depth. This thesis is focused on the development

of pre-visualizations for 3D animated sequences.

1.1.1 Pre-Visualizations

Development of an animated clip is an iterative process where ideas are criticized

and rethought until finalized. Creating high fidelity clips for each iteration can be

very time consuming and costly. Instead it is common to create a pre-visualization

(pre-vis) which is a low fidelity prototype that virtually recreates the layout of the

set. The pre-visualizations allow developers to identify problems with the staging

3

Figure 1.1: A graphical breakdown of the 3D animation pipeline from idea to final
product [1]

and motion within the scene prior to the creation of high fidelity assets [2, 1]. It is

important to establish staging and actions as early as possible to prevent issues which

may arise further in development, such as spatial limitations which hinder an actor’s

capability to perform desired actions within the set.

An example of a pre-vis can seen in Figure 1.2. In this example, the production

team was tasked with laying out a complicated scene in the movie "Rise of the Planet

of the Apes"[10]. As this scene relies heavily on visual effects (VFX), which can

4

take considerable amounts of time and money to produce, it is imperative that they

work out the details of the sequence prior to performing final renders. Since this

scene consists of shots filmed in the real world, in addition to virtual augmentations,

the pre-vis also includes depictions for the placement of cameras and other filming

equipment as seen in the "Witness_Cam shot" in Figure 1.2. In this shot, a virtual

camera crane is displayed to determine the logistics of filming in the physical area

to minimize the potential for conflicts such as insufficient space to place the various

camera rigs1. When creating a purely virtual production the development of the pre-

vis can become simplified as spatial limitations of the real world do not need to be

necessarily considered.

Figure 1.2: An example of a pre-vis used in the film "Rise of the Planet of the Apes".
Top left: Technical render from the camera point of view visualizing scene depth. Top
right: Render of a frame in the pre-vis. Bottom left: Top-down view of the scene.
Bottom right: Virtual representation of what the physical set will look like.[2]

1Camera rigs include dolly tracks and cranes.

5

Issues Creating Pre-Visualizations

Translating an idea into a playable virtual clip is non-trivial due to the nature of the

technical software used to develop them. Large productions will often have entire

departments dedicated to this task. Methods to create pre-visualizations will be dis-

cussed in Chapter 2, however the typical approach is to key frame the locomotion of

objects using a keyboard and mouse interface. While this is effective, it relies on the

animator’s interpretation of the vision as described by the director. Miscommunica-

tion and misinterpretation can result in a flawed prototype of the scene which in turn

can lead to more development iterations. Reduction in the number of iterations and

the time it takes to produce an iteration is beneficial as it can accelerate develop-

ment time. The StoryTIME system which will be presented in this thesis was created

to improve iteration time in the development of pre-visualizations in collaborative

environments.

1.2 Tangible Interactive Media Environment

The concept of the Tangible Interactive Media Environment (TIME) was presented in

2015 by Buckstein [11] with the development of PlayTIME. The idea was to bridge the

gap between physical and digital prototyping techniques. Physical techniques include

developing paper prototypes such as sketches in a notebook. PlayTIME specifically

investigated the scenario of a game designer placing objects such as power-ups and

enemy spawn points within a virtual environment. Traditionally these tasks are

performed using a keyboard and mouse interface. PlayTIME replaced the keyboard

and mouse with a set of Augmented Reality (AR) markers, each of which performed

a specific task. For example, if the designer wanted to spawn a "enemy spider" to

attack the player, they would place the AR marker representing the enemy spider in

6

the interaction area2 and press a button to create an instance of the object in the

virtual world. The interaction area is an area on a physical table which is mapped to

locations in the virtual world.

The underlying principle of TIME is that all aspects of game development can

be done with some form of a tangible interface. The end goal is to have a suite of

systems which make development tasks more accessible by reducing the reliance on

technical software, as shown in Figure 1.3. This can be achieved by enforcing the

use of common language (i.e. minimal reliance of technical terms) and creating an

interface where users do not need to undergo extensive training to use the software

but can instead learn by interacting with the system naturally. Conceptually this can

be applied to any discipline but the current focus is on digital media.

Figure 1.3: The concept of the TIME suite of development stations. Each station
would provide a tangible interface for specific development tasks.

2Interaction area refers to a region in the real world where the system is able detect and digitize
physical objects.

7

1.2.1 StoryTIME

StoryTIME is a system within the TIME suite intended for story creation. The

system was created to address the previously discussed issues with iteration time,

miscommunication and collaborative prototype development. This is achieved by

leveraging advances in Augmented Reality and Tangible User Interfaces to create

a novel interface for prototyping the staging and locomotion of objects in a virtual

scene. The core idea is to capture the motion of physical objects and apply them onto

a corresponding virtual object. Physical objects are in the form of small figurines

which are tracked with AR markers. The physical objects and their surrounding area

are augmented using spatial augmented reality. The system is throughly described in

Chapter 3.

The rest of this chapter introduces the essential technologies that compose the

StoryTIME system.

1.3 Tangible User Interfaces

The entire TIME ideology revolves around tangible user interfaces. Traditionally, the

interaction with a computer is done with a keyboard and mouse and an interface built

with windows, icons, menus and pointers (WIMP). WIMP interfaces have existed

since the inception of graphical user interfaces [12]. A tangible user interface (TUI)

is one that allows for the control or manipulation of a virtual object through the use

of a physical handle [13, 14]. In the case of StoryTIME, instead of using a mouse

to position a virtual object, users grasp onto a physical prop such as a small toy or

figurine and the software will interpret the spatial manipulations on the prop and

apply changes to the virtual objects. Related applications and work in the area of

tangible user interfaces will be presented in Chapter 2.

Visibility of system status is one of the 10 usability heuristics for user interfaces

outlined by Nielsen [15]. This heuristic is concerned with keeping the user informed

8

with what is currently happening within the system. Tangible user interfaces com-

monly leverage augmented reality as a means to display system status.

1.4 Augmented Reality

Augmented reality (AR) overlays digital information in a real-world environment

[16]. There are three main technologies utilized to display the digital augmentations:

LCD/LED displays (i.e computer monitors, TVs, mobile phones etc.), head mounted

displays (HMD) and projectors [17].

PokemonGO! [3] is a popular game which makes use of AR. A screenshot of the

game can be seen in Figure 1.4. In this screenshot, a digital character is overlaid on

top of an image of the real world captured by the camera on a mobile device. This

display medium is very common making it a lucrative option for many AR developers.

The limitation to AR in this form is that in order to see the virtual augmentations

you must look at the display device.

Figure 1.4: Screenshot from PokemonGo!, a game that uses augmented reality. In
this image a virtual character is overlaid on top of an image of the real world. [3]

9

Mixed Reality is a form of AR which aims to circumvent this limitation by display-

ing the virtual augmentations directly in the real world [18]. These augmentations

can be displayed using head mounted displays such as the Microsoft Hololens [4] or

the Google Glass [19]. Figure 1.5 depicts a user wearing a Hololens and interacting

with virtual augmentations. Since the display is mounted to the user it is impossible

for the augmentations to leave their field of view. Some limitations of this method

of displaying virtual augmentations is that it encumbers the user which could lead to

fatigue and depending on the design of the system could require each user to have a

HMD device.

Figure 1.5: Visualization of the augmentations displayed using a Hololens. The user
is wearing the head mounted display and is interacting with virtual augmentations.
[4]

Projectors are another way to display virtual augmentations in the real world.

This is sometimes referred to as Spatial Augmented Reality (SAR). ShaderLamps

[20] demonstrates using projectors to augment the lighting conditions on physical

models. Figure 1.6 illustrates this, on the left a model of the Taj Mahal is presented

on the right we see the same model with textures and artificial lighting projected onto

it.

10

Figure 1.6: Demonstration of Spatial Augmented Reality the model on the left is
augmented using projectors to visualize texture and variable lighting conditions. [5]

Each of these display technologies can be used to bring a tangible user interface

to life. StoryTIME utilizes spatial augmented reality by projecting the digital aug-

mentations onto and around the physical props users interact with. The primary

justification for this design decision is that it allows users to see the augmentations

without being limited by the viewing angles of a LCD/LED display and it also allows

them to remain unencumbered as they do not have to wear any HMDs. Projection

based AR is limited by factors that comprise the visibility of the augmentations such

as ambient light, obstructions and projector coverage. Ambient light refers to light

present in the environment that does not originate from the projector. If there a lot

of ambient light then the images displayed by the projector will appear washed out

and faded, this can happen in a bright room or outside on a sunny day. To overcome

this projectors are typically used in darker environments. Obstructions between the

projector lens and display surface cast shadows that prevent the augmentations from

being visible. A single projector can only display a single image plane, this means it

is only capable of covering an object from a single view point, this is the projector

coverage issue. Shadows and projector coverage limitations can be mitigated by using

multiple projectors as demonstrated in RoomAlive [21]. Related work which leverage

spatial augmented reality and tangible user interfaces will be presented in Chapter 2.

11

1.5 Research Contributions

The contributions of this work include the design, development and evaluation of

StoryTIME, a tangible interface for the creation of pre-visualizations. Evaluation was

done in the form of a user study. This work aims to answer the following questions:

• Does prototyping with tangibles improve iteration time when developing pre-

visualizations?

• How does prototyping pre-visualizations with tangibles compare with traditional

keyboard and mouse based tools in terms of usability and user experience?

• How does displaying augmentations on a computer monitor compare with pro-

jected augmentation in terms of user preference and performance?

1.6 Thesis Structure

Chapter 2 will discuss related work in the area of pre-visualization development.

Chapter 3 will provide a detailed breakdown of the StoryTIME system. This

chapter will cover implementation details and justifications for the design decisions

made during development.

Chapter 4 presents the evaluation of StoryTIME. In this chapter the evaluation

methodology is described and the results are presented and discussed.

Chapter 5 concludes the thesis with a summary and discussion of the study results

and future work.

12

Chapter 2

Related Work

The purpose of this chapter is to establish a background in prototyping techniques

used during the production of animated sequences. An animated sequence in the

context of this work refers to a series of related events showing the progression of a

scene from start to finish. The chapter begins with an overview of exiting prototyping

techniques and is followed by a series of underlying technologies that support AR and

tangible user interfaces (TUI). The goal of this chapter is to provide rationale into

the design decisions that went into creating StoryTIME.

2.1 Prototyping Animated Sequences

The definition of a prototype varies between industries, the general idea is that they

are a "work in progress" or "proof of concept". McElroy defines a prototype as a

manifestation of an idea into a format that communicates the idea to others or is

tested with users, with the intention to improve that idea over time [22]. This is the

definition that will be used in the context of this thesis.

Prototype Fidelity

Determining the level of fidelity for a prototype is an essential decision that needs to

be made early in development. Fidelity refers to how feature complete the prototype

13

is [22, 23]. There are three common levels of fidelity used when developing prototypes,

low, medium and high.

Low fidelity prototypes are the first step in the development of a product as they

are generally quick to develop and have low development costs. A paper prototype is

an example of a low fidelity prototype. Paper prototypes are non-functional mock-ups

of the end product. If prototyping a graphical user interface (GUI) one could draw the

UI elements on a pieces of paper and quickly iterate by simply re-drawing elements

based on design decisions. In the case of computer animation, paper prototypes are

commonly in the form of a storyboard which presents the rough idea of how a scene

will play out. While paper prototypes are not functional, they allow quick iterations

at a low cost.

Medium fidelity prototypes often build upon their low fidelity counterparts. This

is where functionality starts being added in, in the case of a GUI, this can be where

a digital mock-up with primitive functionality could be produced for the intention of

early testing. Early testing allows developers to determine if an idea is technically

feasible or if any major revisions need to be made. Medium fidelity prototypes typi-

cally have longer development times than low fidelity prototypes as they require some

level of functional implementation.

High fidelity prototypes are a level above medium fidelity prototypes, these pro-

totypes should have all major issues ironed out and the system should be usable. In

the case of animation these prototypes should be ready for final renders.

Storyboards & Pre-Visualizations

Development of an animated sequence often begins with a storyboard [24, 25]. Devel-

opment of a storyboard occurs after the core details of the plot have been developed.

Storyboarding allows creators to workout the visual elements that best suit the story

[24]. Visual elements refer to the objects in the scene and the twelve principles of

animation. The principles of animation were created by Disney as a means to provide

14

guidelines for animators to follow when creating animations [1]. While each of the

twelve principles are important, developing a single TUI to accommodate all of them

would be a difficult challenge. However, creating a series of TUIs designed for specific

tasks, as discussed in the TIME framework presented in Chapter 1 should be a more

attainable goal. StoryTIME focuses on the staging, timing principles of animation.

These principles are described below:

• Staging: how the objects in the scene are laid out and how they fill the screen.

• Timing: how long an action takes to complete.

Storyboards are a form of prototyping and as such have varying levels of fidelity.

Figure 2.1 (top) shows an early storyboard. This board is made up of sticky notes

and rough sketches. Early storyboards in this from are referred to as thumbnails

[26, 24, 25, 6]. Figure 2.1 (bottom) shows the same scene but with more detailed

drawings. Comparing these two figures, we can see that the staging and framing are

nearly identical. The big difference between the two revisions is the additional detail

added in the storyboard. These additional details give a better sense of the mood

and environment. The reasoning for using low fidelity prototypes is to reduce the

number of high fidelity iterations needed as developing higher fidelity renditions take

longer to develop. Furthermore, staging issues can be resolved without the need for

high fidelity drawings.

Pre-visualizations (pre-vis), as described in Chapter 1.1.1 are higher fidelity pro-

totypes in the form of a playable clip that depicts the essential elements shown in the

storyboard. The traditional approach to creating a pre-vis is by creating a key-framed

animation. A key-framed animation is one where the animator poses an object at key

moments and relies on interpolation to calculate the intermediate frames. There are

many software suits available with key-framing functionality such as Autodesk Maya,

Blender, Unity and Unreal Engine.

15

Figure 2.1: Example of thumbnail board (top) and a revised storyboard (bottom).[6]

2.1.1 Tangible User Interfaces for Prototyping

The first form of a Tangible User Interface (TUI) was presented in the Bricks system

shown in Figure 2.2a by Fitzmaurice [13]. The idea was to replace the mouse with a

set of blocks to interact with a UI. Imagine a slider on a touch screen, but instead of

using your finger to interact with it, you placed a block on it and slid the block. This

introduced the idea of having multiple blocks to interact with multiple UI elements

simultaneously, something that a cursor based interaction method would not be able

to achieve. Tangible Bits [14] generalized the Bricks concept by disconnecting it

16

from the WIMP1 style interface by allowing the physical object itself be the UI. Urp,

shown in Figure 2.2b is an urban planning tool where each object was individually

recognizable by the system and allowed users to prototype the positioning of buildings

and wind flow by manipulating the physical objects.

(a) The Bricks user interface [13] (b) Urp, a TUI for urban planning [14]

Figure 2.2: The pioneering works in the field of Tangible User Interfaces

Enabling users to interact with a system using natural movements is one of the

biggest affordances of a TUI. A study on the impact of TUIs on designer’s spatial

cognition was conducted by Kim and Maher [27]. They investigated the effects of

epistemic and pragmatic actions on a user’s ability to complete designing tasks. Epis-

temic refers to the use of exploratory motor actions to incrementally move towards

an end goal. Pragmatic actions rely on mentally forming the end goal and performing

minimal motor movements to get there. TUIs generally favor epistemic actions while

traditional graphical user interfaces (GUI) favor pragmatic actions. The study asked

participants to design the layout of office environments using a TUI and a GUI. Their

intention was to explore the change in the participant’s spatial cognition between the
1windows, icons, menus and pointers

17

two types of interface. They found that when using the TUI participants began the

session by randomly placing the physical props in the interaction area and then began

the process of deciding where the items should be positioned. They also found that

with the TUI participants repositioned objects more frequently than with the GUI.

This finding suggests that the claim of exploratory development is more prevalent

with a TUI.

Physlights [28] is a TUI for positioning lights in a virtual scene. They conducted

a user study comparing their Physlights TUI with the established Maya GUI. Partic-

ipants were given a scene and were asked to recreate the lighting conditions using the

two interfaces. They found that participants completed the task significantly faster

using the TUI.

Reactoon [29] shares many of the same intrinsic philosophies as StoryTIME. They

identify that storytelling is an essential activity in day to day life, and that there is a

barrier to creating virtual recreations of their story. Reactoon specifically investigates

creating an interface for children ages 5 to 9 years to create animations in 2D for

educational purposes. The system can be seen in Figure 2.3a, it uses a table top design

with a camera beneath the display surface. Placing the camera behind the display

surface eliminates any potential issues introduced as a result of marker occlusion. The

props are designed as two sided "disks", on one side is an image of the tool, as seen

in the top row of Figure 2.3a and on the other side is the AR marker, as seen at the

bottom of Figure 2.3a. When the prop is placed on the surface marker side down,

the camera is able to detect and identify the prop and the actions being performed.

The drawback to this approach is that the detection is limited to 2D tracking.

iNAVIGATOR [30] is a TUI designed for the purpose of visualizing 3D envi-

ronments. The objective of this system was to provide an intuitive alternative to

visualizing 3D objects. This is a different application area from the previous work

discussed in the prototyping area but it is important to acknowledge other innovative

18

(a) The Reactoon TUI [29] (b) The iNAVIGATOR system [30]

Figure 2.3: TUI examples

TUIs. The iNAVIGATOR system, illustrated in Figure 2.3b, allows users to observe

cross sections of 3D objects. The system has two display surfaces, a table and an

orthogonal display plane which can be slid across the table. The system has two

projectors, one for each display surface. As the user slides the display surface across

the table, the projector will update the projected image as if the the physical display

surface was taking a cut into the virtual object.

Clay has also been shown to be an effective TUI [31, 32]. The Illuminating Clay

system shown in Figure 2.4a demonstrates visualizing changes in elevation by pro-

jecting augmentations directly onto a mock-up of the terrain.

(a) The Illuminating Clay TUI [31]

19

2.2 Augmented Reality Technology

The definition of augmented reality (AR) is to alter and enhance a user’s visual

field with additional context sensitive information pertaining to the task they are

performing by overlaying virtual content in a real world environment. This is the

definition used by Caudell [7] when he coined the term in 1992, while investigating the

challenge of aircraft manufacturing at Boeing [33]. Aircrafts are a very complicated

assortment of millions of parts, many of which need to be assembled by hand due to

the level of dexterity needed. During the manufacturing process, workers must refer

to a manual which provides them with step by step assembly instructions. Manuals

commonly come in the form of printed documentation. It is often a challenge for

workers to align the documented diagrams with their workspace. This can lead to

longer assembly times and even improper construction. To remedy this situation,

Caudell presented a head mounted display to overlay virtual assembly instructions

directly in the user’s field of view. The intention of this system was to improve the

efficiency and quality of the worker’s performance. A diagram of this setup can be

seen in Figure 2.4.

While the case of a HMD based AR solution for manufacturing may not seem very

related to prototyping animated sequences, the underlying technology is inherently

the same. Head mounted displays are just one form of displaying virtual augmenta-

tions and will be discussed further among other display technologies in section 2.2.2.

The key challenges with implementing an AR solution can be broken down into three

categories: object detection, object tracking and augmentation visualization.

2.2.1 Object Identification and Tracking

Object identification and tracking are two essential pillars to the foundation of any

AR application [34, 35, 36]. Recall that the goal of AR is to annotate physical objects

by overlaying them with virtual imagery. Before this can be done, the application

20

Figure 2.4: Depiction of a HMD used to provide a worker with assembly instructions.
The worker is on the left, the "goggles" in-front of their face is a display. The "drill
here" instruction on the right is an example of a virtual instructional overlay. This
overlay is visible to the user wearing the HMD. [7]

must determine where the object is with respect to the viewer, this is the object

tracking problem. There are many approaches to solving this problem including but

not limited to optical, mechanical [37] and electromagnetic [38] solutions.

Optical Tracking

Optical tracking refers to methods which rely on an imaging device such as a digital

camera to obtain data for the tracking algorithm [39]. This is also referred to as vision

based tracking. Vision based tracking is very common as the only hardware required

is a digital camera. The underlying idea behind vision based tracking algorithms is

to align sets of points. For example, Figure 2.5e shows an AR marker, Figure 2.5a

shows the AR marker as it is observed by a camera. The objective of the tracking

algorithm is to map points from the reference marker (Figure 2.5e) to points on the

observed marker (2.5d). These points of interest are referred to as features. Once these

point correspondences are established, the pose estimation process can begin. Pose

21

estimation refers to the problem of calculating a transformation that can transform

points between their respective coordinate systems. The process is summarized in

Figure 2.6. AR markers such as the one in Figure 2.5e are referred to as fiducial.

These markers consist of patterns which are easily detectable, in the case of Figure

2.5e, the marker is surrounded by a thick border. The detection algorithm is then

programmed to explicitly search for squares in the input image, as shown in Figure

2.5d.

Figure 2.5: Summary of the tracking process for fiducial markers, (a) Input from
camera, (b) Result from binarization (c) Result of contour detection, (d) Result of
square fitting, (e) Example of reference marker, (f) Binary representation of marker
[8].

A drawback to fiducial markers is that they typically have a distinct and unnat-

ural look to them. The alternate approach to fiducial markers are natural markers.

22

Algorithms using natural markers work similarly to fiducial based solutions in the

sense that they still look for features, however these features are not in the form of

explicitly defined markers.

Figure 2.6: The steps to image registration. The first step is to detect features in the
image. The second step is to match those features to known features on the object.
The third step is to solve the spatial transformation that maps the detected features
to the known features.

2.2.2 Displaying Augmentations

Once an AR application knows where to display an augmentation, the question be-

comes how to display the augmentation. As mentioned in the introduction, LCD/LED

displays (i.e computer monitors, TVs, mobile phones etc.), head mounted displays

(HMD) and projectors are the three major technologies utilized in displaying virtual

augmentations. The rest of this section discusses each of them in more depth.

Traditional Displays

LED/LCD displays are perhaps the most popular display medium utilized by AR

applications to date. These displays are everywhere and with rising popularity of high-

end AR capable smart phones, this trend shows no sign of slowing down. Example of

these displays include TVs, mobile phones and computer monitors. Sport broadcasts

often use AR in this form to illustrate play breakdowns.

Head Mounted Displays

Head mounted displays (HMD) are displays which are affixed to the user’s head [37, 7].

Commercial examples of HMDs include the Hololens by Microsoft [4], Google Glass

[19] and the Oculus Rift [40]. It is important to realize the distinction between AR

23

and virtual reality (VR). VR applications are ones which completely substitute the

user’s world with a virtual one. With AR applications the user remains within their

environment. The Oculus Rift is commonly used in VR applications but can be used

for AR applications when used in conjunction with a camera to provide imagery of

the working environment.

Ivan Sutherland invented the first head mounted display (HMD) in 1966 [37].

The concept of the HMD has not changed much since its inception. The concept is

to place a see-through display in front of the user’s eyes. The design is to allow users

to see their environment but with the ability to show additional information. The

case of a HMD for manufacturing was discussed earlier in the chapter. HMDs can be

also used as a means for immersive telecommunication. Video chat applications such

as Skype [41] allow users to see a live video stream of the remote parties they are

communicating with. Holoportation [42] uses a Hololens as the display medium and

leverages AR and 3D reconstruction to virtually insert the remote parties directly in

the physical environment of the wearer. This concept is referred to as "physical co-

presence". A user study was conducted to evaluate the Holoportation system. The

findings illustrate several improvements to traditional video calls for collaborative

tasks. One specific example examined was the perception of natural movements such

as pointing, leaning and gazing. Participants reported that when the remote party was

superimposed in the physical environment, they were able to clearly identify what the

remote party was looking and pointing at. These cues are often lost with traditional

video calls. Overall the Holoportation system seems like a promising technology for

remote collaboration.

Projector Based Displays

Spatial augmented reality (SAR) refers to a branch of AR applications which utilize

projectors to display virtual augmentations directly on their physical counterparts

[43, 20, 44]. Illumiroom [44] used projection mapping to augment the visual ap-

24

pearance of the area surrounding a TV with the intention of increasing immersion.

Roomalive [21] expanded on the work of Illumiroom by using a series of projector-

camera pairs to augment an entire room. They demonstrate the ability to project

spatially aware interactive applications such as games at the room scale. Spatially

aware refers to content that is able to react to the environment they are in, for exam-

ple, they demonstrate a physics simulation of rain drops falling onto the surfaces in the

room with accurate interactions with respect to the angle of the surfaces. Projection

mapping can also be used to bring static objects to life, as shown in Display objects

[43] where projected augmentations are used to demonstrate an interactive GUI on

objects constructed from foam. SideBySide [45] demonstrates a multi-projector sys-

tem where users of the system hold small projectors in their hands and point at a

surface they want to display information onto.

25

Chapter 3

StoryTIME

Chapter 2 discussed related literature and traditional techniques for prototyping ani-

mated sequences. The prototyping process typically begins with a paper prototyping

technique such as storyboarding to establish a snapshot for the staging and layout of

a scene. The next step is to create a 3D animated mock-up of the scene known as

a pre-visualization. On an abstract level this can be thought of as a transformation

between the real and virtual worlds. This process has been shown to be effective

in countless animated productions but an argument can be made that it is more la-

borious and reliant on technical ability than necessary. StoryTIME was created to

address this to lower barriers to story prototyping.

StoryTIME is a Tangible Interactive Media Environment for storytelling. The

goal of the system is to allow for rapid iteration during the development of animated

sequences by leveraging augmented reality (AR) and tangible user interfaces (TUI).

StoryTIME is a system where users of all disciplines can create prototypes in a playful

environment, eliminating the need to learn technical software. A playful interface is

one that encourages users to engage in social and physical interaction [46]. The idea

is to digitize the motion of physical objects and apply them onto their digital counter-

parts. Imagine a system where users could create prototypes of their animations by

26

simply "playing" with toys. This would make prototype creation accessible to users

of all ages and skill sets. In order to do this, we must have a way for the computer

to determine which toy is being manipulated (object identification), where the toy

is located in the physical world (object localization) and be able to record the toy’s

motion (object tracking). This is the goal of StoryTIME.

StoryTIME can be summarized as a system which allows users to create com-

puter generated animated sequences by interacting with physical props such as small

toys and figurines. In order to do this the system must have the following technical

capabilities at a minimum.

• Low latency position and orientation tracking for several objects at a time

• Recording the position and orientation of tracked objects

• Playing back recordings

• Providing the user with visual feedback in real time

3.1 System Requirements

The technical generalized requirements listed above were refined into the system spe-

cific features listed below:

• Object tracking and identification: The ability to track and record multi-

ple physical objects at the same time is required as scenes are often comprised

of multiple objects. Objects are tracked with 6 degrees of freedom. One of the

key design decisions was to enable users to capture the motion of any object in

the scene at any time. In order to do this we must be able to identify objects

and determine their pose in the real world. Pose refers to the position and

orientation of an object. The current implementation of StoryTIME supports

tracking of up to eight physical objects at a time. The system can be scaled

27

to allow for the tracking of more objects, however, with the current hardware

setup (detailed in Appendix A) performance begins to degrade below the 30

frame per second (FPS) target when eight objects are tracked simultaneously.

• Virtual reconstruction of physical world: A fundamental goal of a tangi-

ble prototyping system is to bridge the gap between the physical and virtual

worlds [14]. With StoryTIME interactions are performed using physical props,

these interactions are processed and a corresponding virtual reconstruction is

produced and presented to the user in real-time.

• Augmentation of the physical world: Virtual augmentation is used to

bring the physical props to life by altering their visual appearance and giving

them functional capabilities as described in Chapter 3.17. Projection mapping

was chosen as the display medium used to provide spatial feedback to the users

of the system by displaying system status directly in the working environment.

• Serialization: Saving the recorded animations and virtual world reconstruc-

tions to a persistent storage device (i.e. a hard drive) is essential in allowing

creators to have a redistributable asset containing their work.

3.2 System Setup

The current implementation of StoryTIME does not use any platform specific code

and has been tested on a HP Sprout. The Sprout (Figure 3.15) was chosen because

it had all of the required equipment conveniently integrated as a single unit and was

available for use in the GAMERLab at UOIT. An added benefit to having everything

integrated as a single unit is not having to worry about recalibration in the event

of a sensor being bumped. Having said that, StoryTIME is not restricted to the

Sprout platform, the system only relies on a depth sensing camera and a projector.

The only thing that must be considered is the operational range of the camera and

28

projector. For example, early prototypes of StoryTIME used a Microsoft Kinect V2,

but these setups were unsuitable because the Kinect’s operational range of 60cm to

4.5m was designed for room scale applications and StoryTIME was designed for table

top applications and needed depth data in the 30cm to 80cm range, which is the

operational range of the F200 camera on the HP Sprout. Full specifications for the

HP Sprout can be found in Appendix A.

3.3 System Architecture

As discussed in Chapter 2, there are many enabling technologies that can be used

to achieve the requirements and capabilities listed above. One of the challenges de-

veloping a tangible system is determining which technologies to use. The underlying

software architecture driving StoryTIME was developed with a modular design in

mind to allow for experimentation with different technologies. Each of the essen-

tial components of the system can be replaced without having influence on other

components. The essential components of the system are summarized in Table 3.1.

StoryTIME is currently implemented as a C++ application, however the functionality

can be exported as a DLL. This allows integration in arbitrary frameworks and game

engines such as Unity3D or Unreal Engine. StoryTIME uses fiducial AR markers for

tracking and projection as the display medium. A high level overview of the system

architecture can be seen in Figure 3.1.

StoryTIME has two primary threads, the main thread and the image acquisition

thread. The main thread is responsible for managing the state of the application,

performing the object tracking and rendering tasks. The image acquisition only has

one task which is to continuously pull data from the cameras. The flow diagram for

the image acquisition thread can be found in Figure 3.5. The general steps in the

StoryTIME pipeline are summarized in the following list:

29

Figure 3.1: High level diagram of the data flow and system architecture of StoryTIME.

1. System initialization: This occurs once and only once when the system is

first run and is where resources are allocated and configured. This is discussed

in Section 3.3.1.

2. Image acquisition: This happens every frame (every 33 milliseconds), this is

where images are obtained from the camera. This is discussed in Section 3.3.2.

3. Image processing: After an image is acquired, it needs to be processed. This

is where the object identification and tracking happens, the input image is

30

processed to detect AR markers and determine the object’s 3D pose. This is

discussed in Section 3.3.3.

4. StoryTIME Core: Once all of the markers have been identified and tracked,

the StoryTIME core uses them as input. Depending on the state of the system,

it will either record animations, play animations back or remain idle.

Table 3.1: StoryTIME core interfaces

Interface Name Description
CameraSensorBase Interacts directly with camera SDK to obtain

data from camera, discussed in Section 3.3.2
ObjectTrackerBase Interacts directly with the object tracking li-

brary to obtain marker identifiers and poses,
discussed in Section 3.3.3

ObjectTrackerConfigBase Configuration data for the object tracker,
discussed in Section 3.3.3

TrackedObjectBase Contains per-object pose and identification
data, discussed in Section 3.3.3

AppBase Runs application loop and responds to mes-
sages from operating system (OS)

StoryTIME The main StoryTIME class that manages the
state of the system.

SingletonBase Easy way to make any class a singleton type

The remainder of this section will discuss each of the processes in the system

architecture flow chart (Figure 3.1) in depth.

3.3.1 Initialization

Initialization of system resources if the first step which happens immediately when

the StoryTIME executable is run (box 1 in Figure 3.1). A detailed visualization of the

initialization process can be seen in Figure 3.2. The initialization phase is responsible

for starting the camera, object tracker, renderer and internal StoryTIME systems.

These are the core components of the system as listed in Table 3.1, if any of these

components fail to start, the application is terminated.

31

The first component to initialize is the camera. Recall that the user’s input to

StoryTIME is in the form of spatial manipulations to physical objects, these manip-

ulations are observed by the camera. If the camera fails to initialize, the application

immediately exits as StoryTIME will be unable to receive the inputs. Further details

regarding the image acquisition process are discussed in Subsection 3.3.2.

The second step in the initialization process is to setup the object tracker (box

4 in Figure 3.2). StoryTIME relies on the Chilitags [47] library that process input

images to detect, identify and extract the 3D pose of AR markers. Several steps are

performed in this stage, they are summarized in the following list:

• Configure AR markers: inform the object tracker which markers to look for

and provide a description of the physical dimensions (width and height).

• Specify camera calibration properties: in order to calculate 3D pose, the

tracker must be informed of the projection and lens distortion parameters which

map 3D points to 2D pixels. This calibration is provided by the RealSense API.

• Configure the Kalman filter: used to smooth noisy tracking results [47]

The third step is to initialize the StoryTIME core which refers to the various

managers (Table 3.1) that are responsible for managing the state of the system.

These managers are responsible for maintaining the animation takes and the mapping

of physical to virtual objects.

The fourth and final step is to setup the renderer. This process involves loading

and preparing assets such as shaders, 3D models and textures for rendering.

3.3.2 Image Acquisition

Image acquisition refers to the process of obtaining data from the cameras. StoryTIME

has an interface named CameraSensorBase which is responsible for encapsulating the

image data and functions needed to pull data from a specific camera, a UML diagram

32

Figure 3.2: Initialization process, this is a detailed view of box 1 from Figure 3.1.

of this class is shown in Figure 3.3. This abstract class does not do any work directly

but rather instead provides a common interface for all cameras to follow. The use

of a camera specific API is often required for interacting with the camera’s hard-

ware. Figure 3.3 shows the three camera APIs implemented during the development

of StoryTIME.

StoryTIME uses an Intel RealSense F200 camera. To obtain data from this cam-

era, the RealSense SDK by Intel must be used. There are two ways of pulling data

from the camera, polling and queuing [48].

Polling works by first checking if a new frame is available, if a frame is available,

it gets returned and is fed through the processing pipeline (Figure 3.1, box 6). The

problem with this method of image acquisition is the potential for frames to be missed,

33

Figure 3.3: CameraSensorBase is the interface that abstracts the image acquisiton
process for various camera APIs. In this diagram we see three camera APIs that
were used during the development of StoryTIME. Each of these APIs implement the
CameraSensorBase interface.

34

this is illustrated in Figure 3.4a. In this diagram we see that the frame at time 66ms

is not processed because the application is always grabbing the most recent frame.

In many applications this may not be an issue, but since StoryTIME is performing

motion capture it is crucial that every frame gets processed to ensure the motion of

the objects is faithfully captured.

The queuing approach to image acquisition works by creating a thread dedicated

to pulling data from the camera, a diagram of the data flow can be seen in Figure 3.5.

When a new frame is received, it gets pushed onto a frame queue, this is illustrated

in Figure 3.4b. A queue is a first in first out (FIFO) data structure which means

data is evicted from the queue in the order it was entered. The frame queue stores

all incoming image frames, when the application finishes processing a given frame,

instead of grabbing the most recent frame, it grabs the next frame in line from the

frame queue. This introduces some potential latency, but ensures that every frame

gets processed which in turn results in more accurate motion capture. StoryTIME

makes use of the queuing approach to image acquisition.

3.3.3 Object Tracking

After an image has been obtained, the next step is to process the image. This in-

volves detecting markers in the image and obtaining their 3D pose. The current

implementation of StoryTIME is capable of tracking the position and orientation of

up to eight objects in real time. This limit is imposed to maintain stable tracking

performance and can be increased by using a more powerful computer. It is crucial

for StoryTIME to operate in real time to maintain the feeling of responsiveness and

to perform reliably. A real time system is one that can respond to a user’s inputs with

imperceptible latency. The target refresh rate was 33 milliseconds (ms), or 30 frames

per-second (fps). This means the time between a user’s input and system’s response

should happen within 33 ms. The lower the refresh rate, the lower the latency. The

35

(a) Single threaded image acquisition. Note that only the most
recent frame is processed, as a result frames can be missed and
not be processed.

(b) Multi threaded image acquisition. A dedicated thread is re-
sponsible for reading all data from the camera and storing frames
in a queue.

Figure 3.4: Overview of the polling and queuing image acquisition methodologies.

36

Figure 3.5: High level diagram of the image acquisition process.

37

F200 camera used provides images at a rate of 30 (fps). Ideally all of the work in

the system should happen in the 33 ms between acquiring frames (Boxes 5 to 14 in

Figure 3.1). This is the best case scenario as it means we are able to process inputs as

fast as we are receiving them. Inputs to the system are in the form of spatial manip-

ulations to physical objects that are observed by a camera. The system must be able

to analyze these camera frames, detect the object manipulations and provide visual

feedback to the user within a 33 ms time frame to maintain the target of 30 frames

per second. When working with motion capture it is desired to have the fastest frame

rate possible. More measurements enable more accurate and smoother recordings.

One major challenge when developing a tangible user interface is adequately bal-

ancing tracking robustness and responsiveness of the system. Tracking robustness

refers to the accuracy of the tracking results with the presence of errors in the input

data such as sensor noise and lens artifacts such as bloom. System responsiveness

refers to the speed in which input is processed and turned into output. It is important

to balance these to maintain system usability. We could spend a lot of processing

time refining the results of the object tracker to obtain a really good pose estima-

tion however the additional processing would increase the time takes it takes to give

feedback to the user.

There are a plethora of object tracking libraries available such as ARToolKit [49],

Vuforia [50] and reacTIVision [51], each of which with their own pros and cons. It

was apparent that experimentation would be required to determine which tracking

library would be most suitable for StoryTIME. As discussed, the entire StoryTIME

system revolves around the ability to track physical objects, we needed a way to

encapsulate the tracking functionality so that changing the tracking technology did

not require changes to the image acquisition or animation recording systems. Similarly

to the abstract CameraSensorBase class created for image acquisition (Section 3.3.2),

the ObjectTrackerBase and TrackedObjectBase classes were created to abstract the

38

Figure 3.6: UML diagram for the ObjectTrackerBase interface that abstracts the
object tracking process for various object tracking technologies. All object trackers
ultimately return two things: a unique identifier for the object and the objects 3D
pose.

39

Figure 3.7: UML diagram for the TrackedObjectBase base class that provides a com-
mon interface to obtain object poses regardless of the underlying tracking technology.

40

object tracking process. UML diagrams for the aforementioned interfaces can be seen

in Figures 3.6 and 3.7.

The ObjectTrackerBase class (Figure 3.6) is to be implemented by any tracking

libraries which are to be experimented with. This class provides a common interface

for the application to update and obtain the results of the object tracking process. The

TrackedObjectBase class provides a common interface which is used to encapsulate

the results of the object tracker. The intuition behind this design stems from the

realization that all object trackers return two things, an identifier for the object and

the pose of the object. Each object tracked by the object tracker will have an instance

of the TrackedObjectBase class.

The following subsections discuss two tracking methodologies that were explored

during the development of StoryTIME, each of the mentioned tracking technologies

implement the object tracking base classes.

Prototype v1.0: Markerless Tracking

Markerless tracking technologies were explored in early prototypes of StoryTIME. The

initial objective during development was to track objects without the need for any

tracking aids such as AR markers by using natural features present in the object [52].

An early experimentation example can be seen in Figure 3.8. This example illustrates

the tracking of an object, in this case a chair, using nothing but the features of the

chair itself. The blue points show the result of the tracking, as we can see the tracking

result aligns with the chair quite accurately. The biggest issue with this approach

was computation time, the performance for the single object was about 2 frames per

second. This impacted StoryTIME’s ability to deliver its requirements and required

development of an alternate solution.

41

Figure 3.8: Early experiment with particle filter based tracking using natural fea-
tures. This image demonstrates the alignment of a virtual chair (blue points) with
its physical counterpart (grey points).

Prototype v2.0: Marker Based Tracking

The markerless tracking approach resulted in accurate pose estimation but unsatis-

factory responsiveness. To overcome this issue we resorted to marker based tracking.

Fiduciary AR markers were affixed to the objects that were to be tracked, as shown in

Figure 3.9. The benefit to using AR markers is that they are significantly faster than

using markerless approaches since the features are simple and well defined. These

markers were 3D printed using matte materials. The markers seen in Figure 3.9

were 3D printed instead of being printed on paper to overcome the issues of cosmetic

damage to the marker and reflectance. If an AR marker is cosmetically damaged,

its trackability is compromised since the mapping between observed points and refer-

ence points is broken. As a result, the returned transformation will not represent the

actual pose of the marker. Tracking algorithms are very sensitive to bent markers,

especially if they assume the points on the marker are planar. Since it is anticipated

that the props will be subject to daily use, it is crucial to ensure they are reasonably

42

durable. Marker reflectance issues happen when a marker is shiny. When a marker is

shiny, it can appear incorrect to the camera due to specular highlights that occur as

the object is rotated which results in the camera observing unexpected colours. The

3D printed markers are made of matte plastic, which is more durable than paper and

therefore less susceptible to cosmetic damage and reflectance issues.

(a) Bed prop, top down view (b) Bed prop, alternate view

Figure 3.9: Example of a trackable StoryTIME prop. An AR marker is affixed to the
object.

Marker visibility must also be considered when designing an interface based on AR

markers. In order for a marker to be detected and tracked, it must be visible to the

camera. The use of a multi-marker configuration can help overcome this limitation.

A multi-marker configuration refers to using multiple markers instead of one. Each

marker in the configuration will be aware of their position relative to the origin of the

multi-marker. The idea is that by detecting one marker, we can infer the poses of the

other markers. An example of a multi-marker can be seen in Figure 1.9 where six AR

markers are laid out in a cube formation. The rationale for the cube formation is that

regardless of the marker’s pose, at least one marker will be visible to the camera. The

cube marker prototype was developed for use with the ARToolKit tracking library.

ARToolKit had extremely fast tracking performance and was able to track 64 markers

in less than 4 ms on the HP Sprout 3.2. Unfortunately the tracking results were not

43

very accurate and marker detection was erroneous due to ARToolKit’s inability to

compensate for noisy images, partial occlusion of markers and changes in luminance.

ARToolKit was essentially the polar opposite of the markerless tracking approach

previously discussed. Chilitags is another AR tracking library which like ARToolKit,

relies on fiduciary AR markers. The difference being that Chilitags is robust to the

aforementioned limitations of ARToolKit. StoryTIME ultimately ended up using

Chilitags, with a single marker configuration.

Figure 3.10: Early prototype of the AR marker cube.

3.3.4 Calibration

One of the design goals for StoryTIME was to bring the physical objects to life

through the use of virtual augmentations. As discussed in Chapter 2, there are many

options for displaying virtual augmentations. StoryTIME used projection mapping

to provide the user with visual feedback. By using a projector we are able to project

augmentations directly onto the physical props, as shown in Figure 3.13. This allows

users to see the augmentations while remaining unencumbered and without needing

to take their attention off of the props they are interacting with. To achieve this we

must be able to "pre-warp" the projected images so that they appear correct when

displayed on the irregular geometry of the physical object. One way to think about

this is to consider that both a camera and a projector can be modeled by a pinhole

44

projection. A diagram of a pinhole projection for a projector camera setup can be

seen in Figure 3.11. With a pinhole projection, a camera forms an image with light

rays that pass through an infinitesimal point (the pinhole) that intersect with the

imaging plane [53]. A projector essentially works in the opposite way, instead of light

rays passing through the pinhole and hitting the image plane, the light rays emit from

the plane and pass through the pinhole, eventually hitting the projection surface.

Figure 3.11: Pinhole projection for a camera and projector. If a point in the world
can be observed by a camera and a projector, we can determine the extrinsic transfor-
mation between the two coordinate systems. (a), (b) and (c) are described in Figure
3.12

.

To accurately generate images we need to know the projection parameters of the

projector which are obtained by performing a projector camera calibration. The

projection parameters that turn 3D points into 2D pixels can be calculated by having

45

a set of 3D points and their corresponding 2D projections. The procedure to perform

the calibration is summarized below [53]:

1. Project a point (Figure 3.12a).

2. RGB camera observes point (Figure 3.12b)

3. Detect 2D coordinate PRGB of point in RGB image

4. Map PRGB to a pixel on the depth image PDepth (Figure 3.12c)

5. Sample depth value from depth image and calculate 3D point relative to depth

camera

6. Store point correspondence in an array

Once a set of point correspondences are obtained, we pass them to OpenCV’s

calibrate camera function which performs the DLT algorithm to obtain the extrinsic

and intrinsic parameters for the projector [54]. Extrinsic parameters refer to the pose

of the projector, it answers the question of "what orientation was the projector in

when these points were observed". Intrinsic parameters define the mapping from 3D

to 2D, they answer the question of "how do these 3D points get turned into 2D pixels"

[53]. These parameters are used heavily in the Transformation Pipeline described in

Chapter 3.4. Figures 3.11 and 3.12 illustrate the calibration procedure. In Figure

3.12, we see the various images used by the calibration procedure. Figure 3.12a

shows a dot projected by the projector. This dot is observed by the RGB camera as

shown in Figure 3.12b. The RGB image is processed to find the 2D coordinate of the

dot in the frame, this 2D coordinate is then used to read from the depth image shown

in Figure 3.12c. With the depth value we are able to reconstruct a full 3D coordinate

for the projected dot. This process is repeated several times with dots in different

locations. A minimum nine point correspondences are needed for the DLT algorithm.

46

(a) The image projected by the projector. The
dot has a known 2D position

(b) The projected dot as viewed by the RGB sen-
sor.

(c) The projected dot as viewed by the depth sen-
sor. Note the red mark is just for visualization.

(d) Visualization of the real-world
setup

Figure 3.12: Demonstration of the different images used to perform calibration

Figure 3.11 shows where the images in Figure 3.12 are used in respect to the pinhole

projection model. Lens distortion parameters are also computed using the same point

47

correspondences, these distortion parameters allow us to take lens distortion artifacts

into account.

(a) Physical props in their natural state, projec-
tions turned off.

(b) Physical props with projections turned on in
an environment with high ambient light. Notice
how the projections are washed out.

(c) Physical props with projections turned on in an environment with low ambient light. Notice
how the projections are significantly more vibrant.

Figure 3.13: Demonstration of the spatial augmentations in StoryTIME.

48

3.3.5 Recording and Playback

Recording object movement can be performed once the pose is determined by the

object tracker. To inform the system of their intent to begin recording, the user must

click the "record" button shown in Figure 3.17a box 4. Once this button is clicked, for

every subsequent frame in which an object’s pose is tracked, a StoryTimeKeyFrame

object is created and is appended to an animation look up table, this is the process

shown in Figure 3.1 box 11. A UML diagram for the StoryTIMEKeyFrame class

can be seen in Figure 3.14a. The animation look up table is stored as a dynamic

array. An array is a data structure where data is stored contiguously in memory. A

visualization of the animation table can be seen in Figure 3.14b.

When the user clicks the play button, a playback timer is started. This timer is

used to sample from the animation table and performs a linear interpolation to get

the position of the virtual object.

49

(a) UML diagram for the StoryTIMEKeyframe
class. Each frame of an animation is represented
by an instance of this object.

(b)

Figure 3.14: Example of the recorded animation data.

3.4 The Transformation Pipeline

Aligning the Virtual and Physical Worlds

The prior sections established the necessary pieces for implementing StoryTIME. This

section will assemble the pieces and present the full mathematical pipeline.

In order to augment a physical object, as shown in Figure 3.13 we must have

the projector project a virtual render of the physical object in such a way that the

virtual render lands right on top of the physical object. To do this we must have

a virtual representation of the physical object in the form of a triangulated mesh.

In the case of StoryTIME, we used a 3D printer to create a physical object from

the virtual mesh. The process of performing the augmentation requires a series of

50

spatial transformations. Spatial transformations in this work are represented by the

T symbol. A spatial transformation is represented using a 4x4 transformation matrix

as shown in Equation (3.1). The 4x4 matrix consists of a rotation-scale, denoted by

rs and translation, denoted by t in Equation (3.1). Figure 3.15 shows the various

coordinate spaces used in the StoryTIME transformation pipeline. As an example

of a spatial transformation, consider a point that is expressed relative to coordinate

system "A", if we wanted to express the point terms of coordinate system "B", we can

"change the basis" of the point by applying the transformation that aligns coordinate

system B to coordinate system A.

rs00 rs01 rs02 tx

rs10 rs11 rs12 ty

rs20 rs21 rs22 tz

0 0 0 1

(3.1)

The series of transformations to align a virtual object with its physical counterpart

is shown in Equation (3.2). Note that StoryTIME follows the column major matrix

notation and the transformation presented in Equation 3.2 is to be read from right

to left.

Vprojector = Tprojector · Tdepth · Tmarker · Tobject · Vlocal (3.2)

where:

Vlocal: local position of the vertex, represented as a 4D vector

Tobject: offset from marker to physical object, represented as a 4x4 matrix

Tmarker: pose of the tracked marker as returned by the object tracker each frame

Tdepth: extrinsic transform from 3D RGB camera space to 3D depth camera

space

51

Tprojector: extrinsic transform from 3D depth camera space to projector space

Vprojector: vertex in 3D projector space

Figure 3.15: Visualization of the different coordinate spaces in the transformation
pipeline. A is the colour camera, this space is referred to as "RGB camera space".
B is the depth camera, this space is referred to as "Depth camera space". C is the
projector, this space is referred to as "Projector space". D is the physical object, this
is referred to as "object space". E is the AR marker, this is referred to as "marker
space".

The object tracker (discussed in Section 3.3.3) returns the 4x4 transformation

Tmarker which is depicted as E in Figure 3.15, notice that there is an offset between

the tracked pose E and the actual physical object D. The first step of Equation (3.2)

is to shift the origin of the virtual mesh to account for this offset. This is referred

to as the marker to object transformation Tobject. Then we apply the transformation

obtained by the object tracker Tmarker. This gives us a 3D pose relative to the RGB

52

camera (A in Figure 3.15). Since the projector calibration (discussed in Section 3.3.4)

used points in depth camera space, we need to apply the extrinsic transform between

the RGB and depth cameras Tdepth. Once in depth space, we can apply the depth

to projector transform Tprojector to obtain a 3D coordinate relative to the projector.

Now that we have a 3D point in projector space, we need to project it to a 2D pixel

coordinate on the projector’s image plane, the process is performed in a vertex shader

and is described below.

Forming the Image

The first step is to turn the 3D point Vprojector into a 2D coordinate on the projector’s

image plane. This is done by performing perspective division which means dividing

the x and y coordinates of the 3D point by the z component, as shown in Equation

(3.3).

x =
Vprojector.x

Vprojector.z

y =
Vprojector.y

Vprojector.z

(3.3)

where:

x: x coordinate on the projector’s image plane

y: y coordinate on the projector’s image plane

Vprojector: a 3D point in projector space

Next we need to apply the projector’s lens distortion. We use OpenCV’s distortion

model, which is comprised of radial and tangential distortion as shown in Equation

(3.4).

53

RadialDistortion = 1 + k1r
2 + k2r

4 + k3r
6

dx = x ·RadialDistortion+ p12xy + p2r
2 + 2x2

dy = y ·RadialDistortion+ p22xy + p1r
2 + 2y2

(3.4)

where:

RadialDistortion: the total amount of radial distortion

x: x coordinate on the projector’s image plane

y: y coordinate on the projector’s image plane

r: radial distance from center of image, calculated as x2 + y2

dx: distorted x coordinate on the projector’s image plane

dy: distorted y coordinate on the projector’s image plane

k1, k2, k3: radial distortion coefficients

p1, p2: tangential distortion coefficients

At this point we have distorted the points on the image plane to account for lens

distortion. The next step is to calculate actual pixel coordinates. This is done by

scaling the plane by the focal lengths and applying the principal point offset as shown

in Equation (3.5).

Pxy =

fx s cx

0 fy cy

0 0 1

 ·

dx

dy

1

 (3.5)

where:

Pxy: pixel coordinate on projector image, note that the z coordinate is discarded

54

fx: focal length on x axis

fy: focal length on y axis

s: skew coefficient, in the calibration used by StoryTIME this is equal to 0

dx: distorted x coordinate on the projector’s image plane

dy: distorted y coordinate on the projector’s image plane

We now have projected the 3D point in projector space to a pixel on the projector’s

image. However in-order to integrate this equation into the rasterization pipeline, we

must transform the pixel coordinates into normalized device coordinates (NDC). NDC

is a space defined by the graphics API that dictates which points end up on the screen,

if a point is outside of this range, the graphics API will clip it. StoryTIME uses the

OpenGL graphics API which defines NDC as a unit cube ([-1, 1] on each axis) where

the origin of the cube is the center of the screen. The above transformations are

occurring in the first stage of the graphics pipeline which is the vertex shader [55].

The responsibility of the vertex shader is to output points in such a way that ensures

the rest of the pipeline can calculate pixel coordinates. Since pixel coordinates we

have at this point are well beyond the [-1, 1] range, all of the points will get discarded

and we will end up with a blank screen. The equation to transform a pixel coordinate

into NDC is shown in Equation (3.6). We first divide the pixel coordinate by the

image’s width and height which will put points on the image into the [0, 1] range,

then we shift into the [-1, 1] range.

NDCx =
Px

w
∗ 2− 1

NDCy =
Py

h
∗ 2− 1

(3.6)

where:

NDCx, NDCy: x and y NDC coordinates for projected points

55

w: image width

h: image height

The final step is to calculate the z coordinate for the depth buffer. This coordinate

is necessary to ensure that depth testing can be properly performed. Without a valid

depth buffer we will have rendering artifacts since the rasterization pipeline used to

render the 3D meshes will not be able to determine which triangles should be in-front

of others. Equation (3.7) shows the transformation. This equation comes from the

traditional perspective matrix used in computer graphics. Note that this equation

embeds the transformation into NDC.

NDCz = Vprojector.z ·
f + n

f − n
+ Vprojector.z ·

−2f · n
f − n

(3.7)

where:

NDCz: z NDC coordinate for projected points

f : far clip plane

n: near clip plane

Summary

That was the procedure StoryTIME uses to perform projection mapping. We trans-

form the mesh into projector space, then we project the mesh onto the projector’s

image plane and finally we apply the NDC transform to adhere to the graphics API

specification.

3.5 User Interface

The goal of StoryTIME is to allow for the prototyping of animated sequences by

manipulating physical objects. These manipulations are digitized and turned into

56

a rendered 3D objects. To demonstrate the capability of StoryTIME, we opted to

create a series of props pertaining to the story of Goldilocks and the Three Bears, the

props are shown in Figure 3.16. This story was chosen because it was simple, familiar

and depicted everything the system could do. We specifically wanted to recreate the

scene where the main character, Goldilocks, enters a room with three beds and she

inspects each of them one by one before deciding which one she wants to rest on. The

following points are a breakdown of the tasks involved with creating this scene:

• Staging: how the beds laid out in the scene. Where Goldilocks enters the scene

from how does she navigate around the room.

• Framing: how the observer is viewing the scene.

• Multiple possibilities: there is no one way of staging and framing this scene.

Figure 3.16 shows the six props created to demonstrate the capabilities of StoryTIME.

Each of these objects can be tracked and recorded simultaneously in real-time. Ob-

jects 1, 2, and 3 are the large, medium and small beds. The user has the ability to

place these beds where ever they please by simply moving the physical prop however

they choose. Object 4 is the camera, moving this object moves the virtual camera.

This allows users to pose the camera to achieve the framing they desire. Object 5 is

Goldilocks. Object 6 represents a point light in the scene, moving this object allows

users to change the shading in the room.

Figure 3.17 shows the system in action. Figures 3.17a and 3.17b show the scene

with two different layouts. The following list summarizes the characteristics of the

UI:

Figure 3.17a

1. The new take button allows users to create a new animation of their scene, this

will save their current layout and recordings and gives them a new blank slate

which they can use to create a new take on the scene.

57

Figure 3.16: The physical objects used in the StoryTIME tangible user interface.
Objects 1,2 and 3 are beds. Object 4 is a special object representing a camera.
Object 5 is Goldilocks. Object 6 is a light.

2. A previously recorded take, currently greyed out because it is not the active

take. If the user were to click on this thumbnail, it would become the active

take and its scene would be restored on the canvas (5).

3. The currently active take that the user is manipulating.

4. The record button, once the user clicks this button the system transitions to the

recording state and all actions applied on the physical props will be recorded.

5. The interaction canvas, this is the entire gray rectangle in the image. All objects

in this are are trackable by the system. The various props are the tangible

objects the user interacts with.

58

Figure 3.17b

1. The play button, once an animation has been recorded, the user will have the

ability to play it back by clicking on this play button.

2. The yellow curve represents the recorded path for Goldilocks. When the user

clicks on the play button (1), a virtual render of Goldilocks will be drawn that

follows the path exactly as recorded by the user.

59

(a)

(b)

Figure 3.17: Demonstration of the UI elements in StoryTIME.

60

3.6 Summary

In this section we broke down the essential elements that went into creating StoryTIME.

We discussed the challenges involved with image acquisition, object tracking and cal-

ibration and how we overcame them. We also discussed how all of those components

were put together to form a coherent system that allows users to prototype animated

sequences using physical objects. The next chapter presents an evaluation which aims

to determine how StoryTIME compares to established prototyping software.

61

Chapter 4

Evaluation of StoryTIME

Chapter 3 discussed the underlying technical elements that went into building StoryTIME.

This chapter evaluates StoryTIME as a tool for prototyping animated sequences. A

preliminary user study was conducted asking participants to prototype an animated

sequence using both StoryTIME and the Unity game engine. Unity is an established

engine and was chosen as the ground line comparison. The user study is essentially a

comparison between a new interface (StoryTIME) and a traditional interface (Unity).

4.1 Research Questions and Hypotheses

The user study captured metrics for user experience, preference, performance and

system usability. These metrics were captured to answer the following questions:

Does prototyping with StoryTIME improve iteration time when de-

veloping pre-visualizations? This question aims to address the user’s perfor-

mance characteristics in terms of completion time and failure rate. Completion

time refers to the amount of time it took participants to complete the prede-

termined tasks. Failure rate measures whether or not participants were able to

complete the given tasks. The tasks performed by the users are described in

Section 4.3.

62

Hypothesis 1 (H1): iteration time will be faster when using StoryTIME com-

pared to Unity.

How does prototyping pre-visualizations with tangibles compare with

traditional keyboard and mouse based tools in terms of usability and

user experience? This question aims to measure user experience and system

usability. There are many metrics that can be measured when discussing user

experience, this study focused on the user’s mood. To measure the user’s mood

the Positive and Negative Affect Scale (PANAS) [56] discussed in Section 4.4.2,

was used. System usability refers to the user’s ability to complete the given

tasks and was measured with the System Usability Scale (SUS) [57], discussed

in Section 4.4.3.

Hypothesis 2 (H2): usability and experience will be either the same or better

with the tangible interface when compared with the traditional interface.

How does displaying augmentations on a computer monitor compare

with projected augmentation in terms of user preference and perfor-

mance? This question explores the user’s preference and performance when

using projected virtual augmentations compared to virtual augmentations dis-

played on a computer monitor. To measure preference, the post activity ques-

tionnaire discussed in Section 4.4.4 was used. The metrics used to capture

performance are: time to completion and accuracy.

Hypothesis 3 (H3): users will prefer and perform better with projected aug-

mentations.

4.2 Experimental Setup

The study was conducted in the Games and Media Entertainment Research Lab

(GAMERLab) at the University of Ontario Institute of Technology (UOIT). The

63

Figure 4.1: Experimental setup used for the StoryTIME user study. (1) and (2) are
cameras used to record the session. (3) is the projector camera setup on the HP
Sprout. (4) Microphone used to record audio. (5) Secondary display used during the
A/B test. (6) The primary display. (7) The physical props used by participants in
the StoryTIME condition. (8) The StoryTIME interaction area. (9) Keyboard and
mouse used with in the Unity condition.

software for the experiment was run on an HP Sprout (Appendix A). An image of

the experimental setup can be seen in Figure 4.1. The study was run in a controlled

environment, only the participant and researcher were in the room during the study.

The numbered items in Figure 4.1 are described below:

1. Camera used to observe the primary display.

2. Camera used to observe the interaction area while users were interacting with

StoryTIME.

64

3. The projector camera setup on the Hp Sprout. This includes the RGB colour

and Depth cameras used to track the AR markers on the props. The projector

is used to project augmentations into the interaction area (8).

4. Microphone used to record the session.

5. Secondary display used to show directives for the A/B test described in Section

4.3.3.

6. The primary display, during the StoryTIME condition, this is where the real-

time virtual representation of the physical scene is shown (discussed in Section

3.5). During the Unity condition, this is where the Unity interface is shown.

7. The physical props used by the StoryTIME system (discussed in Section 3.5).

These are the props participants manipulate to prototype their animated se-

quences when using StoryTIME. These props have no purpose in the Unity

condition.

8. This is the interaction area where StoryTIME is able to track, detect and aug-

ment the physical props (7).

9. Keyboard and mouse used in the Unity condition.

4.3 Methodology

The study was approved by the Research Ethics Board (REB) at the University of

Ontario Institute of Technology (REB# 14438).

The study followed a structured flow which was kept constant for all participants,

a visual depiction of procedure can be seen in Figure 4.2. The study is broken into

three phases which are summarized below:

65

Phase One: participants are briefed on the tasks they will be completing

and are asked to complete a consent form, demographics survey and PANAS

questionnaire.

Phase Two: participants complete the main task of prototyping an animation

sequence using StoryTIME and Unity.

Phase Three: participants complete an A/B test alternating between pro-

jected virtual augmentations and augmentations displayed on a monitor.

Participants were able to withdraw at anytime without penalty and any data

collected would be promptly destroyed. The three phases in the study are described

in detail below:

4.3.1 Phase 1: Introduction

The first phase of the study can be seen in the green section in Figure 4.2. Upon

entry, participants were welcomed and briefed on the tasks they would be performing.

The following script was used for each participant:

This study is an exploration into user interfaces for creating animated

sequences. You will be re-creating a scene from the story of Goldilocks

and the Three Bears. In this scene Goldilocks inspects three beds before

deciding which one she wants to take a nap in. You will be creating this

scene twice using two different interfaces. First you will be using Unity

which has a traditional key-framing and then you will use StoryTIME, a

system which captures the motion of physical props*.

*The order of the last sentence was swapped depending on the order the

conditions were used.

After the participants were briefed, they were asked to sign a consent form shown

in Appendix B. If the participant agreed to continue they were asked to complete the

66

Figure 4.2: Study procedure

67

PANAS for the first time. The PANAS was administered three times in total for each

participant, once at the very beginning, and then after each successive condition. The

reasoning being that we wanted to see if there were any changes in the participant’s

mood from before the conditions and after.

4.3.2 Phase 2: Prototyping an Animated Sequence

Phase two is where the main experiment occurs, in this stage participants are asked

to position objects in a scene and animate a character within it. They are then asked

to create a second iteration of the scene which changes the layout and the character

animation. The two scenes can be seen in Figures 4.3a and 4.3b.

Since participants were asked to create the same scene in both StoryTIME and

Unity, the possibility of a learning bias is introduced. For example, if we always

performed the Unity condition first, and the StoryTIME condition second, this may

give StoryTIME an unfair advantage, since participants are already familiar with

the tasks they will be asked to perform. To overcome this, the condition order is

alternated between participants. This is done by having the participants with an

even participant number perform the StoryTIME condition first, and performing the

Unity condition second, this is the opposite case for participants with an odd number.

Participant number refers to a unique number assigned to each participant. This

number starts at 0, for the first participant and increments by 1 for each subsequent

participant.

Upon completion of each condition, participants are asked to complete the PANAS

and SUS surveys. When both conditions are complete, we begin the third and final

phase.

68

(a) (b)

Figure 4.3: The two scenes participants were asked to re-create. The path for the
animated character is shown in yellow. The top image shows the virtual recreation
of the scene from the point of view of the virtual camera. The middle image shows a
top-down layout of the scene. The bottom image shows an example of how the scenes
are created using the tangible props.

69

4.3.3 Phase 3: Alpha Beta Test and Debriefing

Upon completion of the animation tasks, an A/B test was conducted to determine if

projected AR had any benefits in terms of performance, accuracy and preference to

augmentations displayed on a monitor. Participants were given a layout of a scene and

were asked to re-create it using just StoryTIME, as shown in the left side of Figure

4.4c. The first condition projected the augmentations directly onto the physical props,

ask shown in Figure 4.4b and the second condition displayed the augmentations on a

monitor, as shown in Figure 4.4a. Participants were asked to complete 10 trials, each

trial consisted of a different layout and alternated between the two display mediums.

(a) Augmentations displayed on monitor (b) Projected augmentations

(c) Left: layout participants were asked to recreate. Right: augmented camera image

Figure 4.4: Demonstration of the A/B conditions.

70

4.4 Results

4.4.1 Demographics

The demographics questionnaire (Appendix B) asked participants questions about

their experience creating virtual environments and computer animation. A total of

10 participants were run in the preliminary user study. Educational background for

participants included 2 undergraduate students, 6 MSc students and 2 PhDs. Each

of the 10 participants were able to complete the requested tasks described in Section

4.3. The age of the sample population ranged from 19 - 38 years old (M = 25.4, SD

= 5.816).

Participants were asked several questions about their experience developing virtual

environments and animated sequences. First they were asked about the development

tools they used. Unity3D was the most popular tool used among the participants,

followed by Maya. On average participants spend 5 - 10 hours per-week developing

virtual environments. Participants were also asked about prototyping techniques

they used when developing virtual environments using a five point Likert scale where

1 = never and 5 = always. The most common prototyping techniques were paper

prototyping (M = 4.40, SD = 0.516) and creating digital mockups (M = 3.5, SD =

0.850). Participants rarely utilized tangible prototyping tools (M = 1.4, SD = 0.843).

A summary of the responses can be seen in Figure 4.5.

4.4.2 The Positive and Negative Affect Scale (PANAS)

The Positive and Negative Affect Scale (PANAS) [56] is a questionnaire which mea-

sures the mood and emotions of the participant at the time of administration. Positive

affect refers to positive emotions such as being interested or excited. Negative affect

refers to negative emotions such as being upset or irritated. The questionnaire and

the raw results gathered can be found in Appendix B.3. PANAS consists of 20 ques-

71

Figure 4.5: Summary of the frequency using specific prototyping tools when creating
a virtual environment. Results are from a Likert scale where 1 = Never and 5 =
always.

tions, 10 of which measure positive affect and 10 which measure negative affect. Each

question is in the form of a five point Likert scale. To calculate the scores for positive

affect, we add up the measures for each of the 10 questions corresponding to positive

affect. Calculating negative affect works the same way but the questions for negative

affect are used instead. This gives us scores between 10 and 50 for both positive and

negative affect where a higher score represents a higher level of affect. The ques-

tionnaire is administered three times during the duration of the experiment, prior

to performing either of the conditions (Figure 4.2 box 3) and immediately following

each condition (Figure 4.2 box 6). This gives us three snapshots of the user’s mood

scale which allows us to measure any changes in their emotion after using the two

interfaces.

Prior to running any prototyping tasks, the average positive affect score was 27.30

(SD = 10.985) and the average negative affect score was 11.40 (SD = 1.713). After

running the StoryTIME condition the average positive affect score was 29.50 (SD

= 11.174) and the negative affect score was 10.50 (SD = 0.707). After running the

Unity condition the positive affect score was 24.9 (SD = 11.174) and the negative

affect score was 11.20 (SD = 1.229). Figure 4.6 summarizes the results from the

72

(a)

(b)

Figure 4.6: PANAS descriptive statistics.

PANAS questionnaire. A paired sample t-test was performed to determine if there

was any significance between the positive and negative affects for the two conditions.

There was no significant difference between the negative affect score for Unity (M =

11.20, SD = 1.229) and StoryTIME (M = 10.50, SD = 0.707); t(9) = -1.481, p =

0.173. There was a significant difference between the positive affect score for Unity

(M = 24.9, SD = 11.714) and StoryTIME (M = 29.50, SD = 11.179); t(9) = 2.379,

p = 0.041.

73

Figure 4.7: PANAS paired-sample t-Test result

74

4.4.3 The System Usability Scale (SUS)

The System Usability Scale (SUS) [57] is a reliable questionnaire used for measuring

system usability. The SUS is comprised of 10 questions in the form of a five point

Likert scale, where a response of 1 corresponds to "strongly disagree" and a response

of 5 corresponds to "strongly agree". The questionnaire was administered twice as

shown in Figure 4.2 box 6. To obtain the final SUS score for a system, we take the

average of all participant SUS scores. The SUS score for Unity was 58 (SD = 17.83)

and the SUS score for StoryTIME was 79.75 (SD = 13.36), this suggests StoryTIME

has better usability traits than Unity. A summary of the SUS responses can be seen

in Figure 4.8. Items 1,3,5,7 and 9 measure positive traits of the system, a higher

response value for these questions are in the favor of the system being evaluated.

Items 2,4,6,8 and 10 measure negative traits of the system, a higher response value

for these questions are not in the favor of the system being evaluated.

Figure 4.8: Summary of SUS scores

75

Figure 4.9: Paired samples T-test for SUS scores

A paired sample T-test was performed to determine if there was any statistical

significance between the Unity and StoryTIME SUS scores. The T-test was used

because the study followed a within subject design. The results of the T-test are

summarized in Figure 4.9. There was a significant difference between the SUS scores

for Unity (M = 58, SD = 17.83) and StoryTIME (M = 79.750, SD = 13.36); t(9) =

3.212, p = 0.011.

4.4.4 Post Activity Questionnaire

The post activity questionnaire inquired about the participant’s preference and per-

sonal perception of the their ability to complete the tasks. The responses are sum-

marized in Figure 4.10. Participants reported that the tracking markers used on the

physical props got in the way (M = 4.1, SD = 2.13). This was expected as this is one

of the biggest drawbacks to fiduciary AR markers. Participants reported that they

would see themselves using a TUI to create prototypes (M = 5.2, SD = 0.79). Inter-

estingly participants were generally neutral when asked about their preferences using

StoryTIME with projections enabled. They reported that the system felt faster when

projections were disabled (M = 3.2, SD = 2.25) and they mentioned that prototyping

felt more accurate when projections were disabled (M = 3.7, SD = 1.89). Both of

76

these results are likely attributed to tracking limitations. Slowness could be a result

of latency induced by the Kalman filter to reduce jitter.

Figure 4.10: Summary of post activity questionnaire responses.

4.5 Discussion

PANAS showed that there was no negative impact to the participant’s emotions

after running either conditions. This is a good thing as we did not want to have a

negative impact on the participant’s emotional state. This is always a concern when

introducing a new system as no UI designer wants to build a system that is frustrating

to use. There was significance found between the positive affect scores for Unity and

StoryTIME which indicates that participants enjoyed using the StoryTIME system

over unity. These results suggest that StoryTIME is on the right track in terms of

user experience.

The SUS scores indicate that StoryTIME (M = 79.75, SD = 13.36) has bet-

ter usability characteristics compared to Unity (M = 58, SD = 17.83). The results

from the paired-sample t-test shows that there is a significant difference between the

two systems (p = 0.011, p < 0.05). Consider that modern WIMP based interfaces

such as Unity are the product of decades of refinement and iteration. The fact that

StoryTIME is able to demonstrate comparable usability scores to an established sys-

77

tem validates the potential for TUIs based on natural interactions. Below we discuss

each of the items in the SUS questionnaire.

• Q1 - I think that I would like to use this system frequently: Partic-

ipants reported that they would like to use both of these systems frequently.

Unity received an average score of 2.6 (SD = 1.35) and StoryTIME received

an average score of 3.1 (SD = 1.29). This response is in compliance with the

demographics questionnaire as all participants work in related disciplines. The

higher StoryTIME score could be attributed to user preference.

• Q2 - I found the system unnecessarily complex: Participants reported

that they found StoryTIME (M = 1, SD = 0) to be less complex than Unity

(M = 2.6, SD = 1.17). All 10 participants unanimously agreed that StoryTIME

was not complicated to use, this is a great result as it shows that StoryTIME

succeeded in its goal to simplify the process of prototyping animated sequences.

• Q3 - I thought the system was easy to use: Participants reported that

they found both Unity (M = 3.5, SD = 1.27) and StoryTIME (M = 4.5, SD =

0.71) easy to use. The Unity score is likely influenced by prior experience, it

would be interesting to see how a participant with no Unity experience would

have scored this question.

• Q4 - I think that I would need the support of a technical person to be

able to use this system: Participants reported that they do not feel that they

would need technical support to use either StoryTIME (M = 1.6, SD = 0.97) or

Unity (M = 1.9, SD = 1.2). This affirms StoryTIME’s commitment to ease of

use as this score indicates the participants were confident in using the system.

The Unity score could be attributed to the participants’ prior experience Unity.

• Q5 - I found the various functions in this system were well inte-

grated: Participants found that features in both Unity (M = 3.4, SD = 0.97)

78

and StoryTIME (M = 3.7, SD = 0.95). Unity has a much larger feature set

than StoryTIME, features in this context would pertain to the specific tasks

performed in this study which were to placing and animating virtual objects.

• Q6 - I thought there was too much inconsistency in this system:

Participants reported that they found StoryTIME (M = 2.4, SD = 1.43) to be

more inconsistent than Unity (M = 1.9, SD = 0.99). This is likely due errors in

the object tracking, as jitter is quite noticeable when you are trying to capture

motion.

• Q7 - I would imagine that most people would learn to use this system

very quickly: Participants reported that new users of both StoryTIME (M

= 4.7, SD = 0.48) and Unity (M = 2.9, SD = 1.2) would be able to figure out

how to use the systems quickly.

• Q8 - I found the system very cumbersome to use: Participants reported

that Unity (M = 2.9, SD = 1.45) was more cumbersome to use than StoryTIME

(M = 1.7, SD = 1.06). This response is likely due to the difficultly in editing

previously placed key-frames in Unity.

• Q9 - I felt very confident using the system: Participants felt confident

using both Unity (M = 3.3, SD = 0.95) and StoryTIME (M = 3.8, SD = 1.23).

It was expected that they would feel confident using Unity, as per their prior

experience but to see StoryTIME receive a higher score was unexpected. This

may be attributed to the low technical forethought needed to use StoryTIME.

• Q10 - I needed to learn a lot of things before I could get going with

this system: Participants reported that they did not have to learn much to be

productive with StoryTIME (M = 1.2, SD = 0.42). With Unity (M = 3.2, SD

= 1.4) they reported that they needed to learn quite a bit. The phrasing of this

79

question may have lead to some ambiguity, as it does not account for previous

experience with the system.

Participants responded neutrally when asked about their preference between pro-

jected augmentations and traditional augmentations displayed on a monitor. This

was an unexpected result as it was anticipated that the projected AR would be the

display medium of choice. There are two possible explanations for this: tracking er-

ror and latency. There is always some tracking error when the augmentations are

projected onto the physical objects, the projections never line up absolutely perfectly.

The best we can do is minimize this error to ensure that the misalignment is at a min-

imum. Errors are introduced at every step in the transformation pipeline described

in Section 3.4, the projector-camera calibration, object tracker and marker to object

transformations are all calculated using some form of a linear equation solver. As this

error accumulates, the projections become more offset from the physical object. For

the projector-camera calibration and marker to object transformations, these errors

can be minimized quite a bit as these components are calculated offline and do not

change on a frame-by-frame basis. The object tracker however is very susceptible to

errors and there is not much that can be done about it. Jitter is an artifact where

the tracked position "jumps" around between frames. Jitter can result in the user

doubting the accuracy of the system as there is a disconnect between the physical and

virtual objects. When the purpose of the system is to position objects and record

their motion, this is a big problem. Jitter can be minimized by using techniques

such as a Kalman filter which work by taking a running average of previous frames

but this comes at the cost of introducing latency into the system. Latency is the

delay between the user performing an action and the system providing some kind of

reaction. When participants move the physical props, and there is a delay between

the update in the projection, this can make the system feel slow. It can be argued

80

that when projections are displayed on a monitor, the effects of jitter and latency are

less noticeable.

81

Chapter 5

Conclusions

5.1 Contributions

The original goal of this work was to address the challenges in developing prototypes

for animated sequences. This thesis presented the development and evaluation of

StoryTIME, a system which leverages tangible user interfaces and augmented reality

with the intention of simplifying the process of prototyping animated sequences by

replacing traditional key-framing tasks with natural movements. We have found that

prototyping with tangibles is as effective as using a traditional keyboard and mouse

system in terms of usability with the additional benefit of improved user experience.

Iteration times were generally faster when using the TUI. In terms of user preference

between traditional AR displayed on a monitor versus projected we found that users

were generally neutral.

Below we present the answers to the research questions introduced in the first

chapter:

• Does prototyping with tangibles improve iteration time when devel-

oping pre-visualizations? We found that prototyping with the TUI was

generally faster, however it was noted that faster did not necessarily mean bet-

82

ter. For example, participants experienced with animating in Unity spent longer

tweaking their animations by manipulating the animation curves. On one hand

we can say that with StoryTIME it would not be necessary to manually tweak

animations to implement "ease-in-ease-out" style transitions, as the user would

just record the motion as they see fit. On the other hand we could say that the

precision of using Unity to fine tune curves would allow users to create motions

they would not be able to replicate with a physical prop.

• How does prototyping pre-visualizations with tangibles compare with

traditional keyboard and mouse based tools in terms of usability and

user experience? We found that there was a significant difference between the

usability of StoryTIME and Unity and that participants favored StoryTIME for

its simplicity and ease of use. This makes a case for the concept of the TIME

suite of TUIs (introduced in Chapter 1), for domain specific tasks.

• How does displaying augmentations on a computer monitor compare

with projected augmentation in terms of user preference and perfor-

mance? We found that participants were neutral with their preference for the

display medium for the virtual augmentations.

5.2 Limitations and Future Work

The biggest limitation in the current implementation of StoryTIME is in the tracking

technology. The system currently uses an optic based solution which relies on AR

markers for tracking and detection. This method was chosen because it provides fast

and reliable tracking however there are drawbacks. Most notability is the impact of

the AR markers on the usability of this system, as noted by participant responses

discussed in Chapter 4. The issue is that the markers got in the way while users were

trying to create their scenes, resulting in users having to alter their anticipated move-

83

ments to account for the AR marker. Future iterations of StoryTIME should have

a deeper focus on tracking technology. As mentioned in Chapter 3, the architecture

of StoryTIME is designed such that the implementation of individual components,

such as the object tracker, could be replaced without having any impact on other

components in the system. The current implementation of StoryTIME relies solely

on optic based tracking, a potential area to explore is tracking solutions which uti-

lize integrated sensors such as accelerometers and gyroscopes in addition to vision

based tracking. This would require the development of a small integrated circuit to

minimize any potential obstruction. It is also a possibility that advances in real-time

point cloud tracking suggest that one day the need for AR markers and other tracking

aids could be completely removed.

The next step for StoryTIME would be to add additional features to the system,

such as the ability of speech recording for audio. We could also investigate alternate

use cases for the technology developed. Currently we only investigate the case of story

board development, but other potential uses could be military or tactical planning,

entertainment or post-traumatic stress therapy. The StoryTIME technology could

essentially be used for any application which involves placing objects and moving

them around.

84

References

[1] A. Beane, 3D Animation Essentials. Indianapolis, IN: Wiley, 2012.

[2] I. Failes, “The rise of the previs of Planet of the Apes,” 2011. www.fxguide.com/

featured/rise-of-the-previs/, Retrieved January 31 2018.

[3] “Pokemongo!.” [Computer Software], 2016. https://www.pokemongo.com/, Re-

trieved January 31 2018.

[4] “Microsoft Hololens.” [Computer hardware], 2018. www.microsoft.com/en-us/

hololens.

[5] R. Raskar, M. Cutts, G. Welch, and W. Stuerzlinger, “Efficient image gener-

ation for multiprojector and multisurface displays,” Rendering techniques’ 98:

proceedings of the Eurographics Workshop in Vienna, Austria, June 29-July 1,

1998, p. 139, 1998.

[6] N. Beiman, Prepare to Board! Creating Story and Characters for Animation

Features and Shorts. Focal Press, second ed., 2012.

[7] T. Caudell and D. Mizell, “Augmented reality: an application of heads-up display

technology to manual manufacturing processes,” Proceedings of the Twenty-Fifth

Hawaii International Conference on System Sciences, no. February, pp. 659–669,

1992.

85

www.fxguide.com/featured/rise-of-the-previs/
www.fxguide.com/featured/rise-of-the-previs/
https://www.pokemongo.com/
www.microsoft.com/en-us/hololens
www.microsoft.com/en-us/hololens

[8] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez,

“Automatic generation and detection of highly reliable fiducial markers under

occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014.

[9] R. Parent, Computer Animation: Algorithms and Techniques. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 3 ed., 2012.

[10] R. Wyatt, “Rise of the Planet of the Apes.” [Movie] 20th Century Fox Home

Entertainment, 2011.

[11] D. S. Buckstein, “Playing is creating with PlayTIME: introducing and evaluating

a tangible UI-based interactive scenario prototyping system,” 2015.

[12] O. Shaer, “Tangible User Interfaces: Past, Present, and Future Directions,” Foun-

dations and Trends® in Human–Computer Interaction, vol. 3, no. 1-2, pp. 1–137,

2009.

[13] G. Fitzmaurice, H. Ishii, and W. Buxton, “Bricks: laying the foundations for

graspable user interfaces,” SIGCHI Conference on Human Factors in Computing

Systems, p. 442–449, 1995.

[14] H. Ishii, “Tangible bits,” Proceedings of the 8th international conference on In-

telligent user interfaces - IUI ’03, p. 3, 2003.

[15] J. Nielsen, “10 Usability Heuristics for User Interface Design,” 1995.

[16] G. Kipper and J. Rampolla, Augmented Reality: An Emerging Technologies

Guide to AR. 2012.

[17] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic,

“Augmented reality technologies, systems and applications,” Multimedia Tools

and Applications, vol. 51, no. 1, pp. 341–377, 2011.

86

[18] E. Costanza, A. Kunz, and M. Fjeld, “Mixed reality: A survey,” Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 5440 LNCS, pp. 47–68, 2009.

[19] “Google Glass.” [Computer hardware], 2018. https://x.company/glass/

partners/.

[20] R. Raskar, K. Low, and G. Welch, “Shader lamps: Animating real objects with

image-based illumination,” University of North Carolina at Chapel Hill, 2000.

[21] B. Jones, L. Shapira, R. Sodhi, M. Murdock, R. Mehra, H. Benko, A. Wilson,

E. Ofek, B. MacIntyre, and N. Raghuvanshi, “RoomAlive,” Proceedings of the

27th annual ACM symposium on User interface software and technology - UIST

’14, pp. 637–644, 2014.

[22] K. McElroy, Prototyping for Designers: Developing the Best Digital and Physical

Products. O’Reilly Media Inc., 2017.

[23] J. Arnowitz, M. Arent, and N. Berger, Effective Prototyping For Software Mak-

ers. Interactive Technologies, Elsevier Science, 2007.

[24] L. Blazer, Animated Storytelling: Simple Steps For Creating Animation and Mo-

tion Graphics. Peachpit Press, 2015.

[25] E. Ghertner, Layout and Composition for Animation. Focal Press/Elsevier, 2012.

[26] A. Jew, Professional Storyboarding. CRC Press, 2013.

[27] M. J. Kim and M. L. Maher, “The Impact of Tangible User Interfaces on De-

signers’ Spatial Cognition,” Human-Computer Interaction, vol. 23, pp. 101–137,

2008.

[28] K. Lim and B. Binotti, “PhysLights : a Tangible User Interface for CG Lighting,”

2014.

87

https://x.company/glass/partners/
https://x.company/glass/partners/

[29] A. Alves, R. Lopes, P. Matos, L. Velho, and D. Silva, “Reactoon: Storytelling in

a tangible environment,” 2010 Third IEEE International Conference on Digital

Game and Intelligent Toy Enhanced Learning, pp. 161–165, 2010.

[30] Y.-P. Ma, C.-H. Lee, and T. Jeng, “iNavigator: a Spatially-Aware Tangible In-

terface for Interactive 3D Visualization,” Proceedings of the 8th International

Conference on Computer-Aided Architectural Design Research in Asia, pp. 963–

974, 2003.

[31] H. Ishii, C. Ratti, B. Piper, Y. Wang, A. Biderman, and E. Ben-Joseph, “Bringing

Clay and Sand into Digital Design - Continuous Tangible user Interfaces,” BT

Technology Journal, vol. 22, no. 4, pp. 287–299, 2004.

[32] M. Reed, “Prototyping digital clay as an active material,” Proceedings of the 3rd

International Conference on Tangible and Embedded Interaction TEI 09, p. 339,

2009.

[33] “Boeing,” 2016. www.boeing.com.

[34] S. You, U. Neumann, and R. Azuma, “Hybrid inertial and vision tracking for

augmented reality registration,” Proceedings IEEE Virtual Reality (Cat. No.

99CB36316), pp. 260–267, 1999.

[35] R. Azuma and R. Azuma, “A survey of augmented reality,” Presence: Teleoper-

ators and Virtual Environments, vol. 6, no. 4, pp. 355–385, 1997.

[36] M. V. Wyawahare, P. M. Patil, and H. K. Abhyankar, “Image Registration Tech-

niques : An overview,” International Journal of Signal Processing, Image Pro-

cessing and Pattern Recognition, vol. 2, no. 3, pp. 11–28, 2009.

88

www.boeing.com

[37] I. E. Sutherland, “A head-mounted three dimensional display,” Proceedings of

the December 9-11, 1968, fall joint computer conference, part I on - AFIPS ’68

(Fall, part I), p. 757, 1968.

[38] N. Villar, D. Cletheroe, G. Saul, C. Holz, O. Salandin, T. Regan, M. Sra, H.-

S. Yeo, W. Field, and H. Zhang, “Project Zanzibar: A Portable and Flexible

Tangible Interaction Platform,” 2018.

[39] D. Schmalstieg and T. Höllerer, “Augmented reality: Principles and Practice,”

in Proceedings - IEEE Virtual Reality, 2017.

[40] Oculus VR, “Oculus Rift.” [Computer hardware]. oculusvr.com.

[41] Skype, “Skype for Business,” Skype for Business, no. August, p. 1, 2016.

[42] S. Fanello, S. O.-e. C. Rhemann, M. Dou, V. Tankovich, C. Loop, and P. Chou,

“Holoportation : Virtual 3D Teleportation in Real-time,” Chi, pp. 741–754, 2016.

[43] E. Akaoka, T. Ginn, R. Vertegaal, and O. N. Kl, “DisplayObjects : Prototyping

Functional Physical Interfaces on 3D Styrofoam , Paper or Cardboard Models,”

pp. 49–56.

[44] B. R. Jones, H. Benko, E. Ofek, and A. D. Wilson, “IllumiRoom: Peripheral

Projected Illusions for Interactive Experiences,” Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems - CHI ’13, p. 869, 2013.

[45] K. D. D. Willis, I. Poupyrev, S. E. Hudson, and M. Mahler, “SideBySide : Ad-

hoc Multi-user Interaction with Handheld Projectors,” In Proceedings of UIST

’11, pp. 431–440, 2011.

[46] A. Nijholt, Playful User Interfaces: Interfaces that Invite Social and Physical

Interaction. Gaming Media and Social Effects, Springer Singapore, 2014.

89

[47] Q. Bonnard, S. Lemaignan, G. Zufferey, A. Mazzei, S. Cuendet, N. Li, A. Ozgur,

and P. Dillenbourg, “Chilitags: Robust Fiducial Markers for Augmented Reality,”

2013.

[48] “Intel realsense.” [Computer Software], 2018. https://realsense.intel.com/, Last

accessed January 31 2018.

[49] ARToolkit, “ARToolKit Documentation,” 2015.

[50] Qualcomm Technologies, Inc., “Vuforia Augmented Reality SDK.” [Computer

software], 2015.

[51] M. Kaltenbrunner and R. Bencina, “reacTIVision: a computer-vision framework

for table-based tangible interaction,” Proceedings of the 1st international confer-

ence on Tangible and embedded interaction, pp. 69–74, 2007.

[52] U. Neumann and S. You, “Natural feature tracking for augmented reality,” IEEE

Transactions on Multimedia, vol. 1, no. 1, pp. 53–64, 1999.

[53] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. New

York, NY, USA: Cambridge University Press, 2 ed., 2003.

[54] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[55] T. Akenine-Moller, E. Haines, and N. Hoffman, Real-Time Rendering. Natick,

MA, USA: A. K. Peters, Ltd., 3rd ed., 2008.

[56] D. Watson, L. A. Clark, and A. Tellegen, “Development and Validation of Brief

Measures of Positive and Negative Affect: The PANAS Scales,” Journal of Per-

sonality and Social Psychology, vol. 54, no. 6, pp. 1063–1070, 1988.

[57] J. Brooke, “SUS - A quick and dirty usability scale,” pp. 1–8, 1986.

90

https://realsense.intel.com/

Appendix A

HP Sprout Hardware Details

• 20" (diagonal) touch enabled surface (referred to as the interaction area in this

work)

• Intel Core i7-4790S CPU

• NVIDIA GeForce GT 745A GPU with 2GB of VRAM

• 23" touch compatible display with a resolution of 1920x1080

• 1024x768 projector

• Intel F200 RealSense camera

• 8GB of RAM

• 1TB hard drive

91

Appendix B

Surveys, Questionnaires and Ethics

This appendix contains all information pertaining to the surveys and questionnaires

administered as well as the ethics approval for the user study conducted as a part of

the evaluation of StoryTIME discussed in Chapter 4.

B.1 Consent Form

The consent form was administered to participants immediately upon welcoming them

into the room and briefing them on the purpose of the study and the tasks they will

be completing.

92

1

Title of Research Study: Evaluation of StoryTIME

You are invited to participate in a research study entitled Evaluation of StoryTIME. This study has been
reviewed the University of Ontario Institute of Technology Research Ethics Board [REB # 14438] and
originally approved on 6/6/2017.
Please read this consent form carefully, and feel free to ask the Researcher any questions that you might
have about the study. If you have any questions about your rights as a participant in this study, please
contact the Ethics and Compliance Coordinator at 905 721 8668 ext. 3693 or researchethics@uoit.ca.

Researcher(s):
Michael Gharbharan, Faculty of Business and IT, Michael.Gharbharan@uoit.ca
Dr. Andrew Hogue, Faculty of Business and IT (Ext. 3698), Andrew.Hogue@uoit.ca

Purpose and Procedure:
The purpose of this study is to evaluate StoryTIME (a Tangible Interactive Media Environment for
Storytelling). StoryTIME is a system that combines augmented reality with tangible interfaces that
allows users to rapidly prototype story sequences using physical objects.

This study is split into two phases: (1) You will be given a paper prototype of an animated sequence and
will be asked to create a digital prototype using a traditional tool (Unity3D) and an experimental tool
(StoryTIME). (2) You will be asked to perform prototyping tasks using StoryTIME with digital
projections enabled and disabled.

This study will take approximately 30 to 60 minutes. Upon completion of the prototyping tasks, you will
be asked to complete a questionnaire to gather your feedback on the tools used. The data collected is
anonymized and will be used in a statistical analysis to evaluate the StoryTIME system. The results of
the statistical analysis may be published in journal or conference proceedings and may be used in future
studies as secondary data.

Potential Benefits:
You will not benefit directly from participating in this study.

Potential Risk or Discomforts:
There are no risks involved with this project. You may withdraw without consequence if you feel any
discomfort, see the “Right to Withdraw” section below for details on withdrawal.

Storage of Data and Confidentiality:
All data collected during this experiment is anonymized, at no point will any personally identifying data
be collected. Data will be collected in the form of questionnaires and screen recording during the
prototyping tasks. Collected data will be stored in a password protected cloud storage account which
will only be accessible by Michael Gharbharan.

Evaluation of StoryTIME Consent Form

2

Right to Withdraw:
Your participation is voluntary, and you can answer only those questions that you are comfortable with.
The information that is shared will be held in strict confidence and discussed only with the research
team. You may withdraw at any time without needing to specify a reason. There are no consequences
for withdrawing. If you withdraw from the research project at any time, any data collected will be
destroyed immediately.

Compensation:
There will be no compensation for participation.

Debriefing and Dissemination of Results:
You have the option to be informed of the results of the research. If you are interested in the results of
the study, you may leave your email address below. Results will be emailed to you once they are
compiled (usually within 2 - 3 months).

Participant Concerns and Reporting:
If you have any questions concerning the research study or experience any discomfort related to the
study, please contact the researcher Michael Gharbharan at michael.gharbharan@uoit.ca.
Any questions regarding your rights as a participant, complaints or adverse events may be addressed to
Research Ethics Board through the Research Ethics Coordinator – researchethics@uoit.ca or
905.721.8668 x. 3693.

By consenting, you do not waive any rights to legal recourse in the event of research-related harm.

Consent to Participate:

1. I have read the consent form and understand the study being described;
2. I have had an opportunity to ask questions and my questions have been answered. I am free

to ask questions about the study in the future;
3. I freely consent to participate in the research study, understanding that I may discontinue

participation at any time without penalty. A copy of this Consent Form has been made
available to me.

___________________________________ _______________________________
(Name of Participant) (Date)

___________________________________ _______________________________
(Signature of Participant)/ (Signature of Researcher)

If you would like to be informed of the results of the study, please print an email address below. This is
optional.

(Email Address)

Evaluation of StoryTIME Consent Form

B.2 Demographics Survey

95

0

1

2

3

4

5

6

StoryTIME first Unity First

Count of Task order

0

1

2

3

4

5

6

7

8

9

10

Female Male

Count of Please indicate your gender

0 1 2 3 4 5

Always (almost daily)

Never

Rarely (once every few months)

Sometimes (a few times a month)

Very Often (at least once a week)

Count of How frequently do you use
following tools to create a virtual

environment [Unity3D]

0 1 2 3 4 5 6

Never

Rarely (once every few months)

Very Often (at least once a week)

Count of How frequently do you use
following tools to create a virtual

environment [Unreal Engine]

0 1 2 3 4 5

Never

Rarely (once every few months)

Sometimes (a few times a month)

Very Often (at least once a week)

Count of How frequently do you use
following tools to create a virtual

environment [Maya]

0 1 2 3 4 5 6

Never

Rarely (once every few months)

Count of How frequently do you use
following tools to create a virtual

environment [Blender]

0

1

2

3

4

5

16 - 20 5 - 10 Less than 5 More than 30

Count of How many hours per week do you
spend developing and or modifying virtual

environments in an average week?

0 1 2 3 4 5

I have created virtual environments for
1-2 projects

I have created virtual environments for
3-5 projects

I have created virtual environments for
too many projects to count

I have followed a few tutorials

Count of Which best describes your
experience with creating virtual

environments

0

5

10

Always Very Often

Count of How frequently have you use
the following prototyping techniques
when creating a virtual environment

[Write ideas on paper (i.e. a list of things
that are needed in the environment)]

0

2

4

6

Never Rarely Sometimes Very Often

Count of How frequently have you use
the following prototyping techniques
when creating a virtual environment

[Create a physical mock-up (i.e. a
diorama)]

0

1

2

3

4

5

Always Rarely Sometimes Very Often

Count of How frequently have you use the
following prototyping techniques when
creating a virtual environment [Create a
digital mock-up using primitive shapes]

0

2

4

6

8

Rarely Sometimes

Count of How frequently have you use the
following prototyping techniques when

creating a virtual environment [Modify an
existing environment (i.e. building off of a

sample scene)]

0

1

2

3

4

5

6

Never Rarely Sometimes

Count of How frequently have you use the
following prototyping techniques when
creating a virtual environment [Use a

tangible prototyping tool]

0

2

4

6

8

10

Never Sometimes

Count of How frequently have you use the
following prototyping techniques when

creating a virtual environment [Use a VR level
editor (i.e. Unreal Engine in VR)]

B.3 Positive and Negative Affect Schedule

109

B.4 System Usability Scale

111

B.5 Post Activity Questionnaire

115

	Introduction
	Production Pipeline for 3D Animation
	Pre-Visualizations

	Tangible Interactive Media Environment
	StoryTIME

	Tangible User Interfaces
	Augmented Reality
	Research Contributions
	Thesis Structure

	Related Work
	Prototyping Animated Sequences
	Tangible User Interfaces for Prototyping

	Augmented Reality Technology
	Object Identification and Tracking
	Displaying Augmentations

	StoryTIME
	System Requirements
	System Setup
	System Architecture
	Initialization
	Image Acquisition
	Object Tracking
	Calibration
	Recording and Playback

	The Transformation Pipeline
	User Interface
	Summary

	Evaluation of StoryTIME
	Research Questions and Hypotheses
	Experimental Setup
	Methodology
	Phase 1: Introduction
	Phase 2: Prototyping an Animated Sequence
	Phase 3: Alpha Beta Test and Debriefing

	Results
	Demographics
	The Positive and Negative Affect Scale (PANAS)
	The System Usability Scale (SUS)
	Post Activity Questionnaire

	Discussion

	Conclusions
	Contributions
	Limitations and Future Work

	References
	HP Sprout Hardware Details
	Surveys, Questionnaires and Ethics
	Consent Form
	Demographics Survey
	Positive and Negative Affect Schedule
	System Usability Scale
	Post Activity Questionnaire

