
Characterizing the Potential Energy Surface of Two

Dimensional and Bulk Materials using High

Dimensional Neural Network Potentials

by

Amber Maharaj

A thesis submitted to the School of Graduate and Postdoctoral

Studies in partial fulfillment of the requirements for the degree of

Master of Science in Modelling and Computational Science

Faculty of Science

University of Ontario Institute of Technology

Oshawa, Ontario, Canada

August 2018

c© Amber Maharaj, 2018

i

Declaration of Authorship
I, Amber MAHARAJ, declare that this thesis titled, “Characterizing the Poten-
tial Energy Surface of Two Dimensional and Bulk Materials using High Dimen-
sional Neural Network Potentials” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

Date: August 20th, 2018

ii

UNIVERSITY OF ONTARIO INSTITUTE OF TECHNOLOGY

Abstract
Faculty of Science

Department of Physics

Master of Science in Modelling and Computational Science

Characterizing the Potential Energy Surface of Two Dimensional and Bulk
Materials using High Dimensional Neural Network Potentials

by Amber MAHARAJ

Computing material properties at the ab-initio level of detail is computationally
prohibitive for large systems or long timescales. As a result, such methods can-
not be used to efficiently sample configuration space. Force field methods can
efficiently sample configuration space, but rely on large parameter sets that are
tuned to specific contexts.

In this work we will explore the ænet approach and its application to six sys-
tems: 2D silica, bulk silica, graphene, diamond, hexagonal boron nitride, and
cubic boron nitride. Here, a general mapping from atomic coordinates to the
potential energy surface is obtained using a feed-forward artificial neural net-
work. An approximate Density Functional Theory method, Density Functional
Tight Binding (DFTB+), is used to compute quantities required for the reference
dataset. It is found that a network made up of linear activation functions in
ænet is (almost) equivalent to a one-layer radial basis function network, and is
sufficient to learn a reference dataset consisting of structures sampled from a
canonical ensemble at various temperatures. We look at how sampling outside
of these frequently visited energy states, through data augmentation, signifi-
cantly increases the complexity of the problem.

http://science.uoit.ca/
http://www.science.uoit.ca/people/physics-faculty-and-staff.php

iii

Acknowledgements
First, I would like to thank my supervisor, Isaac Tamblyn. His mentorship,
guidance and compassion over the course of my studies has been invaluable.
He has made so many opportunities available to me during my research, and
I will always be grateful. Next I would like to thank Hendrick de Haan for his
guidance and input during my thesis preparations, as a member of my super-
visory committee. I would like to extend a thank you to Ken Pu for agreeing to
be my external examiner. I am sincerely grateful to have had the opportunity to
work alongside the members of CLEAN lab. It has been incredibly rewarding to
be a member of this research group. I would specifically like to thank Elizabeth
Selinger and Kyle Mills for all their help and support.

My family has been amazingly supportive throughout my Master’s degree,
and I would like to thank them for their support and encouragement. Last but
certainly not least, I would like to thank my significant other Martin Magill. I
am extremely grateful to have gone through this experience with him by my
side. He has helped me through some very difficult times, and has provided
unwavering support. Our discussions have helped me flesh out a lot of ideas
and stay organized.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Review of Literature . 4

1.2.1 Interpolating the Potential Energy Surface 5
1.2.2 Materials . 9

2D Silica and Bulk Silica . 9
Graphene and Diamond . 10
Hexagonal Boron Nitride and Cubic Boron Nitride 11
Experiments . 12

2 Background 14
2.1 Atomistic Simulations . 15

2.1.1 Density Functional Theory 15
The Kohn-Sham Ansatz . 17
Solving the Kohn-Sham Equations 19
Basis Sets . 20
Self-Consistency Scheme . 21

2.1.2 Density Functional Tight Binding (DFTB+) 22
Energy from charge fluctuations 25
Energy from repulsive interactions 26
Band structure energy . 27
pseudo-atoms . 29
Parameter Sets . 29

v

Implementation Details for DFT and DFTB 31
K-Point Sampling . 32

2.1.3 Running Molecular Dynamics 32
2.2 Machine Learning Basics . 33

2.2.1 Feed-forward Artificial Neural Networks 33
2.2.2 Backpropagation . 40
2.2.3 Online vs. Batch Training Methods 43
2.2.4 Optimization Methods . 44
2.2.5 Model Validation . 45
2.2.6 Machine Learning in Atomistic Simulations 45
2.2.7 Behler-Parinello Symmetry Basis Functions 46
2.2.8 Atomic Energy Network (ænet) 50

3 Methods 53
3.1 Data generation . 53

3.1.1 2D and 3D systems . 53
3.1.2 TiO2 . 54
3.1.3 Run Summary . 54

3.2 Workflow . 54
3.3 Performance Metrics . 56

Loss Curves . 56
Predicted vs. True . 57
Pearson Correlation Coefficient 57
Squared Error . 57

3.4 Convergence Studies . 57
3.4.1 Cutoff Radius . 57
3.4.2 Training Set Size . 58
3.4.3 Time Between Snapshots 59
3.4.4 Optimizers and Sensitivity to Random Seeds 60

4 Network Activations 64
4.1 2D Silica . 64

4.1.1 Performance of Activations Available in ænet 65
4.1.2 Toy model: Pair potential H2 70

Performance for Linear and Tanh Networks with respect
to Number of Radial Basis Functions 70

vi

RBF Sensitivity to η Parameters 75
NN Capacity Required to Learn NNPs 76

4.2 Graphene . 78
4.2.1 Role of Angular Basis Functions 78
4.2.2 Sampling and Data Augmentation 80

4.3 Titanium Dioxide (TiO2) . 83
4.3.1 Data Augmentation . 86

5 Bulk and 2D Materials 91
5.1 Materials . 91

5.1.1 2D Silica and Bulk SiO2 . 91
High pressure MD sampling 94

5.1.2 hBN and cBN . 97
5.1.3 Graphene and Diamond . 99

5.2 Impact of data augmentation . 102
Augmented dataset performance 103

5.3 Comparing 2D materials . 110
5.3.1 Chapter Summary . 111

6 Recommendations 113
6.1 Sampling . 113

6.1.1 Training the Network . 114
6.1.2 Extrapolation Capabilities 115

7 Conclusions and Future Work 117

Bibliography 120

vii

List of Figures

1.1 Levels of theory for atomistic simulations. 2
1.2 Molecular Dynamics algorithm. 3
1.3 Left: View of the 2D silica surface. Right: View from the side of

2D silica. 10
1.4 Left: Bulk silica surface, view from the top. Right: Bulk silica

surface view from the side. 10
1.5 Left: Graphene view from top. Right: Graphene view from side. 11
1.6 Left: Diamond view from top. Right: Diamond view from side. 11
1.7 Left: Hexagonal boron nitride view from the top. Right: Hexag-

onal boron nitride view from the side. 12
1.8 Left: Cubic boron nitride, view from the top. Right: Cubic

boron nitride, view from the side. 12

2.1 Theorem 1 of the Hohenberg-Kohn theorems state that the exter-
nal potential Vext(r) is uniquely determined by the ground state
density no(r). The external potential can be used to generate all
states of the system Ψi(r) including the ground state Ψo(r) and
ground state density no(r). The mapping from ground state den-
sity to the external potential by the Hohenberg-Kohn theorems
complete the loop. Image retrieved from reference [59]. 17

2.2 In the Kohn-Sham ansatz, the electron density of the noninteract-
ing problem is mapped to the electron density of the many-body
fully interacting problem. By solving the electron density for the
non-interacting problem, all properties for the fully interacting
problem are found. Image retrieved from reference [59] 20

viii

2.3 Kohn-Sham self-consistency scheme: an initial electron density is
guessed which is used to solve the effective potential. The Kohn-
Sham equation is then solved to get a single particle orbital. From
this wavefunction, a new density is computed. If this density is
within a specified convergence criteria, it is considered the true
ground state density. If not, a new guess is made. Image retrieved
from [59]. 23

2.4 Self-consistency in SCC-DFTB method. In the Kohn-Sham equa-
tions, the charge density was solved self-consistently. Here the
atomic charge population is solved self-consistently. It typically
takes much fewer iterations to solve than for full DFT. 30

2.5 In a biological neuron, the dendrites receive information through
an input signal. Each dendrite passes a signal to the cell body to
be summed and activated. If the signal exceeds some threshold,
it is propagated through the axon to be transmitted to another
neuron. Image retrieved from [43]. 34

2.6 Representation of a single artificial neuron. The nodes repre-
sent inputs or outputs, and connections indicate weights. Image
adapted from [17]. 35

2.7 Activation functions available in ænet and their derivatives. Im-
age adapted from [3] Top: Activation function outputs. Notice
that the sigmoid and tanh function are bound on (0,1) and (-1,1)
respectively. Whereas the linear and tanh with linear twisting
functions are unbounded. Bottom: Activation function deriva-
tives. Notice that small valued outputs for the sigmoid function
can lead to the network updating weights more slowly during
training while using a backpropagation algorithm (section 2.2.2). 38

2.8 Fully connected artificial neural network with two hidden layers
and N nodes. The set of weights for each layer is given by W.
Neurons with a value of 1 indicate bias nodes. 39

2.9 Local structural environment of an atom including periodic im-
ages. Interactions between atoms within the cutoff radius and
the centered atom are included. Image retrieved from [11]. 46

ix

2.10 a) Shows a simple symmetry function using only the cutoff func-
tions. Various values for cutoff radii are used to control how far
from the central atom the atomic environment extends. b) Shows
the change in basis function by varying the η parameter. c) Rs

is varied. This shifts the gaussian to different radii. d) Angular
symmetry functions. Image retrieved from [11]. 48

2.11 Angular symmetry functions formed between atom i, j, and k.
Image retrieved from [11] . 49

2.12 Behler-Parinello network architecture. Here inputs are mapped
onto a set of symmetry functions. The symmetry functions feed
into subnets which each output an atomic energy contribution.
Atomic energies are summed in the output layer to generate the
total energy. Image retrieved from [9] 51

3.1 Workflow established for using ænet. 55
3.2 Cutoff radius convergence for the 2D silica dataset. A 70-10-10-1

tanh network architecture is optimized with l-BFGS 58
3.3 Training set convergence for the 2D silica dataset. A 70-10-10-

1 tanh network architecture is optimized with the l-BFGS opti-
mizer. Reference datasets have sizes of m ∈ 500, 1000, 1500, 2000.
From this reference data, 85% is reserved for the training set, and
15% is reserved for a testing set. 59

3.4 Convergence of networks using different sampling windows. A
70-10-10-1 tanh network architecture is optimized using the l-
BFGS method. 60

3.5 Convergence of the l-BFGS optimizer over 5 random seeds. A 26-
10-10-1 tanh network architecture is optimized using the graphene
dataset. 61

3.6 Convergence of the Levenberg-Marquardt optimizer over 5 ran-
dom seeds. A 26-10-10-1 tanh network architecture is optimized
using the graphene dataset. 62

3.7 Convergence of the Online Gradient Descent optimizer over 5
random seeds. A 26-10-10-1 tanh network architecture is opti-
mized using the graphene dataset. 63

x

4.1 70-10-10-1 network optimized with l-BFGS using linear, sigmoid,
tanh, and tanh with linear twisting activation functions. The 2D
silica dataset is used. 65

4.2 The network using a tanh activation was run for 600 more epochs.
The error converges lower than the linear network, but takes
twice as many epochs to converge. 68

4.3 Top: Energies predicted by a 70-10-10-1 network using tanh acti-
vation functions are plotted against the true energy values. Bot-
tom: Energies predicted by a 70-10-10-1 network using linear
activation functions are plotted against the true energy values. . . 69

4.4 Energies predicted by the neural network are plotted with the
true energies for each number of radial basis function. For the
linearly activated network (left), increasing the number of RBFs
for the linear network increases the capacity for fitting the non-
linear pair potential curve. The neural network with tanh activa-
tions (right) is capable of fitting the nonlinear activation function
with only 1 RBF. 72

4.5 For the linear network, a linear transformation is applied to each
neuron. Adding the gaussian-like functions together allows the
network to learn a nonlinear function. 73

4.6 The network potential generated with different η values is used
to predict the true DFTB energies for the pair-potential curve.
Each network has a 30-20-20-1 network architecture and uses lin-
ear activation functions. Higher η values correspond to smaller
interatomic separations. Top: η values up to ηmax = 2.7497 are
used. Middle: η values up to ηmax = 4.7497 are used. Bottom: η

values up to ηmax = 5.7497 are used. 75
4.7 Network potentials trained on various architectures are used to

predict the pair-potential curve. The number of neurons are var-
ied from 1-4 in the hidden layer. Top left: 1-1-1 tanh network.
Top right: 1-3-1 tanh network. Bottom left: 1-4-1 tanh network.
Bottom right: 1-8-1 tanh network. 77

4.8 The graphene dataset is used to train 19-10-10-1 linear and tanh
networks where there is one radial basis function and 18 angular
basis functions. 79

xi

4.9 The graphene dataset is used to train a network with only one
radial basis function (and no angular basis functions). Linear and
tanh activation functions are used. The linear network gets stuck
in a local minima and converges at a higher error. 79

4.10 Loss curves are plotted for various percentages of augmented
graphene data. If 0% of the data is scaled, the dataset consists
entirely of structures from MD trajectories. If 100% of the data
is scaled, the dataset consists of all augmented structures. Per-
centages in between 0% and 100% indicate a combination of the
two. 82

4.11 63-10-10-1 networks (one RBF) using either linear or tanh acti-
vation functions are optimized with l-BFGS. The TiO2 reference
data is used. 84

4.12 N-10-10-1 network (increasing RBFs from 1 to 8) using only linear
activation functions and optimized with l-BFGS. The TiO2 refer-
ence dataset is used. 85

4.13 70-10-10-1 networks (8 RBFs) with either tanh or linear activation
functions are optimized with the l-BFGS optimizer. The TiO2 ref-
erence dataset is used. 85

4.14 Distribution of cohesive energies per atom in the complete TiO2
dataset. 87

4.15 The distribution of cohesive energies per atom in the Top: non-
augmented graphene dataset (structures sampled entirely from
MD). Middle: augmented graphene dataset (structures sampled
from the stretched or compressed dataset) Bottom: TiO2 dataset
where energies that are higher than the range of graphene in TiO2

are removed. 88

5.1 Loss curves for 2D and bulk silica (datasets are sampled from MD
trajectories). A network architecture of 70-10-10-1 is optimized
using l-BFGS. 92

xii

5.2 Cohesive energy per atom as a function of scaling factor. The red
horizontal line corresponds to the maximum value of cohesive
energy per atom in the training set. The orange horizontal line
corresponds to the mean value of cohesive energy per atom. The
true cohesive energies per atom are plotted with the ANN pre-
diction of the energies at these points. Top: 2D silica energies.
Bottom: Bulk silica . 94

5.3 Loss curves for 2D silica where data is sampled near equilibrium,
or away from equilibrium (high pressure). A network architec-
ture of 70-10-10-1 is optimized using l-BFGS. 95

5.4 Cohesive energy per atom as a function of scaling factor. The red
horizontal line corresponds to the maximum value of cohesive
energy per atom in the training set. The orange horizontal line
corresponds to the mean value of cohesive energy per atom. The
true cohesive energies per atom are plotted with the ANN pre-
diction of the energies at these points. Top: 2D silica energies.
Notice that the network potential makes biased predictions. This
is due to MD sampling around fixed lattice vectors correspond-
ing to this region. Bottom: Bulk silica 96

5.5 Loss curves for hexagonal boron nitride and cubic boron nitride
(datasets are sampled from MD trajectories). A network architec-
ture of 70-10-10-1 is optimized using l-BFGS. 97

5.6 Cohesive energy per atom as a function of scaling factor (used to
expand or compress structures) and the network potential pre-
dictions of these energies. The red dashed line indicates the maxi-
mum energy included in the reference data set. The orange dashed
line indicates the average value of the energy included in the ref-
erence data set. Top: Hexagonal boron nitride. Bottom: Cubic
boron nitride. 99

5.7 Loss curves for graphene and diamond (datasets are sampled
from MD trajectories). A network architecture of 26-10-10-1 is
optimized using l-BFGS. 100

5.8 Cohesive energy per atom as a function of scaling factor for graphene
and diamond. 100

xiii

5.9 Network potential predictions on the graphene and diamond datasets.
The dashed red line indicates the maximum value of cohesive en-
ergy in the dataset. The orange dashed line indicates the mean
value of cohesive energy in the dataset. Top: graphene Bottom:
diamond. 101

5.10 Cohesive energy per atom as a function of scaling factor. The
ANN prediction corresponds to a network trained on MD data
only (dataset A). The ANN (Data Augmentation) prediction cor-
responds to the augmented dataset (dataset B). Top: The mean
value of cohesive energies per atom in the dataset are plotted for
dataset A (orange line) and dataset B (green line). Bottom: The
maximum value of cohesive energy per atom in the training set
is plotted for dataset A (orange line) and dataset B (green line). . 103

5.11 The network trained on dataset B is used to predict energies of
non-augmented data (blue) and augmented data (orange) 104

5.12 The squared error of the scaled and unscaled data sets are com-
pared. The frequency of the unscaled data is normalized to the
number of examples for the scaled data i.e. the counts for the un-
scaled data were doubled since there were 2000 modified struc-
tures and 1000 original structures. 105

5.13 Force predictions by the neural network trained on dataset B (aug-
mented dataset). Top: Forces are predicted on original struc-
tures. There is some correlation between predicted and true en-
ergies. Bottom: Forces are predicted on the modified structures.
There is very little correlation between predicted and true val-
ues. This is expected as derivatives of the network potential away
from equilibrium are not learned by the network. 107

5.14 Force predictions by the neural network trained on dataset B (aug-
mented graphene dataset) compared to predictions made by neu-
ral network trained on dataset A (MD graphene data). Top: Forces
predictions made by the potential trained on dataset B. Bottom:
Force predictions made by the potential trained on dataset A. . . 109

xiv

5.15 Loss curves for all 2D materials (datasets are sampled from MD
trajectories). A network architecture of 70-10-10-1 is optimized
for hexagonal boron nitride and 2D silica using l-BFGS. A net-
work architecture of 26-10-10-1 is optimized for graphene using
l-BFGS. 110

5.16 Top: Cohesive energy per atom as a function of scaling for each
2D material. Bottom: The rate of change of cohesive energy per
atom as a function of scaling factor for each 2D material. 111

xv

List of Tables

3.1 Above are basic simulation info for each system. 54
3.2 Above is info for sampling from each MD trajectory 54

1

Chapter 1

Introduction

1.1 Motivation

Given the expensive and time consuming nature of experiments, materials sim-
ulations are an invaluable tool for of guiding chemical experiments and/or in-
terpreting their results. Material simulations can provide insight into what is
possible to achieve experimentally. A major barrier to gathering a substantial
amount of data is the large computational cost of highly accurate simulation
methods. The Schrödinger equation cannot be solved exactly for most relevant
systems. For this reason, approximate methods such as DFT were developed.
Such electronic structure methods, can generate reliable potentials and are very
costly to compute. The most popular implementation is density functional the-
ory (DFT), which requires solving the many body Schrödinger equation:

HΨ =

 N

∑
i

(
− h̄2

2mi
∇2

i

)
+

N

∑
i

V(~ri) +
N

∑
i<j

U(~ri,~rj)

Ψ (1.1)

This task has an algorithmic scaling of O(n3) where n is the number of elec-
trons in the system. This restricts simulations to system sizes of a few hundred
atoms and timescales to hundreds of picoseconds.

There is frequently a trade-off between accuracy and scalability (as seen in
figure 1.1) when studying a system using computational methods. Approxima-
tions can be made to ab-initio methods whereby matrix elements of the Hamil-
tonian are pre-tabulated. These are called semi-empirical potentials, and they
can improve the computational complexity by 1-2 orders of magnitude [1]. An

Chapter 1. Introduction 2

example of this method is Density Functional Tight Binding (DFTB+), which is
an approximate DFT method.

At a low level of accuracy, there are classical force field methods. These
methods are highly efficient (fast and scalable), but require a large number of
parameters to fit classical potential energy surfaces. The parameters used to
fit these force fields are tuned to fit specific experimental or ab-initio situations.
While force field methods can extend the timescales of and sizes of systems
with thousands of atoms (compared to hundreds), they may not capture details
of systems that enter situations outside of those for which the potential was
parameterized.

FIGURE 1.1: Levels of theory for atomistic simulations.

Molecular Dynamics (MD) is a popular algorithm used in materials simu-
lation. In an MD simulation, structural information is read as an input. The
functional form is determined by the level of theory that is being used in the
simulation. At this point one must choose a method for calculating the poten-
tial. An ab-initio or semi-empirical method will involve solving the Schrödinger
equation, whereas a forcefield method will involve solving a classical potential
with a set of parameters that describe the chemical environment. Once the po-
tential is obtained, the force can be calculated by taking the derivative of the

Chapter 1. Introduction 3

potential with respect to the atomic coordinates. Since a = F
m , the atomic co-

ordinates can then be updated using the equations of motion. The time step
is increased, and this process is repeated iteratively until specified to stop. A
schematic of this algorithm can be seen in figure 1.2. The bottleneck in algo-
rithmic complexity for MD simulations corresponds to the evaluation of this
interaction potential.

FIGURE 1.2: Molecular Dynamics algorithm.

The relationship between nuclear coordinates and potential energy is, in
most cases, too difficult to determine analytically [11]. Therefore, physically
inspired models can fall short of providing a complete description of the sys-
tem. Most classical force fields are not able to accurately model bond breaking
and formation for example. Many classical force fields also fail to model the
effects of atomic environment on bonding properties for metals and alloys [11],
since these force fields explicitly include the bond strength as part of the func-
tional form. To work around such challenges, separate force fields have been
designed to model chemical reactions. These force fields are bond order based
[77, 82] allowing for continuous bond formation or breaking. Typically, ab-initio
level detail would be needed to describe bond breaking and formation. While
these efforts achieve some bridging between quantum mechanical and classical
methods, they still rely heavily on a physically inspired functional form. The

Chapter 1. Introduction 4

model might predict some features well, but not others. For instance, in a re-
cent paper (2018), Manzano et al [57] showed that the reaxFF force field could
reproduce hydrogen bonding, microstructure, proton subtransfer and diffusion
of super- and sub- critical water with a very good quantitative agreement to ex-
perimental data. However, for high temperatures, the static dielectric constant
was overestimated. While the model captures many things well, it does not
capture everything. In some cases, for very complex potential energy surfaces,
the physical potentials are difficult or even impossible to derive [11].

It is desirable to design an interatomic potential where the mapping from
nuclear coordinates to potential energy surface is general. This can be achieved
through using neural networks that train on electronic structure data. In this
work, an implementation of the Behler and Parinello approach [10] is used to
learn the interatomic potentials for various systems of interest. In this approach,
atomic coordinates are projected onto a set of symmetry functions that model
the local atomic environments within the system. The symmetry functions are
the input for a neural network made up of subnets, that each output an atomic
energy contribution. The atomic energy contributions are then summed in the
output layer to provide the total energy for the system. This Neural Network
Potential (NNP), represents a nested function that can be evaluated at a fraction
of the cost of an ab-initio method, with a comparable accuracy. Also, by defining
the total energy as a sum of atomic energy contributions, atoms can be added to
or removed from the system while using the potential. This allows for increased
scalability.

1.2 Review of Literature

Various methods have been used to construct the potential energy surface of
materials through interpolation of ab-initio calculations [39, 18, 7, 15, 6, 10].
Such methods do not rely on a physically inspired functional form. Instead
the potential energy surface is constructed in an unbiased and automated way.
Here we will breifly review various methods for interpolating the potential en-
ergy surface. Following this, we will explore the neural network potential ap-
proach developed by Behler and Parinello [10], and applications of this method
using open source software ænet [3]. After reviewing interpolation methods,
the materials explored in this work will be introduced.

Chapter 1. Introduction 5

1.2.1 Interpolating the Potential Energy Surface

In general, computing the entire potential energy surface for materials is com-
putationally intractable. While classical methods are able to explore more of
the potential energy surface, they have a lower accuracy than is sometimes re-
quired. ab-initio methods explore much less of the potential energy surface dur-
ing molecular dynamics, but they have the highest level of accuracy for comput-
ing material properties. By interpolating a set of reference ab-initio level data,
the potential energy surface does not need to be completely evaluated. A naive
approach to interpolating the potential energy surface is to sample the poten-
tial energy surface on a uniform grid and compute the solution at an ab-initio
level of theory. This would be very expensive to implement. Also, the most
frequently visited configurations occur near the minima. Thus, a key step in
interpolating ab-initio points, is sampling the potential energy surface around
regions of interest.

In one approach, a modified Shepard Interpolation method was used to con-
struct the PES. This was implemented in the context of describing reaction dy-
namics. In this method, a classical molecular dynamics simulation is used to
explore configuration space and identify dynamically important regions of con-
figuration space. The potential energy surface is given by an interpolation of
local Taylor expansions that are centered around a configuration whose poten-
tial is computed at ab-initio level detail. Instead of interpolating over a regular
grid of points on configuration space, the classical MD is used to identify dy-
namically important regions that are sampled more densely. The result is that
the sampling of configuration space is non-uniform, and allows for interpola-
tion over a fewer number of data points.

While earlier methods employed this algorithm for only low-dimensional
systems [39], more recent methods have extended this methodology to deal
with systems with higher degrees of freedom [18]. Crespos et al [18], discuss
how the PES can be iteratively developed by using the a preliminary interpo-
lated potential in a classical dynamics simulation to explore dynamically im-
portant regions of configuration space. From these trajectories, more points
of configuration space can be sampled and used to iteratively refine the PES.
They discuss how a high degree of accuracy is important in regions that are
frequently visited by classical MD trajectories. However, the accuracy of the

Chapter 1. Introduction 6

interpolated potential can also be improved by adding points in configuration
space that are less likely to be visited during MD. The accuracy of the potential
is considered to be converged when a computed observable is converged within
a specified tolerance. Convergence is consistently shown to improve with num-
ber of data points [39, 18].

Another method of interpolating ab-initio data is the moving least squares
interpolation [40, 55, 22, 21]. Using this method, the potential energy surface,
gradients and Hessian data are interpolated around an ab-initio data point. Here
the interpolated potential energy surface around an ab-initio data point is ex-
pressed as a set of linearly independent basis functions. To determine the co-
efficients for the linear combination of basis functions, the weighted deviation
between the combination of basis functions and the true ab-initio potential is
minimized. This weighted deviation is computed for each reference point and
then summed. Here the weights are drawn from a weight function that decays
as the distance from the ab-initio data point increases. Once the basis function
coefficients are determined, the fitted potential can be determined by solving
the normal equation.

The idea to use neural networks to describe interatomic potentials dates back
to the early 90s [81, 67, 15, 73]. In early works, neural networks were generally
restricted to generating the potential energy surfaces for small molecules or low
dimensional systems [15, 73, 58]. Some issues complicate the application of NN
to map coordinates to high dimensional PES. For one, the weights of a neural
network are generally set up to be different from one another. Thus, interchang-
ing the coordinates of two atoms of the same type can lead to a different total
energy. Also, if the inputs to the neural network depend on something like the
number of degrees of freedom in the system (as implemented by Lorenz et al
[53]), the neural network will not generalize. The network is relevant only for a
fixed number of input nodes.

In 2007, Behler and Parinello [10] introduced a method where the input coor-
dinates are mapped onto a set of symmetry functions that are made up of radial
and angular basis functions. These symmetry functions describe a local atomic
environment (defined within a cutoff radius) that is invariant to translations, ro-
tations and permutations of atoms. To deal with the high-dimensional potential
energy surfaces, Behler and Parinello proposed a scheme where the total energy

Chapter 1. Introduction 7

of the system was expressed as a sum of the atomic energy contributions:

E = ∑
i

Ei(σ̃i) (1.2)

Where each atomic energy is a function of a set of symmetry functions σ̃ which
describe the local atomic environments.

Other groups have avoided selecting parameters to define the shape of the
basis functions used in the Behler and Parinello approach. Bartòk et al [7] dis-
cusses how breaking down the total energy into atomic energy contributions (as
suggested by Behler et al [9]), allows for a better approximation of the potential
energy surface as atoms are added or removed from the region of interest. The
basis function description is avoided by expanding the local atomic environ-
ment in a series of spherical harmonics. The descriptors for the atomic environ-
ments are created by constructing a neighbour density at each point in space for
each atom up to a specified cutoff distance. The neighbouring atoms are multi-
plied by a set of weights used to discriminate which atomic species is at these
positions, and a cutoff function to ensure a smooth decay at the cutoff radius. To
get the angular distribution for the neighbours, all neighbour densities are pro-
jected onto a sphere that is then expanded in spherical harmonics. The radial
distributions are converted to an additional angle extending the spherical har-
monics to four dimensions [12]. These positions on the four dimensional sphere
are expanded in hyperspherical harmonics. The coefficients of these harmonics
produce a bispectrum matrix. The bispectrum matrix is then mapped to atomic
energy contributions as implemented by Behler and Parinello.

Since the neighbour densities uses δ-functions centered around each atom in
the atomic environment in the bispectrum neighbour density method, there can
be instabilities when the positions deviate between two atomic environments.
To prevent this issue, in 2013, Bartòk et al [6] released the Smooth Overlap of
Atomic Orbitals (SOAP) method, that models the neighbour density with gaus-
sians centered on all atoms in the local environment. These gaussians are similar
to the radial basis functions used in Behler’s work [10]. While many radial basis
functions are mapped to a single atomic energy in the Behler approach, in the

Chapter 1. Introduction 8

SOAP method, only one neighbour density is needed to map to the atomic en-
ergy. The kernal1 is defined by the overlap of two atomic environments. Gaus-
sian processes are used to predict atomic energies of new configurations given
previous observations.

In 2016, an open source implementation of the Behler-Parinello method was
released called ænet (this implementation is the one that will be used to train
network potentials throughout this work). At this point, the number of basis
functions scaled with the number of species in the system. Consequently, only
up to four atomic species were used while implementing the Behler-Parrinello
neural network potentials [2]. The algorithm was recently updated to avoid
scaling with the number of atomic species.

In 2017 the implementation was extended to systems of many body com-
positions. Artrith et al [5], showed that the same model complexity required
for a ternary material was also sufficient to describe a material composed of 11
atomic species. In this approach, the local structure and composition were used
to separately encode atomic positions and species using two invariant sets of
coordinates. To get a combined descriptor, they take the union of each set of
coordinates (belonging to structure and composition). The expansion for the
structural descriptor corresponds to the bond length for the radial basis func-
tions, and bond angle for angular basis functions. The expansion coefficients
for the compositional descriptor have the same coefficients as the structural de-
scriptor, but they are weighted differently based on the atomic species.

In 2018, Artith et al [4] addressed the difficulties involved in sampling con-
figuration space to generate reliable potentials. To build a reliable potential, an
extensive database of ab-initio calculations must be available which contains
all important interactions. Sampling using ab-intio methods limits system sizes
and how much of configuration space can be sampled. Traditionally, classical
MD trajectories might be implemented to sample configuration space, and then
an ab-initio level calculation would be taken on a subset of those configurations.
Such an approach might require a dataset ranging from thousands to tens of
thousands of reference data points depending on number of atomic species [4].
In this approach, the phase diagram of amorphous LixSi is explored using a ge-
netic algorithm. The sampling is constrained to be near ground state structures.
Using this Specialized potential (using genetic algorithm for sampling) only 1000

1A kernal is a measure of similarity between points.

Chapter 1. Introduction 9

reference data points were required to be competitive with the general potential
(sampling configuration space by using classical MD) using approximately 45
000 reference data points.

1.2.2 Materials

In this section we will review the materials explored in this work. 6 materials
will be used in molecular dynamics simulations to produce reference data for
learning neural network potentials. Three of the materials are two-dimensional:
2D silica, graphene and hexagonal boron nitride. 2D materials are materials that
are 1-2 atoms in thickness. Each material will be compared to a polymorph2

(or allotrope3) of the same chemical composition. Graphene is compared to
diamond, 2D silica is compared to bulk silica, and hexagonal boron nitride is
compared to cubic boron nitride.

2D Silica and Bulk Silica

2D Silica, (also referred to as Hexagonal Bilayer Silica (HBS)) is part of a class
of 2 dimensional materials that has gained a large amount of interest in the
past 10 years [56]. HBS is the thinnest gate dielectric oxide layer and support
in catalysis, and it has also been proven to be useful in separating graphene
from a metal substrate [13]. Given the interest in 2D materials and their unique
physical properties, 2D silica is a well studied 2D material along with graphene.
While 2D silica appears to be three atoms thick in figure 4.1, the thickness is
measured by the distance between the two silicon atoms.

2A polymorph refers to the property of a solid material of more than one element to exist in
more than one form.

3an allotrope is a property of an element to exist in two or more different forms in the same
physical state.

Chapter 1. Introduction 10

FIGURE 1.3: Left: View of the 2D silica surface. Right: View from
the side of 2D silica.

Bulk SiO2 is a common gate dielectric that has been used as a substrate
for materials such as graphene and MoS2 [41, 86]. SiO2 Is frequently used
in the production of metal-oxide-semiconductor field effect transistors (MOS-
FETS) due to properties such as having low interfacial defect density with Sili-
con, high resistivity, large band gap and high dielectric strength [26].

FIGURE 1.4: Left: Bulk silica surface, view from the top. Right:
Bulk silica surface view from the side.

Graphene and Diamond

We will look at two allotropes of carbon: graphene and diamond. Graphene is a
freestanding monolayer material arranged in a hexagonal lattice (figure 1.5). It
is equivalently one isolated layer of graphite (a material made up of graphene
sheets). There are many properties of graphene that make it a material of inter-
est to study. For instance, it is extremely strong and lightweight. In fact, it is
the strongest material that has ever been tested (tensile strength of σ = 130GPa)

Chapter 1. Introduction 11

FIGURE 1.5: Left: Graphene view from top. Right: Graphene
view from side.

[51]. It is also a very good conductor of heat and electricity with an electron mo-
bility of up to µe = 15000 cm2V−1s−1 at room temperature [84], and a thermal
conductivity ranging between κ = 1500− 2500 Wm−1K−1 [16, 52, 27].

Diamond is a 3D crystal of carbon atoms. Diamond has an extremely rigid
lattice with strong covalent bonding, and is known to be the hardest naturally
forming material. It has good thermal conductivity ranging from κ = 900 −
2320 Wm−1K−1 [85]. Due to its hardness, it can be used for cutting tools eg.
diamond-tipped drill bits and saws. Given its high thermal conductivity, it is
also an ideal heat sink for electronics [69].

FIGURE 1.6: Left: Diamond view from top. Right: Diamond
view from side.

Hexagonal Boron Nitride and Cubic Boron Nitride

Hexagonal boron nitride (hBN) is a wide bandgap material that has a similar
structure to graphite, where hexagonal sheets are held together by weak Van

Chapter 1. Introduction 12

der Waals forces. The hexagonal form of boron nitride is the most stable form of
the polymorphs. The monolayer hBN could be used be used as a complimen-
tary 2D dielectric substrate for graphene electronics [79]. Cubic Boron Nitride

FIGURE 1.7: Left: Hexagonal boron nitride view from the top.
Right: Hexagonal boron nitride view from the side.

(cBN) is a polymorph of boron nitride that is analogous to diamond. It is the
second hardest material, after diamond [62]. While it is softer than diamond, it
has better thermal and chemical stability making it an attractive alternative for
various applications. cBN has use for abrasives, cutting tools [83].

FIGURE 1.8: Left: Cubic boron nitride, view from the top. Right:
Cubic boron nitride, view from the side.

Experiments

2D materials are interesting for their unique physical properties and role in var-
ious applications eg. semiconductors and electrodes. In this work, we will
characterize the potential energy surface of each of the 2D materials introduced
above, and the corresponding bulk materials through temperature sampling
and data augmentation.

Chapter 1. Introduction 13

We will see that the neural network converges to a lower error on some ma-
terials compared to others. We will then discuss how different potential energy
surface complexity can impact how easily a neural network can learn.

14

Chapter 2

Background

The quality of a Neural Network Potential (NNP) is limited by the quality of
the reference data set. The accuracy is limited by the level of theory at which
the reference data is generated. A primary motivation for using NNPs is that
it is difficult to generate large amounts of data at a high level of theory. How-
ever, this also serves a barrier for creating reference data. The most accurate
reference data is generated using ab-initio methods, which are costly for large
systems or extended timescales. One approach to generating data is to sample
various simulation trajectories at uncorrelated times, thereby sampling config-
uration space. Since, it is very costly to generate a sufficiently long simulation
trajectory, it makes sense to sample up by generating a large number of con-
figurations using a cheaper simulation method and run a single higher level
computation on the configurations to get the material properties.
This chapter will discuss the theory behind these proposed simulation meth-
ods from the perspective of specific simulation programs. To generate reference
data, an approximate Density Functional Theory (DFT) method was used called
Density Functional Tight Binding (DFTB). As much of the theory behind DFTB
is built on DFT, the theory behind DFT will be discussed. Following this review
will be an introduction to machine learning methods and the application of the
Behler-Parinello approach to material simulations using atomic simulation en-
vironment (ænet).

Chapter 2. Background 15

2.1 Atomistic Simulations

2.1.1 Density Functional Theory

Density Functional Theory (DFT) is a method derived from quantum mechan-
ics used in computational materials physics. It belongs to the class of ab-initio or
first principles methods, meaning that it is free of empirical parameters. DFT is
used primarily to determine the electronic structure1 of materials in the ground
state (lowest energy state). By solving the electronic structure of a given system
over a range of nuclear configurations, the potential energy surface is obtained.
In DFT, the Schrödinger equation is solved by finding the functional of the elec-
tron density. Once the wave function is obtained, all other quantum observables
can easily be computed. In the following, I will discuss the derivation of DFT
as it is relevant to DFTB.

We will start from the non-relativistic time-independent many-body Schrödinger
equation:

ĤΨ({ri=1..N, RI=1..M}) = EΨ({ri=1..N, RI=1..M}) (2.1)

where Ĥ is the Hamiltonian, E is the total energy, and Ψ is the wave function
which depends on the positions and spins of electrons, ri, and the positions and
spins of nuclei, RI . N refers to the number of electrons and M refers to the
number of nuclei.

Using Hartree atomic units (h̄ = me = e = 4π
εo

= 1), the Hamiltonian term
can be expressed as:

Ĥ = −1
2

N

∑
i=1
∇2

i −
1
2

M

∑
I=1

1
MI
∇2

I −
N

∑
i=1

M

∑
I=1

ZM

riI
+

N

∑
i=1

N

∑
j>i

1
rij

+
M

∑
I=1

M

∑
K>I

ZIZK

RIK
(2.2)

The first two terms correspond to the kinetic energy of electrons and nuclei re-
spectively. The third term describes the attractive interaction between electron
and nuclei. The last two terms are the repulsive potentials of electron-electron
and nuclei-nuclei interactions [59].

The Born-Oppenheimer approximation states that since the mass of nuclei

1Electronic structure describes the motion of electrons in atoms or molecules.

Chapter 2. Background 16

are much larger than the mass of electrons in the system, the nuclei can be re-
garded as fixed. Since the motion of electrons is much faster than the motion
of nuclei, it is assumed that for any given nuclear configuration, electrons will
be optimally distributed. From this assumption it follows that the kinetic en-
ergy term for nuclei can be removed from the equation. Only a static potential
energy term will remain from atomic nuclei.

The equation for the electronic part of the Hamiltonian is then:

Ĥelec = −
1
2

N

∑
i=1
∇2

i︸ ︷︷ ︸
T̂

−
N

∑
i=1

M

∑
I=1

ZM

riI︸ ︷︷ ︸
V̂e−n

+
N

∑
i=1

N

∑
j>i

1
rij︸ ︷︷ ︸

V̂e−e

(2.3)

To get the total energy, the constant external potential generated by the nuclei
is added to the electronic part of the Hamiltonian.

Etot = Eelec + Enuc where Enuc =
M

∑
I=1

M

∑
K>I

ZIZK

RIK
(2.4)

Now one can solve specifically for the many electron system:

ĤΨ(ri=1..N) = EΨ(ri=1..N) (2.5)

Note that the many electron Schrödinger equation is very difficult to solve
for most systems of interest. For N electrons in a system with 3N spatial coor-
dinates, the dimensionality of the system increases rapidly with the number of
atoms. As an example, for one H2O molecule, there are 10 electrons with 3 spa-
tial coordinates each. For a single water molecule, there would be 30 degrees
of freedom. To solve for a system containing 100 atoms, this number grows to
3000 degrees of freedom.

In 1964, Hohenberg and Kohn proved two theorems [37]:

Theorem 1 For any system of interacting particles in an external potential Vext(r),
the potential Vext(r) is determined uniquely, except for a constant, by the ground state
particle density no(r)

Theorem 2 A universal functional2 for the energy E[n] in terms of the density n(r)
2A functional is a function of a function. Here the Energy is a function of the electron density

function.

Chapter 2. Background 17

can be defined, valid for any external potential Vext(r). For any particular Vext(r), the
exact ground state energy of the system is the global minimum value of this functional,
and the density n(r) that minimizes the functional is the exact ground state density
no(r)

By defining the electron density:

n(r) = N
∫

d3r2...
∫

d3rNΨ∗(r1, r2, ..., rN)Ψ(r1, r2, ..., rN) (2.6)

The problem is reduced from 3N spatial dimensions, to only 3 spatial dimen-
sions. The ground state density contains all of the information required to solve
the Schrödinger equation, and is the basic variable used in DFT. Following from
the Hohenberg-Kohn theorems, there is a mapping between the density and
external potential. Thus, the many-body wave function is a functional of the
density.

FIGURE 2.1: Theorem 1 of the Hohenberg-Kohn theorems state
that the external potential Vext(r) is uniquely determined by the
ground state density no(r). The external potential can be used to
generate all states of the system Ψi(r) including the ground state
Ψo(r) and ground state density no(r). The mapping from ground
state density to the external potential by the Hohenberg-Kohn the-

orems complete the loop. Image retrieved from reference [59].

The Kohn-Sham Ansatz

Up to this point, the interacting many-body Schrödinger equation is still too dif-
ficult to solve. In the Kohn-Sham Ansatz, the interacting many-body problem is
replaced by an auxiliary system of non-interacting independent particles. Here
the ground state density for the non-interacting system is mapped to the ground
state density for the fully interacting problem (figure 2.2). The accuracy of the
model is then limited by the approximations made to the exchange-correlation

Chapter 2. Background 18

term which accounts for the difference between the non-interacting and fully
interacting systems.

Returning to the electron-electron interaction potential in equation 2.2:

V̂e−e =
N

∑
i=1

N

∑
j>i

1
rij

(2.7)

instead of tracking all interactions between every electron in the system, the jth

electron is treated as a point charge in the field of all other electrons, reduc-
ing the many electron problem to many one electron problems moving through
an average potential generated by the fictitious system of electrons. The local
effective potential for which non-interacting particles move in is given by

Vs(r) = Vext(r) + VH[n(r)] + Vxc[n(r)] (2.8)

Where Vext is the interaction between electrons and nuclei in the system, VH is
the Hartree potential, and Vxc is the exchange correlation potential. The Hartree
potential (or colomb potential) represents the interactions between one electron
and the average potential of all electrons in the system.

VH =
∫ ′ n(r′)

r− r′
dr′ (2.9)

The exchange-correlation term accounts for all of the many body effects.

Vxc =
∂Exc[n(r)]

∂n(r)
(2.10)

Where

Exc[n(r)] = T[n(r)]− Ts[n(r)] + Eee[n(r)]− EH[n(r)] (2.11)

is the difference between the kinetic energies, and the difference between the
internal interaction energies of the interacting many-body system and the non-
interacting fictitious independent particle system. Here, T[n(r)] represents the
true interacting kinetic energy, and Ts[n(r)] is the independent particle kinetic
energy of the fictitious system. For the differences between interacting energies,
Eee[n(r)] is the electron-electron interaction energy and EH[n(r)] is the Hartree

Chapter 2. Background 19

energy (the term which replaces electron-electron interactions for the fictitious
independent particle system).

Now the Hamiltonian for the non-interacting electrons is a sum of the one-
electron Hamiltonians

Ĥ =
N

∑
i

ĥi (2.12)

And the Schrödinger equation can be rewritten for each one electron Hamilto-
nian:

ĥiΨi(r) = εiΨi(r) (2.13)

(−1
2
∇2 + Vs((r))Ψi(r) = εiΨi(r) (2.14)

In this representation of the electronic shrödinger equation, the eigenvector,
Ψi(r), is now the molecular orbital corresponding to electron i. The eigenvalue
εi is the energy corresponding to the molecular orbital Ψi(r).

The electron density can be reformulated as well for the auxiliary system. It
is given by:

n(r) = ∑
σ

Nσ

∑
i=1
|Ψσ

i (r)|2 (2.15)

Where σ is the spin state of the electron, and Nσ is the total number of spins.
Note that Ψi(r) depends on one coordinate vector, r, (which corresponds to one
electron i) and not the set of coordinate vectors, {r}, as it would if it were the
fully interacting system. In the Kohn-Sham scheme, the electron density of the
noninteracting system is mapped to the electron density of the fully interacting
system. This mapping leads to the solution of the fully interacting problem, as
the electron density determines all properties of the system. This is visualized
in figure 2.2.

Solving the Kohn-Sham Equations

Before solving the Kohn-Sham equations, we should note that the solution thus
far contains a part that is known and part that is unknown. The unknown part is
the exchange-correlation term which accounts for differences between the fully

Chapter 2. Background 20

FIGURE 2.2: In the Kohn-Sham ansatz, the electron density of the
noninteracting problem is mapped to the electron density of the
many-body fully interacting problem. By solving the electron den-
sity for the non-interacting problem, all properties for the fully in-
teracting problem are found. Image retrieved from reference [59]

interacting system and the noninteracting system. The known part includes ev-
erything else in the expression. The exchange-correlation term has been func-
tionalized using many different approaches. Two common approaches include
the Local Density Approximation (LDA) [45] and Generalized Gradient Ap-
proximation (GGA) [47]. In LDA, electron density is treated as a uniform gas.
In GGA, a correction term is added to the local density approximation in form
of a gradient.

Basis Sets

In order to efficiently solve the Kohn-Sham equations on a computer, the molec-
ular orbitals are represented by a set of basis functions. In this ansatz, the molec-
ular orbitals which may or may not be centered at atomic nuclei, are represented
by a linear combination of atomic orbitals (LCAO):

Ψi = ∑
µ

ci
µΨµ(r) (2.16)

where Ψµ(r) are the atomic orbitals and ci
µ are the coefficients which weight the

contribution of each atomic orbital to the entire molecular orbital. To obtain the
coefficients, the total energy of the system is minimized. These atomic orbitals
are often Slater Type Orbitals (STO) [78] or Gaussian Type Orbitals (GTO) [14].
STOs are known to emulate the cusps near the nuclei and exponential decay
at long range as seen in the exact wave functions of the hydrogen atom [33].
Evaluating STOs can be costly however. As a result, GTOs become an attrac-
tive choice as they are much easier to compute than STOs. Since GTOs are less

Chapter 2. Background 21

accurate than STOs, a linear combination of GTOs can be used to approximate
the STOs. It is also common to use a plane wave basis set, where the number of
plane waves used are limited by a cutoff energy. In this implementation, a plane
wave basis set will often use a pseudopotential. The role of pseudopotentials are
to replace the effects of tightly bound core electrons with an effective potential
that interacts with valence electrons. Through the use of pseudopotentials, the
number of electrons considered when solving the Kohn-Sham equations as well
as the number of basis functions required are reduced.

Ideally, a finite basis set should approach the complete basis set (CBS) limit.
Practically speaking, the basis sets are incomplete by necessity and various ex-
trapolation methods [36, 29, 30] are used to extrapolate to the CBS limit. As
noted by [28] such methods do enforce a degree of uncertainty in the accuracy
of the basis functions, however, due to the approximate nature of extrapolation.

Self-Consistency Scheme

Once an approximation is chosen for the exchange-correlation term, and an ap-
propriate set of basis functions have been chosen, the Kohn-Sham equations can
be solved self-consistently. Here an initial electron density is guessed, which
is used to solve the effective potential and the Kohn-Sham Equation to get a
single particle orbital Ψi(r). The density is then computed from equation 2.15
and compared to the initial guess for the electron density. If these densities are
within a specified convergence criteria, then this density is the true ground state
density. If the densities differ, then a new guess is used as input and the routine
proceeds until the true ground state density is obtained.

When the ground state electron density is found, the total energy can be
expressed as:

E[n(r)] = ∑
i

f (εi)

〈
Ψi

∣∣∣ (−1
2
∇2 +

∫
Vext(r)n(r)dr

) ∣∣∣Ψi

〉

+
1
2

∫ ∫ ′ n(r)n(r′)drdr′

|r− r′| + Exc[n(r)] + EI I (2.17)

Chapter 2. Background 22

Where f (εi) ∈ [0, 2] is the occupation of ith molecular orbital. This is taken from
the Fermi function with factor of 2 for spin [46]

f (εi) = 2
[
exp
(εi − µ

kBT + 1

)]
(2.18)

The chemical potential µ is chosen so that ∑i fi = N where N is the number of
electrons.

2.1.2 Density Functional Tight Binding (DFTB+)

Density Functional Tight Binding (DFTB+) is a tight binding approach based on
the Taylor series expansion of the Kohn-Sham energy (equation 2.17) in DFT. It
is faster than DFT by approximately 2-3 orders of magnitude [87], which makes
it an attractive choice for exploring new materials. Since, DFTB is derived from
DFT, it has the same strengths and weaknesses of DFT. The DFTB model has
been implemented for up to the 3rd order expansion of the Kohn-Sham energy
(DFTB1, DFTB2, and DFTB3 are the 1st, 2nd and 3rd order expansions respec-
tively). Here we will only discuss up to the 2nd order expansion of the Kohn-
Sham energy.

In the tight binding description, electrons are assumed to be tightly bound
to atoms in the system, so only valence electrons are considered. A minimal
basis set is used, meaning that only a single radial basis function is used for
each molecular orbital [46]. The parameters (Hubbard values, Hamiltonian ma-
trix elements and overlap matrix) from DFTB are calculated using the Perdew-
Burke-Ernzerhof (PBE) [71] functional, and the diatomic repulsion potential
from calculations using the Becke, three-parameter, Lee-Yang-Parr (B3LYP) [8]
functional [87].

Starting from equation 2.17, the energy will be expanded to a second order
fluctuation of the density no(r). The reference density no(r) is made up of a
superposition of neutral atomic densities no = ∑α nα

o . This treatment suggests
that the density contains no charge transfer. The minimizing density is defined
such that

nmin(r) = no(r) + δno(r) (2.19)

Chapter 2. Background 23

FIGURE 2.3: Kohn-Sham self-consistency scheme: an initial elec-
tron density is guessed which is used to solve the effective poten-
tial. The Kohn-Sham equation is then solved to get a single particle
orbital. From this wavefunction, a new density is computed. If this
density is within a specified convergence criteria, it is considered
the true ground state density. If not, a new guess is made. Image

retrieved from [59].

Chapter 2. Background 24

Where no(r) is the reference density and δno(r) is a small fluctuation [46]. For
simplicity, the densities will be rewritten such that n(r) → n and n(r′) → n′.
Integrals will also be simplified such that

∫
d3r →

∫
and

∫ ′ d3r′ →
∫ ′.

Expanding the exchange-correlation energy in a Taylor series to the second
order, the following expression is obtained:

Exc[no + δn] = Exc[no] +
∫ [

∂Exc[n]
δn

]
no

δn +
1
2

∫ ′ ∫ [∂2Exc[n]
δnδn′

]
no,n′o

δnδn′

(2.20)

Returning to the Kohn-Sham energy functional from DFT, the equation can
then be rewritten as:

E[δn] ≈∑
i

fi〈Ψi|H[no]|Ψi〉+
1
2

∫ ∫ ′(δ2Exc[no]

δnδn′
+

1
|r− r′|

)
δnδn′

− 1
2

∫
VH[no]no + Exc[no] + EI I −

∫
Vxc[no]no

(2.21)

Now the Kohn-Sham energy can be separated into first, second and third order
terms: E[no + δno] = E0[no] + E1[no, δno] + E2[no, δn2

o]. DFTB1 (non-self con-
sistent DFTB) includes only up to the first order. DFTB2 (Self consistent DFTB)
contains up to the 2nd order term of the energy expansion.

The first term in equation 2.21, is the band structure energy, which can be
found from summing all occupied eigenstates:

EBS[δn] = ∑
i

fi〈Ψi|H[no]|Ψi〉 = ∑
i

fiεi (2.22)

The second term makes up the energy from charge fluctuations:

Ecoul[δn] =
1
2

∫ ∫ ′(δ2Exc[no]

δnδn′
+

1
|r− r′|

)
δnδn′ (2.23)

Chapter 2. Background 25

And the last four terms make up the repulsive energy, which is repulsive mainly
due to the dominating ion-ion repulsive interaction term:

Erep = −1
2

∫
VH[no]no + Exc[no] + EI I −

∫
Vxc[no]no (2.24)

The energy functional can then be rephrased:

E[δn] = EBS[δn] + Ecoul[δn] + Erep (2.25)

Up to this point, the energy has simply been expanded to the second order and
the charge density has been approximated by a superposition of neutral atomic
charge densities. The band structure and repulsive energies make up the energy
up to the first order expansion (DFTB1). The second order terms are contained
in the Ecoul[δn] term, and with this inclusion we obtain SCC-DFTB (DFTB2).

Energy from charge fluctuations

We will start with the second order term of the energy expansion; the energy
from charge fluctuations. The expansion of the atomic energy as a function of
∆q extra electrons is given by:

E(∆q) ≈ Eo +

(
∂E

∂∆q

)
∆q +

1
2

(
∂2E

∂∆q2

)
∆q2 = Eo − χ∆q + U∆q2 (2.26)

Where the electronegativity3 has the form χ ≈ (IE−EA)
2 , and replaces the first

derivative of energy with respect to ∆q extra electrons. The Hubbard energy4 is
U ≈ IE−EA (where IE is the ionization energy5 and EA is the electron affinity6)
replaces the second derivative of energy with respect to ∆q extra electrons.

The charge density fluctuation can be written as: δn = n− no where δn =

∑α δnα is the superposition of atomic charge density contributions. δn is ap-
proximated by the charge fluctuations at atom α, where ∆qα = qα − qo

α is the
difference between the charge and the number of valence electrons on a neutral

3Electronegativity is the tendency for an atom to attract a shared pair of electrons in a cova-
lent bond to itself.

4The Hubbard energy (chemical hardness) describes how the energy changes when electrons
are added or removed.

5The ionization energy is the amount of energy required to remove an electron from an atom.
6The electron affinity is the amount of energy released when an electron is added to an atom.

Chapter 2. Background 26

atom α, computed with Mulliken charge analysis7 [65]. The extra electrons on
atom α can be written as ∆q ≈

∫
Vα

δn(r)d3r which can be rewritten as δn atomic
contributions δn(r) = ∑α ∆qαδnα(r).

By rewriting the charge fluctuation term with δn atomic contributions, the
integral becomes

Ecoul =
1
2

∆qα∆qβ

∫ ∫ ′(δ2Exc[no]

δnδn′
+

1
|r− r′|

)
δnαδn′β (2.27)

For α = β this term becomes Ecoul =
1
2Uα∆q2

α where U is the Hubbard energy
and is twice the atom absolute hardness η. The Hubbard energy is a part of the
atomic parameter set for DFTB. For larger inter-atomic distances, where α 6= β,
the exchange-correlation term goes away leaving only the electrostatic interac-

tion
(

Ecoul =
1
2 ∆qα∆qβ

∫ ∫ ′ δnαδn′β
|r−r′|

)
between atomic populations ∆qα and ∆qβ.

To compute the energy due to charge fluctuations, a functional form for the
charge density must be assumed.

The function γαβ approximates the integrand for the charge fluctuation term,
and it is rewritten such that

Ecoul =
1
2 ∑

αβ

γαβ(Rαβ)∆qα∆qβ (2.28)

where

γαβ =

Uα α = β
δnαδn′β
|r−r′| α 6= β

(2.29)

Energy from repulsive interactions

The repulsive energy term is approximated as a sum of pair potentials which
are fit to a relevant set of molecules.

Erep = ∑
α<β

Vαβ(Rαβ) (2.30)

7Mulliken charge analysis is a method used to estimate the partial atomic charges primarily
for the linear combination of atomic orbital molecular orbital method.

Chapter 2. Background 27

This repulsive energy depends only on the reference density no. Since the ref-
erence density no is the superposition of neutral atomic densities, the repul-
sive energy term does not depend on a specific atomic environment [61]. This
means that the potential can be applied to other molecular environments once
obtained for the reference system. The repulsive potential is obtained by fitting
to a higher level DFT potential, or by fitting to empirical parameters. It contains
all core electron effects. These inter-atomic potentials belong to the diatomic
parameter set for DFTB.

Band structure energy

The last term remaining in the total energy expression is the band structure
energy. As mentioned previously, the repulsive energy contains core electron
effects. Now the effects of valence electrons are considered. Since core electrons
are considered to be tightly bound, a minimal local basis set is used to consider
only valence electrons:

Ψi = ∑
µ

ca
µφµ (2.31)

Where pseudoatomic orbitals φµ are taken from DFT calculations on the atoms
that are involved.

The band structure energy is a first order term that can then be expanded
such that

EBS = ∑
i

fi ∑
µν

ca
µca

νHo
µν = ∑

i
fiεi (2.32)

where EBS is the sum of occupied Kohn-Sham energies. The Hamiltonian

Ho
µν = 〈φµ|Ho|φν〉 (2.33)

contains pre-tabulated matrix elements.
Returning to the total energy expression, up to the 2nd order expansion the

total energy is:

E = ∑
i

fi ∑
µν

ca
µca

νHo
µν +

1
2

γαβ(Rαβ)∆qα∆qβ + ∑
α<β

Vαβ (2.34)

Chapter 2. Background 28

The eigenvalue problem is now:

∑
ν

ci
νHµν = εi ∑

ν

Sµν (2.35)

Note that:

Hµν = Ho
µν +

1
2

Sµν ∑
K

∆qK(γαK + γβK) µ ∈ α ν ∈ β (2.36)

where Sµν is the overlap matrix

Sµν = 〈φµ|φν〉 (2.37)

and γαK and γβK are functions used in approximating the charge fluctuation
terms for atoms α and β respectively. In the tight binding description the Hamil-
tonian Ho

µν and overlap Sµν matrix elements are pre-tabulated. For the diagonal
elements of Ho

µν, a one-center approximation is made and Ho
µµ = εµ (εµ is the

Kohn-Sham eigenvalue for a neutral unconfined atom [23]). The non-diagonal
terms use the 2-center approximation so Ho

µν = 〈φµ|H(nα
o + nβ

o)|φν〉.
The electrostatic potential due to charge fluctuations on α is εα = ∑K γαK∆qK.

Then

Hµν = Ho
µν + h1

µνSµν (2.38)

with

h1
µν =

1
2
(εα + εβ) (2.39)

In this representation, the true Hamiltonian matrix elements are given by the
reference Hamiltonian, plus a shift due to charge fluctuations which is the av-
erage electrostatic potential around orbitals µ and ν [46].

From here equation 2.35 and 2.36, need to be solved self-consistently. Start-
ing from an initial guess for {∆q}, h1

µν and Hµν are obtained. Solving the eigen-
value problem (equation 2.35), the new coefficients {ci

µ} are obtained and used
to solve for new {∆q}. If this new {∆q} is close enough to the initial guess,
i.e. within the SCC convergence threshold, the solution is obtained. Otherwise,

Chapter 2. Background 29

a new guess for {∆q} is chosen and this process repeats iteratively until self-
consistency has been achieved. This routine is summarized in figure 2.4. Gen-
erally speaking, for DFTB, less self-consistent iterations are required than are
needed for a full DFT calculation. However, this self-consistency check makes
DFTB2 and DFTB3 about 5-10 times slower than non-self-consistent DFTB1.
This is due to the fact that it often takes approximately 5-10 iterations to solve
the eigenvalue problem (equation 2.35) [61].

pseudo-atoms

If the atomic orbitals are derived from free atoms, they would be too diffuse.
To ensure a compact basis, a confinement potential term is introduced to the
Hamiltonian of the Kohn-Sham equation for atomic orbitals. This confining

potential takes the form Vcon f (r) =
(

r
ro

)2
where a reasonable choice for ro is

twice the covalent radius (ro = 2rcov) [72]. The compact basis set is then solved
from

[T + ve f f (n) +
(

r
ro

)2

]φν = ενφν (2.40)

where the Hamiltonian is modified with an additional confinement potential.
The effective potential is dependent on the electron density for neutral atom α.
The density is determined from the Kohn-Sham equation. Another confinement
radius rd

o must be chosen for this initial density [24]. This generates a pseudo-
atom. Note that confinement radii ro and rd

o are adjustable parameters.

Parameter Sets

For SCC-DFTB there are two types of parameters: atomic and diatomic param-
eters. The atomic parameters consist of the two confinement radii ro and rd

o for
the atomic orbitals, the Hubbard parameter used in the charge fluctuation term,
and the spin polarization energy (necessary only to compute heats of formation)
[32].

The second type of parameters are the diatomic parameters. This term in-
cludes all of the pair potentials from Erep. These are typically obtained by fitting
to a higher level DFT calculation.

Chapter 2. Background 30

Initial guess {∆qα}

get Hµν and h1
µν

Evaluate eigenvalue problem
∑ν ci

νHµν = εi ∑ν Sµν

get coefficients {cα
ν}

Compute new atomic
charge populations {∆qα}

New initial
guess

Are
{∆qα} the
same as

the initial
guess?

Output quantities

no

yes

FIGURE 2.4: Self-consistency in SCC-DFTB method. In the Kohn-
Sham equations, the charge density was solved self-consistently.
Here the atomic charge population is solved self-consistently. It

typically takes much fewer iterations to solve than for full DFT.

Chapter 2. Background 31

Implementation Details for DFT and DFTB

When computing the electronic wavefunction for a periodic system in real space,
the number of interactions between electrons and ions becomes infinitely large.
However, for a periodic system, it is reasonable to assume a periodic potential
which a given electron is interacting with.

In a periodic crystal structure, the atomic coordinates can be represented by
a set of translations on a repeating basis:

Crystal Structure = Bravais Lattice + Basis [59]

Where the basis is defined by a primitive cell made up of primitive lattice vec-
tors, and the types of atoms. This primitive cell is the smallest repeat unit which
can generate an entire crystal through translation operations. A Bravais Lattice
is the set of translations T(n) = n1a1 + n2a2 + n3a3 (where ai are lattice vectors
in the ith direction and ni are integers) which can generate a crystal lattice. The
Wigner-Seitz cell is the most compact cell centered around a single lattice point
in real space.

Since a lattice is periodic by nature, the coordinates of each lattice point can
be represented by a periodic function f (r + T) = f (r). Consequently, this peri-
odic function can be mapped onto reciprocal space via Fourier transform. The
first Brillouin Zone is defined by the Wigner-Seitz cell in reciprocal space. The
Brillouin Zone is the unit cell on the reciprocal lattice with reciprocal lattice vec-
tors. The reciprocal lattice is defined by G(m) = m1b1 + m2b2 + m3b3 where bj

are reciprocal lattice vectors and mj are integer values which translate the recip-
rocal lattice vectors. The reciprocal lattice vectors are related to the real space
lattice vectors by:

b1 = 2π
a2 × a3

a1 · a2 × a3
(2.41)

b2 = 2π
a3 × a1

a2 · a3 × a1
(2.42)

b3 = 2π
a1 × a2

a3 · a1 × a2
(2.43)

The Bloch wave is given by the product of a periodic potential uk(r + Tn) =

u(r) and a plane wave eik·r such that

Ψ(r) = eik·ruk(r) (2.44)

Chapter 2. Background 32

where k is the wave vector and r is the position and Ψ is the Bloch wavefunction.
The Bloch wave allows the summation of electronic interactions over an infinite
number of translations to be transformed into an integral over the first Brillouin
Zone. This integral is replaced by a weighted sum over a discrete set of wave
vectors.

The periodic potential can be described as a Fourier series, uk(r) = ∑G ckexp(G ·
r). To exactly solve Kohn-Sham equations in a plane-wave basis, the num-
ber of basis functions goes to infinity. Since we are interested in the ground
state energy, the most important wave-functions have a low kinetic energy E =

h̄
2m |k + G|2. Thus, the basis set can be reduced to include only the low ki-
netic energy range. The truncation value is called the kinetic energy cut-off
Ecut ≥ 1

2 |k + G|2. The kinetic energy cut-off is a convergence parameter which
should be tested. Here the Brillouin zone is sampled by a set of K-points. In-
creasing the number of K-Points increases the resolution of the calculation.

K-Point Sampling

Since any k-point in the reciprocal lattice is essentially equivalent given the pe-
riodic nature of the lattice (k′ = k + G), only the integral over the first Brillouin
Zone needs to be evaluated. The wave function is sampled at multiple k-points
in the Brillouin Zone. In the Monkhorst-Pack algorithm the integral is approxi-
mated by a set of equidistant k vectors with an identical weight [63]:

kn1,n2,n3 =
3

∑
i

2ni − Ni − 1
2Ni

Gi (2.45)

where Gi are the primitive vectors.

2.1.3 Running Molecular Dynamics

Molecular dynamics are a way of evolving a set of configurations through time.
These simulations are a way of sampling equilibrium states, and sometimes
non-equilibrium states [38]. Prior to running MD, an energy minimization can
be performed to avoid situations such as atomic overlap (this would lead to
high energies in the MD simulations). This can be achieved through energy
optimizations where the coordinates and/or lattice vectors are relaxed. During
a relaxation the coordinates can change position or lattice vectors change in

Chapter 2. Background 33

size, in whichever way minimizes the energy in the system. MD simulations
require the definition of a potential to describe inter-atomic interactions. The
derivative of the potential energy with respect to atomic coordinates provides
the force. Once the force is obtained, one can integrate the equations of motion
and update the positions of atomic nuclei.

2.2 Machine Learning Basics

Machine learning is a method of data analysis which automates model building.
This allows computers to ’learn’ patterns from data without being explicitly
programmed to do so. The goal of a machine learning algorithm is to find a
generalizable mapping between input and output variables. Once this mapping
is obtained, it can be evaluated as a function to predict output(s) given an input.
Machine learning can be categorized into two classes of algorithms; supervised
and unsupervised learning.

A key distinction between supervised and unsupervised learning is the avail-
ability of feedback. In supervised learning, inputs as well as outputs are pro-
vided as training data. In unsupervised learning, the goal is to find patterns
within the data without any feedback.

The machine learned potentials explored in this work are produced using
the supervised learning method. Here, the network learns a general mapping
from the atomic coordinates to energies and forces. Reference data is obtained
by generating a large number of molecular configurations and evaluating the
energy and forces at those points in configuration space (using one of the afore-
mentioned simulation methods).

In the following, the mechanisms of feed-forward artificial neural networks
will be discussed, as well as optimization methods and practices for training
neural networks. Finally, the application of these methods to neural network
potentials is outlined and the implementation in the Atomic Energy Network
(ænet) code is introduced.

2.2.1 Feed-forward Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired by neurons in the brain. A neu-
ron can receive, process and transmit information as a signal to other neurons in

Chapter 2. Background 34

a network. The connection of many neurons creates a neural network. In a single
neuron, dendrites receive an input signal from other neurons, and the soma or
cell body sums these signals. If the accumulation of these signals exceed some
threshold, the neuron will fire sending a signal through the axon to the synapses
where it can be transmitted to other neurons.

FIGURE 2.5: In a biological neuron, the dendrites receive informa-
tion through an input signal. Each dendrite passes a signal to the
cell body to be summed and activated. If the signal exceeds some
threshold, it is propagated through the axon to be transmitted to

another neuron. Image retrieved from [43].

Artificial neural networks are simplified models of these biological neurons.
The most basic unit of a neural network is an artificial neuron, which is repre-
sented graphically as a node. In one artificial neuron, a vector of real valued
inputs replace the dendrites of a biological neuron. These input nodes have
weighted connections to a node in the next adjacent layer. Each weight spec-
ifies how much emphasis to put on the signal from its corresponding input
node. As in the soma of a biological neuron, the (weighted) signals are summed
and passed through an activation function. In a biological neuron, if a certain
threshold has not been exceeded, a signal is not transmitted. If the input signals
exceed the threshold, the neuron fires. The firing of the neuron is then best de-
scribed by a Heaviside step function which produces a binary output. Using a
step function for the activation however would result in numerical instabilities
from the discontinuity in the step. Also, for the specific task of constructing a
function to describe the PES for atomic environments, a continuous range of
output values is desired. Therefore, a smooth nonlinear function such as a sig-
moid or hyperbolic tangent is often used instead. The role of the activation
function is to determine whether or not the signal is transmitted, and at what
strength it is transmitted.

Chapter 2. Background 35

FIGURE 2.6: Representation of a single artificial neuron. The nodes
represent inputs or outputs, and connections indicate weights. Im-

age adapted from [17].

A neural network is a collection of artificial neurons connected to one an-
other in various ways. The network is organized into layers, where each layer
has a set of nodes. As mentioned previously, each node is a single artificial
neuron (figure 2.6). In a fully connected network, all input nodes in one layer
are connected to all nodes of the next layer. The connection between nodes are
analogous to the synapse where a signal can be transmitted between connected
nodes. The network weights assigned to each connection are the fitting param-
eters of the neural network. They are optimized and adjusted while the neural
network is learning.

Feed-forward artificial neural networks are a class of ANN where there is no
recurrence i.e. information only propagates forward throughout the network.
In a multilayer perceptron neural network (deep feed-forward neural network)
there are multiple hidden layers. Hidden layers, made up of hidden units, exist
between the input and output layers and do not have any physical meaning.
The hidden layers increase the functional flexibility of the neural network al-
lowing the network to learn a more complex function.

Each hidden unit contains an activation function which is determined by
the user. Some common activation functions include sigmoid, hyperbolic tan-
gent (tanh), and Rectified Linear Unit (ReLu) [66] amongst others. The network
weights determine the steepness of the activation functions and the inclusion
of bias nodes allows the activation function to be shifted. Bias nodes are input
nodes that always have the value one. They remain unconnected to the previ-
ous layer, and only have connections to the next layer as an input node.

Chapter 2. Background 36

As a simple analogy, let’s say that a neural network was learning the equa-
tion of a line: f (x) = w1 · x + wb. The bias node would be analogous to the
constant intercept value wb. The weight from the non-bias unit would be anal-
ogous to the slope, w1.

The activation functions available in ænet are the linear (identify) function,

flinear(x) = x (2.46)

hyperbolic tangent,

ftanh(x) =
1− e−2x

1 + e−2x (2.47)

sigmoid,

fsigmoid(x) =
1

1 + e−x (2.48)

and hyperbolic tangent with linear twisting [50].

ftwist(x) = (1.7159)tanh
(2

3
x
)
+ ax (2.49)

These functions are visualized in figure ??. The activation function represents
the firing rate of the neuron. The linear (or identity) function maps the input
signal proportionally to the output signal onto a range of activations that is un-
bounded (the output values range from (−∞, ∞)). If a network is made up of
only linear activations, it can not learn complex functional mappings. Also, no
matter how many layers exist between input and output, the multi-layer net-
work is equivalent to a one layer network (with 0 hidden layers). The mapping
is only a linear transformation from input to output.

To represent complex functions, non-linear activation functions should be
used. A two layer (1 hidden layer) feed-forward neural network using a finite
number of neurons and non-linear activation functions has been shown to be a
universal function approximator [31, 20, 76]. This means that the network can
approximate continuous functions on a compact set of RN arbitrarily well [19].
Recent work has shown that the universal approximation theorem also holds
for unbounded nonlinear activation functions [80]. Note that since a network
of linear activations of any depth reduces to one layer, it cannot be a universal

Chapter 2. Background 37

function approximator.
The sigmoid function is a nonlinear activation function with output bound

from (0,1). This provides a good analogy to the biological neuron; if the neuron
is not firing, the activation is 0. If the neuron is firing at maximum frequency,
the activation is 1. The sigmoid function is also a differentiable function which
allows for backpropagation (section 2.2.2) during neural network training. One
limitation of the sigmoid activation function is that if the input values are too
large, the output gets pushed to the tails of the sigmoid at 0 and 1 (0 for large
negative inputs, 1 for large positive inputs). This causes the activation output
to respond less to changes in input values. As a result, the gradients can be-
come small, slowing the update of network weights; in some cases (for deep
networks) the weights may stop updating entirely due to the vanishing gradi-
ent problem. Special care also needs to be taken during the initialization step,
since if weights are initialized too large prior to training with sigmoid activa-
tions, the output will be pushed to the tails of the sigmoid and prevent the
network from learning. Another limitation is that sigmoid outputs are not zero-
centered. Since the output of a sigmoid is always positive, the gradient on the
weights will be all positive or all negative during backpropagation. This can
lead to increased difficulty during optimization.

The hyperbolic tangent function is a rescaled sigmoid function that is zero-
centered and bound from (-1,1). The tanh function is related to the sigmoid
function by: ftanh(x) = 2(fsigmoid(2x)) − 1. Since it is zero-centered, the net-
work optimization tends to be easier. The neurons saturate at the tails of tanh,
however, so vanishing gradients can still be an issue.

ænet includes the tanh with linear twisting function, which was originally
proposed by LeCun et al, as an improvement to the tanh function [49]. The
rescaling of tanh and the addition of a small linear term is meant to help avoid
saturation at the tails of the tanh function. The twist function is recommended
for general purposes in ænet [3].

The functional form of the neural network is determined by the number of
layers and the number of neurons. Weights are fitting parameters, which are
essentially coefficients for linear combinations. The value of the output for the

Chapter 2. Background 38

FIGURE 2.7: Activation functions available in ænet and their
derivatives. Image adapted from [3] Top: Activation function out-
puts. Notice that the sigmoid and tanh function are bound on (0,1)
and (-1,1) respectively. Whereas the linear and tanh with linear
twisting functions are unbounded. Bottom: Activation function
derivatives. Notice that small valued outputs for the sigmoid func-
tion can lead to the network updating weights more slowly during
training while using a backpropagation algorithm (section 2.2.2).

ith neuron in layer j (for j = 1, ..., N − 1 layers), is given by:

xij(xk,j−1) = f ij
a (∑

k=1
wj−1

i,k xk,j−1 + bij) (2.50)

Chapter 2. Background 39

FIGURE 2.8: Fully connected artificial neural network with two
hidden layers and N nodes. The set of weights for each layer is

given by W. Neurons with a value of 1 indicate bias nodes.

The input signals from the previous layer are given by the set xk,j−1 where k
is the index for each neuron in previous layer j− 1 . The weight of the signal
is given by wj

i,k and connects neuron i in layer j, with neuron k in the previous
layer j-1. The weight is multiplied by neuron xk,j of the previous layer. A bias
node bij which is connected only to layer j (not to previous layer j-1), is added to
the sum of the weighted signals. This serves the purpose of shifting the linear
combination. The sum of the weighted signals and bias node is used as the
argument for the activation function f ij

a and produces an output signal (creating
an output node).

The can be rewritten in a vectorized format such that

Xj(Xj−1) = f j
a(WjXj−1 + bj) (2.51)

where j = 1, ..., N − 1 for N layers. Note that the bias nodes have a weight
unconnected to the previous layer with an input signal of one.

Chapter 2. Background 40

The number of weights in the neural network is given by

Nw =
M+1

∑
k=1

(
Nk−1 · Nk + Nk

)
(2.52)

Where M is the total number of hidden layers, and Nk are the number of neurons
in layer k.

The functional form of the neural network in figure 2.8 is given by

Fi,3 = f 3
i

{
b3

i +
N

∑
k=1

w2
k,i · f 2

k

[
b2

k +
N

∑
j=1

w1
j,k · f 1

j

(
b1

j +
N

∑
i=1

a0
i,j · xi,0

)]}
(2.53)

During forward propagation, information passes through the network from in-
put layer to output layer once. A cost function can be defined which provides a
way to compare the output to the ground truth or target values. This is essen-
tially computing an error. Through back propagation, this error is passed back
through the network to update the weights.

2.2.2 Backpropagation

Backpropagation refers to a method where the calculated errors are propagated
back through the network layers. This allows for the weights to be adjusted to
minimize the error between network output and the target value [74]. Given
an error function, the gradient of the error function is taken with respect to the
neural network weights. The error or loss function is a measure of the differ-
ence between the output of the network and the ground truth value. Since the
gradient of the final layer of weights is calculated first, and then carried through
to the first layer, the error is propagated backward through the network.

The goal of backpropagation is to minimize the error ε with respect to a set
of optimal weights wl

j,k

∂ε

∂wl
jk

(2.54)

where wl
jk is the weight connecting neuron j in layer l, with neuron k of previous

layer l− 1. The cost, or error, function may be given by something like the mean

Chapter 2. Background 41

squared error:

ε =
1
2
(aL − ŷ)2 (2.55)

where aL is the activation output in the final layer (the output of the entire neu-
ral network) and ŷ is the target value. The output of each node in the neural
network can be given by:

al
j = fa(w

j
jkal−1

k + bl
j) = fa(zl

j) (2.56)

To simplify the expression, the weighted activation input is expressed as zl
j =

wl
jkal−1

k + bl
j.

The cost function can be decomposed into individual error contributions
such that:

∂ε

∂wj
ik

=
1
N

N

∑
m=1

∂εm

∂wj
ik

(2.57)

This is the average over the error contributions from each training example (m ∈
N).

The error of neuron j in layer l is given by:

δl
j =

∂ε

∂zl
j

(2.58)

This error shows how perturbing the activation input effects the cost function ε.
Since the error at each neuron within the networks depends on the error in

the last layer of the network, the error in the output layer must be computed
first. It is given by the following expression:

δL
j =

∂ε

∂aL
j

∂aL
j

∂zL
j
=

∂ε

∂aL
j

f ′a(z
L
j) (2.59)

The ∂ε
∂aL

j
term represents how much the cost changes with respect to the final

activation output. For the mean squared error cost function, this simplifies to
∂ε

∂aL
j
= (aL − ŷ). The

∂aL
j

∂zL
j

term represents how much the activation changes with

respect to the weighted activation input.

Chapter 2. Background 42

In a vectorized notation, the error in the output layer can be expressed as:

δL
j = ∇aε� f ′a(z

L) (2.60)

where ∇aε is a vector of partial derivatives of the cost function with respect to
activation outputs.

To get the errors in the hidden layers, the error must be passed backwards
from the output layer to the hidden layers. The error in layer l depends on the
errors in the proceeding layers of the network eg. layer l+1, l+2, to the final
layer L.

δl = ((wl+1)Tδl+1)� f ′a(z
l) (2.61)

This equation depends on 2.60, and with these two equations, the error can be
backpropagated through the network.

Now we can compute the total contribution of the change in cost function
with respect to network weights and biases. This equation is given by:

∂ε

∂bl
j
= δl

j x (2.62)

This means that the error is equivalent to the change in cost function with re-
spect to bias weights.

Finally, the expression for how the cost function changes with respect to any
weight in the network is given by:

∂ε

∂wl
jk
= al−1

k δl
j (2.63)

When al−1
k δl

j is a large value, the weights will rapidly change during optimiza-
tion. Likewise if it is small, the weights will not update very much during op-
timization. If an activation function like sigmoid or tanh is used and inputs get
pushed to the the tails, the activation function derivative changes very slowly.
Therefore small errors are obtained and propagated through the network. In
deep neural networks, this may lead to the vanishing gradient problem. This

Chapter 2. Background 43

happens when the error shrinks exponentially with the number of layers, pre-
venting the weights from being updated beyond the first few layers. This prob-
lem occurs primarily when using deep neural networks with many layers.

Putting everything together, the backpropagation algorithm can be imple-
mented by following these steps:

• Generate training examples {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))} and ini-
tialize weights.

• Implement forward propagation to generate network outputs aL, and com-
pute activations aL

j and their weighted inputs zL.

• Compute the error in the last layer δL using equation 2.60.

• Backpropagate the errors δl through the network using equation 2.61.

• Output the gradient of the cost function with respect to weights and biases
using equations 2.62 and 2.63.

• Average over the all training examples to compute the total derivative of
the cost function with respect to weights and biases.

• Update weights and biases by moving in the negative direction of the gra-
dient of the cost function.

2.2.3 Online vs. Batch Training Methods

There are various different methods for evaluating the total error function ε.
When all the samples in the training set are used to generate the error function,
batch training methods are being used. This means that before the weights are
updated, all samples must be accounted for in the error function. As a result,
batch learning can be computationally expensive for large datasets.

Alternatively, online training methods can be used. In online training, data
from the training set is shown sequentially to the network, and weights are up-
dated accordingly. For example, one sample from the training set can be used to
generate an approximate error function and the weights will be adjusted based
on this sample alone. This allows for progress to be made on the optimization
at every sample in the training set instead of updating the weights only after
the error of all samples is computed.

Chapter 2. Background 44

Another method which can be used to reduce the computational cost of a
batch training method is to use mini-batching. Mini-batching is a method which
uses a subset of the full batch size of training data to estimate the error function.

2.2.4 Optimization Methods

As previously discussed, training a neural network requires the minimization
of a loss function. There are three different optimization schemes included in
ænet.

Gradient descent is a first order optimization method. To find minima, at
each iteration the negative gradient of the function is taken at its current point
(in this case the loss function). Next the weight parameters are updated with
respect to the negative gradient of the loss function:

w(I+1) = w(I) +−γ∇ε (2.64)

where I is the iteration, w are the weights, ε is the error function and γ is a hy-
perparameter 8 called the learning rate. For online training, the weight updates
are given by:

∆wI+1
α,n = −γ

∂

∂wα

(
1
2

e2
n

)
= −γen

∂aL

∂wα
(2.65)

Selecting a learning rate that is too small will lead to slow convergence to a solu-
tion, whereas chosing a learning rate that is too large can prevent convergence
to a minimum or even cause the solution to diverge.

Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) is a quasi-
newton method and is an approximation to the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method. In this case, the weights are updated using the inverse
Hessian matrix, H. In this context the Hessian matrix is a matrix of second
derivatives of the network function with respect to the weights:

∆wI+1 = −(H(I))−1∇εI (2.66)

8A hyperparameter is a parameter whose value is set prior to training. This distinguishes it
from parameters that are determined during training.

Chapter 2. Background 45

The difference between L-BFGS and BFGS is that in the L-BFGS method, instead
of storing all the values of the inverse Hessian matrix, only some vectors are
stored. L-BFGS is useful when there are a large number of weight parameters
[3].

Levenberg-Maquardt is a method used to solve non-linear least squares prob-
lems. In this method, the weights are updated using the Jacobian J = ∂N

∂w where
N is the network function and w are the weights. The weights are updated by:

∆wI+1 = −(JT,(I) J(I) + λI)−1 JT,(I)e(I) (2.67)

where e is the error of each sample in the reference set, and λ is the reciprocal
learning rate.

2.2.5 Model Validation

To test whether the model is generalizable to an unseen dataset, it is essential
to use validation methods. To validate the model, a set of data is reserved apart
from the training data. The error is evaluated on data in the training set as well
as the testing data set. If the error on the testing data diverges away from the
error on the training data, it is likely that overfitting has occurred. Overfitting
occurs when the network fits to noise as well as training data. If the training
error continues to decrease while the testing error increases, the model may do
a good job at predicting the output of examples it has already seen, but it will
not be able to extrapolate well to data outside of the training set.

2.2.6 Machine Learning in Atomistic Simulations

Neural Network Potentials (NNPs) can describe complicated potential energy
surfaces that arise for:

• interaction types such as covalent, ionic, or metallic bonding and disper-
sion interactions [11]

• complex reaction or transition pathways [11]

• unusual atomic environments arising from amorphous systems, or struc-
tures which emerge from phase transitions. [11]

Chapter 2. Background 46

A neural network can generate a function of arbitrary form. This is particularly
useful when the potential energy surface is very difficult to solve analytically
and a physically inspired functional form will thus, not suffice.

2.2.7 Behler-Parinello Symmetry Basis Functions

Prior to Behler-Parinello symmetry functions, implementations of machine learn-
ing to atomistic simulations directly used Cartesian coordinatesRi as inputs for
Artificial Neural Networks (ANNs) or fit to a specific number of degrees of free-
dom [53]. ANNs were trained to predict the structural energy E(σ) given a set
of atomic configurations σ = Ri, i.e. E(σ) = EANN(σ) = N (Ri). This method
does not generalize well. If structural energies depend on the Cartesian coor-
dinates of atomic configurations, the potentials become highly specialized [3].
One would not be able to accurately predict the energy on a system with a fewer
number of atoms for instance.

One solution to this issue is to represent the structural energy as a function
of local atomic environment. In this case, E(σ) ≈ ∑atoms

i Ei(σi) where σi is the set of
coordinates for a local structural environment, and Ei is the energy contribution
from that local structural environment. The total energy of the system would
then be the sum of the energy contributions.

FIGURE 2.9: Local structural environment of an atom including
periodic images. Interactions between atoms within the cutoff ra-
dius and the centered atom are included. Image retrieved from

[11].

Chapter 2. Background 47

Another desirable feature is invariance to translations, rotations, and invari-
ance to permutations of equivalent atoms in the system. For instance, if the
hydrogen atoms on a water molecule are swapped, the potential energy should
not change (the OH bond length is equivalent and the molecule is symmetric
about the oxygen atom)[11].

Invariance to translations, rotations and exchange of equivalent atoms can
be ensured by projecting the Cartesian coordinates onto a set of symmetry basis
functions developed by Behler and Parinello [10].

The 2 classes of symmetry functions are the radial and angular symmetry
functions [11]. Here radial symmetery functions will take on the following no-
tation:

Gr
i (σi) =

neighbours

∑
j 6=i

gr(Rij) where Rij =
∣∣∣Rj − Ri

∣∣∣ (2.68)

And for angular functions:

Ga
i (σi) =

neighbours

∑
k 6=j 6=i

ga(θijk) where θijk = ∠(Rj − Ri, Rk − Ri) (2.69)

Radial symmetry functions are a set of basis functions, centered at atom i,
that model the radial distribution of neighbours within the cutoff radius Rc. A
simple example of a radial symmetry function is:

G1
i =

Natom

∑
j=1

fc(Rij) (2.70)

Where the cutoff function may be given by:

fc(Rij) =

0.5 ·
[

cos
(

πRij
Rc

)
+ 1
]

Rij ≤ Rc

0.0 Rij > Rc

(2.71)

This is the radial symmetry function around atom i. Rij represents the distance
between atom i and neighbouring atoms j. In this case, the cutoff radius is
set by the user and assumed to be a set distance away from the central atom.
Since equation 2.70 will assume the same cutoff radius for all neighbours, there

Chapter 2. Background 48

would need to be multiple sets of G1
i functions with different cutoff radii, if

different atomic species are interacting with atom i in the atomic environment.
For example, consider a case where the atomic environment is centered around
atom A, and atom A is bonded to atom B and atom C (where atoms B and
C are different species). If the same cutoff radius is used for atom B and C,
but atom C interacts with atom A at distances larger than the cutoff radius,
the description of the interaction potential would artificially be zero where it
should not be. Instead, one could superimpose a set of basis functions, some
of which describe the environment of B within its own cutoff, and some which
describe the environment of C with larger cutoff radius. In any case, it is still
a good idea to ensure that cutoff radii are not too short to accurately model
the atomic environment. Alternatively, one could multiply by an exponential

FIGURE 2.10: a) Shows a simple symmetry function using only the
cutoff functions. Various values for cutoff radii are used to control
how far from the central atom the atomic environment extends. b)
Shows the change in basis function by varying the η parameter. c)
Rs is varied. This shifts the gaussian to different radii. d) Angular

symmetry functions. Image retrieved from [11].

function exp−η(Rij−Rs)2
to control the decay of the interaction within one user

Chapter 2. Background 49

defined cutoff radius:

G2
i =

Natom

∑
j=1

exp−η(Rij−Rs)2 · fc(Rij) (2.72)

In this situation, only the η parameter is varied to change the radial exten-
sion of the symmetry function. This allows for greater control over where the
functions should decay since there is only one hard cutoff at the boundary of the
atomic environment. These functions are plotted in figure 2.10 where values of
Rc, η and Rs are varied in part (a), (b) and (c) respectively.

FIGURE 2.11: Angular symmetry functions formed between atom
i, j, and k. Image retrieved from [11]

The angular symmetry functions, are functions that are formed between
atom i and its two neighbouring atoms (j and k) such that they form an angle
θijk as seen in 2.11. The cosine of θijk can be used to model the angular symmetry
functions since the potential is periodic with respect to the angle. The angular
functions are then multiplied by Gaussians for all three interatomic distances
between the 3 atoms to ensure the function approaches zero if any of the dis-
tance between atom pairs becomes larger than the cutoff radius [11]:

Chapter 2. Background 50

G3
i = 2(1−ζ) ∑

j 6=i
∑

k 6=i,j

[(
1 + λ · cos(θijk)

ζ · exp−η(R2
ij+R2

ik+R2
jk) · fc(Rij) · fc(Rjk) · fc(Rjk)

)]
(2.73)

where 2(1−ζ) is a normalization factor and λ is a parameter with values vary-
ing from -1 to 1. The λ parameter can invert the cosine function.

Another option for angular symmetry function is:

G4
i = 2(1−ζ) ∑

j 6=i
∑

k 6=i,j

[(
1 + λ · cos(θijk)

ζ · exp−η(R2
ij+R2

jk) · fc(Rij) · fc(Rjk)

)]
(2.74)

In this case the Gaussian and cutoff function between atoms j and k are removed
from the G3

i function. By doing this the G4
i function is larger than the G3

i function
since the terms that were removed had a magnitude less than 1. The function
also has access to a larger set of angles since the maximum distance between j
and k inside the cutoff sphere is 2 · Rc[11].

Once the Cartesian coordinates are transformed using the symmetry func-
tions, they can be used as an input for a neural network. The transformed coor-
dinates describe all of the atomic environments in a reference structure. Given
an atomic structural environment a subnet will learn an atomic energy con-
tribution. When all of the energy contributions are learned from each atomic
environment, they are summed to produce a total energy for a structure. This
may be different from a typical architecture due to the fact that each input for
the main network feeds into a subnetwork.

2.2.8 Atomic Energy Network (ænet)

ænet is an open source implementation of the Behler-Parinello approach. First
the atomic fingerprints are generated by projecting the Cartesian coordinates
onto a set of symmetry functions. Structural fingerprint files must be included
for each atomic species in the dataset. These files include various parameters to
fit the set of basis functions. Since symmetry functions are evaluated for each
combination of atomic species (eg. A-A, B-B, A-B for binary combinations), the

Chapter 2. Background 51

FIGURE 2.12: Behler-Parinello network architecture. Here inputs
are mapped onto a set of symmetry functions. The symmetry func-
tions feed into subnets which each output an atomic energy con-
tribution. Atomic energies are summed in the output layer to gen-

erate the total energy. Image retrieved from [9]

number of basis functions scale with the number of species [3].

Usage:

1. generate.x: To use ænet, one should construct a set of reference data. The
input files are given in .xsf format, which includes atomic positions, forces
and lattice vectors. The lattice vectors define how to translate the basis to
repeat the crystal structure periodically.

The next step is to define the symmetry functions and symmetry function
parameters for each atom type in structural fingerprinting files. The struc-
tural fingerprint defines the basis setups for each atom type. Each atom
has its own setup to ensure that atom types can be distinguished from one
another.

In the main input file (generate.in), the user inputs the atomic energies
of all atomic species, and links all reference data and fingerprinting files.
When generate.x is executed, the reference data is projected onto an in-
variant basis. A binary file containing the transformed coordinates is out-
put.

Chapter 2. Background 52

2. train.x: The next step is to train a network on the transformed coordi-
nates. The user can define the network architecture, choice of symmetry
functions, optimization schemes, and testing fractions. At the end of each
step, an ANN potential is output.

3. predict.x: lastly, the ANN potential can be used to predict atomic energies.
Here a set of unseen structures should be used to test how well the ANN
potential can predict the energy. This code will predict the energies and
forces on atoms.

53

Chapter 3

Methods

3.1 Data generation

All materials were constructed using the Materials Project [42, 68] which is an
extensive database of material structures and their properties. The structures
obtained were relaxed and used as inputs for MD using DFTB+ [1]. Three dif-
ferent parameter sets were used to describe the interatomic potentials: mio-1-1
[25], matsci-0-3 [54] and pbc-0-3 [44]. For all 2D materials and their 3D ana-
logues, NVT simulations were implemented at T = {300K, 500K, 750K, 1000K}.

3.1.1 2D and 3D systems

To generate a dataset for 2D Silica, bulk SiO2, graphene, diamond, hexagonal
boron nitride (hBN) and cubic boron nitride (cBN), structures were sampled
from their respective MD trajectories. A simulation time step of 0.273 fs was
used to be consistent with Ryczko et al. [75]. MD trajectories were sampled ev-
ery 273 fs to generate reference data. There were 108 atoms in the SiO2 systems,
and 128 atoms in the graphene, diamond, hBN and cBN systems. The Brillouin
zone was sampled by a 2.0x2.0x1.0 K-Point mesh centered around gamma point
1.0 1. For some of the runs, the data obtained from temperature sampling was
augmented by scaling the lattice vectors and coordinates by +/- 10% around
the original structures.

1The gamma point is the center of the Brillouin zone.

Chapter 3. Methods 54

3.1.2 TiO2

The ænet software was released with an example TiO2 dataset, which was used
for benchmarking. This data set consists of 5 polymorphs (rutile, anatase, brookite,
columbite and baddeleyite) [3] which were obtained by distorting ideal rutile,
anatase and brookite and running DFT calculations and MD trajectories. To
distort the structures, the lattice constants were scaled +/-10% around ground
state, the crystals were gradually tilted by applying volume-conserving mono-
clinic strain and the structures were compressed in one crystal dimension [3].
Supercell structures with oxygen vacancies were added to this augmented dataset.
Also, structures were iteratively added to the reference data from short MD tra-
jectories at various temperatures (not specified by the authors) using a prelimi-
nary NNP.

3.1.3 Run Summary

Material Ensemble Parameter Set Temperatures
2D Silica/Bulk SiO2 NVT pbc-0-3 [44] 300K, 500K, 750K, 1000K

hBN/cBN NVT matsci-0-3 [54] 300K, 500K, 750K, 1000K
Graphene/Diamond NVT mio-1-1 [25] 300K, 500K, 750K, 1000K

TABLE 3.1: Above are basic simulation info for each system.

Material #atoms/#configs # atomic environments MD Sampling
Frequency

2D Silica/Bulk SiO2
108 atoms

2000 configs 216000 273 fs
hBN/cBN 128 atoms

2000 configs 256000 273 fs
Graphene/Diamond 128 atoms

2000 configs 256000 273 fs

TABLE 3.2: Above is info for sampling from each MD trajectory

3.2 Workflow

The general workflow for constructing reference data and obtaining NNPs is
shown in figure 3.1. To generate input data, DFTB+ was used to run MD. The
initial geometries were obtained from the Materials Project [42]. Structures were

Chapter 3. Methods 55

Generate struc-
tures using DFTB+ Augment data

Point Calculations in
ASE to get forces, con-
vert to .xsf file format

Map coordinates onto sym-
metry functions (generate.x)

Obtain cohesive energy
and normalize data

Train network

Predict energies and
forces (predict.x)

Run MD with ASE
(aenet-MD.py)

FIGURE 3.1: Workflow established for using ænet.

sampled from the MD trajectory to be included in the reference data. At this
point, there is an option of augmenting the data. Data augmentation is fur-
ther discussed in Section 4. Since DFTB+ does not print out the forces during
MD until the last step, a point calculation is taken using the DFTB calculator
in Atomic Simulation Environment2 (ASE) [48]. The structures then need to be
converted to .xsf file format for use in aenet.

Once the reference dataset is ready, the coordinates must be mapped onto a
set of symmetry functions. The symmetry function parameters and type are
specified in atomic fingerprint files. These files specify the setup for the ba-
sis functions used for each atomic environment. Each atomic species has it’s
own structural fingerprint, but for the sake of simplicity, in all runs included in
this work the symmetry functions and parameters are identical between atomic
species.

Since ænet trains on cohesive energies, the atomic energy (energy carried by

2ASE is a collection of tools in python that are used for setting up, modifying, running and
visualizing atomistic simulations. Various calculators are available to interface ASE with differ-
ent codes.

Chapter 3. Methods 56

an atom) of each atomic species must be included. This is done by calculating
the energy of a single atom in a vacuum using DFTB+. The cohesive energy is
the difference between the total energy in the system and the sum of all atomic
energies. Training on the cohesive energy makes it easier to train as there is a
smaller spread of energies. Since this is the primary reason the network trains
on cohesive energy, it is not entirely necessary to use the actual atomic energy
value. By using another value however, the training may proceed more slowly
and we can no longer interpret the network as training on cohesive energies.

Data is normalized using the method described by Montavon et al [64]. The
neural network architecture and optimizer is then specified, and the nerual net-
work trains until specified to stop. Neural network potentials are printed out at
every epoch (one pass where the network has seen all samples in a dataset), so
early stopping is possible. Once a NNP is obtained, it is ready for use in MD,
or it can be used to predict energies and forces from a list of structures directly.
The ænetLib library contains routines to parse the ANN potential files for en-
ergy and force evaluation. An implementation of the ASE calculator is linked
to this library so that the forces and potentials can be evaluated during MD.

3.3 Performance Metrics

Loss Curves

At each training iteration the mean absolute error (MAE) is taken between the
cohesive atomic energies and the target energies. The MAE is plotted on a log
scale to enhance the differences at very low error values. The loss is plotted
over the number of epochs. The loss curve will typically decrease until the
network starts to overfit. At this point, the testing error will start to diverge
away from the training error. In general, only the testing error will be plotted
on the loss curve, as it indicates how well the network is predicting against
unseen structures. The target error used throughout this work is 5 [meV/atom]
to be consistent with Artrith et al. [3]. This is about an order of magnitude
smaller than the thermal energy of the system (kT=25.85 [meV]-86.17 [meV]).

Chapter 3. Methods 57

Predicted vs. True

To test how a NNP can predict energy and forces on structures outside the train-
ing and testing data, the force and energy predictions of a separate dataset are
taken. To see the similarity of these predicted values to the target values, the
predicted and true energies are plotted against one another, where a one-to-one
mapping is a perfect fit.

Pearson Correlation Coefficient

To describe how well the target quantities are being predicted by the network,
the Pearson correlation coefficient is computed. The Pearson correlation coef-
ficient is a measure of linear correlation between two variables. The values of
the coefficient range between -1, 0 and 1, where -1 is total negative correlation,
0 is no correlation, and 1 is total positive correlation. The Pearson correlation
coefficient for a sample is given by:

r = ∑n
i=1(xi − x)(yi − y)√

n ∑n
i=1(xi −∑ xi)2

√
n ∑n

i=1(yi −∑ yi)2
(3.1)

where n is the size of the sample, xi and yi are points from each dataset, x
and y are the mean of each dataset.

Squared Error

In some cases, to obtain a clearer idea of how well the network is predicting on
a given set of structures, the squared error is taken between the predicted and
target quantity.

3.4 Convergence Studies

3.4.1 Cutoff Radius

The cutoff radius defines how many atoms are included in each atomic envi-
ronment. If the cutoff radius is too small, interactions that occur at larger dis-
tances go unaccounted for, resulting in a less accurate potential. Behler et al.

Chapter 3. Methods 58

FIGURE 3.2: Cutoff radius convergence for the 2D silica dataset. A
70-10-10-1 tanh network architecture is optimized with l-BFGS

[11], recommend using a cutoff radius between 6 and 10 Å. Using a large cut-
off radius increases the computational demand, as more atoms are included
within the cutoff sphere. In the following test, the convergence of cutoff radii
are tested for the non-augmented 2D Silica system. 4 cutoff radii were used,
Rc ∈ {2.5 Å, 4.5 Å, 6.5 Å, 8.5 Å}, with a 70-10-10-1 network architecture (opti-
mized using l-BFGS). The peaks in the loss curve can be attributed to overshoot-
ing an acceptable step size during optimization (the step size is approximated
by performing a one-dimensional optimization at each iteration).

The smallest cutoff radius tested Rc = 2.5 Å converged to the highest error,
indicating that it is too small to capture relevant interactions. A cutoff radius of
as low as Rc = 4.5 Å appeared to be sufficient to capture all interactions. The
loss converged to roughly the same values for anything greater than Rc = 4.5 Å

3.4.2 Training Set Size

Determining a sufficient training set size can optimize the computational effi-
ciency of the neural network. More training examples in the reference data can
result in a network that takes longer to train. Of course, the size of the train-
ing set depends on the how varied the reference data is. A network training

Chapter 3. Methods 59

FIGURE 3.3: Training set convergence for the 2D silica dataset.
A 70-10-10-1 tanh network architecture is optimized with the
l-BFGS optimizer. Reference datasets have sizes of m ∈
500, 1000, 1500, 2000. From this reference data, 85% is reserved for

the training set, and 15% is reserved for a testing set.

on 2000 examples of very similar structures will train much better than a net-
work training on 2000 examples of diverse structures that give rise to a larger
spread in energies. The network training on similar structures, however, will
be less general than the network training on a diverse set of structures. In this
test, a 70-10-10-1 architecture network was optimized using l-BFGS. The non-
augmented 2D Silica data is used for the reference dataset.

In this test, the loss decreases as the number of training examples increase.
Using a reference dataset of 500 structures resulted in an error that was much
higher relative to the others. In the following tests, a reference dataset of 2000
structures will be used since it converged to the lowest error.

3.4.3 Time Between Snapshots

Too much correlation within the dataset can lead to over-fitting in the network.
To generate data, snapshots from various MD trajectories were uniformly sam-
pled. In this situation reference data that has too much correlation may result
in the neural network learning the specific MD trajectory, and not being able to
generalize to others. In this experiment, the time between snapshots sampled

Chapter 3. Methods 60

FIGURE 3.4: Convergence of networks using different sampling
windows. A 70-10-10-1 tanh network architecture is optimized us-

ing the l-BFGS method.

from the trajectory was doubled from ∆τ = 273 fs to ∆τ = 546 fs. There was a
slight increase in error for the structures sampled less frequently from the tra-
jectory. This implies that there is some correlation in the data sampled every
273 fs.

3.4.4 Optimizers and Sensitivity to Random Seeds

For the augmented graphene reference dataset, the 3 optimizers available in
ænet were used to optimize the network multiple times to determine the sen-
sitivity to initial random seeds. A 26-10-10-1 network architecture with tanh
activation functions was trained over 5 different random seeds. As discussed
by Artrith et al. [3], in general the online gradient descent optimizer is the
least expensive to evaluate, the Levenberg-Marquardt optimizer is efficient for
small datasets but expensive for large datasets, and the l-BFGS optimizer is ef-
ficient for large datasets as it parallelizes well. Both the online gradient de-
scent and Levenberg-Marquardt methods require the definition of a learning
rate, whereas the l-BFGS method does not.

The l-BFGS optimizer was found to converge consistently to a similar error

Chapter 3. Methods 61

between runs (figure 3.5). The l-BFGS optimizer also does not require opti-
mizing the learning rate parameter so it is ideal for running a large number of
experiments.

FIGURE 3.5: Convergence of the l-BFGS optimizer over 5 random
seeds. A 26-10-10-1 tanh network architecture is optimized using

the graphene dataset.

The LM optimizer was implemented with an initial learning rate of 0.1, 3 it-
erations per optimization to adjust the learning rate, a factor to adjust the learn-
ing rate of 5.0, and a convergence threshold of 0.001. The batch size (number
of training points used to evaluate the error function in an iteration) was set to
the maximum number of training points. Compared to l-BFGS the LM network
had significantly more variation with respect to random seed. In figure 3.6, ran-
dom seed 1 is shown to converge to a local minimum, and then get kicked out
of the minimum to a lower minimum at 400 epochs. The second random seed
however converged to a local minimum and then started diverging away after
about 425 epochs. This convergence behaviour is less stable than the l-BFGS
method, but it is possible that over many random seeds that it will converge to
a lower error than l-BFGS.

Chapter 3. Methods 62

FIGURE 3.6: Convergence of the Levenberg-Marquardt optimizer
over 5 random seeds. A 26-10-10-1 tanh network architecture is

optimized using the graphene dataset.

For the online gradient descent optimizer, the learning rate was chosen to be
γ = 5.0E− 7. This controls how much the weights are adjusted with respect to
the gradient of the loss function. The momentum parameter is used to control
fluctuations. In this run it was set to a value of α = 0.25. The online gradient
descent optimizer consistently performed less well than the l-BFGS and LM
optimizers (figure 3.7), which is a result that is consistent with the optimization
of the TiO2 example dataset provided by ænet [3].

While the LM optimizer was able to converge to a lower error than the l-
BFGS optimizer given multiple runs, it was shown to have less stable conver-
gence behaviour. To achieve a low error using the LM or gradient descent op-
timizers, the learning rate must be optimized. Choosing a learning rate that
is too high can lead to overshooting during optimization. This can lead to the
network not converging or diverging. Choosing a learning rate that is too small
can lead to a more reliable optimization, but it comes at a high computational
cost. It would take more experiments for the LM and gradient descent opti-
mizer to adjust the learning rate parameter as well control for the sensitivity to
random seeds. Therefore, for most experiments, the l-BFGS optimizer is used.
This choice in optimizer allows for more reliable comparisons. The LM opti-
mizer is generally only implemented once a network is shown to converge to a
high error, and it may be helpful to use LM to achieve lower convergence.

Chapter 3. Methods 63

FIGURE 3.7: Convergence of the Online Gradient Descent opti-
mizer over 5 random seeds. A 26-10-10-1 tanh network architec-

ture is optimized using the graphene dataset.

64

Chapter 4

Network Activations

Activation functions play the role of mapping input signals on to a new domain.
Nonlinear activation functions are generally required for a network to learn a
nonlinear mapping because a network with only linear activation functions is
equivalent to linear regression. In this chapter, we will test the performance
of various activation functions available in ænet. We will see that networks
using only linear activation functions are easier to train, and under some cir-
cumstances sufficient. Lastly, we will look the role of data augmentation in the
complexity of the problem we aim to solve.

4.1 2D Silica

Recall that the 2D Silica dataset was generated by combining structures from 4
NVT simulations run at T=300K, 500K, 750K, and 1000K. In total 2000 structures
(500 from each MD trajectory) were included in the reference data set. This
dataset was split into 85% training data and 15% testing data. For all the results
obtained in section 4.1, the l-BFGS optimizer and the backpropagation method
were used to minimize the cost function. For all loss curves, only the testing
error is plotted, as it is a better indication of how the network is able to predict
energies for structures it has not seen yet.

In this section, we will discuss the performance of neural networks using
each activation function on the 2D Silica data set. We will explain using a toy
model why the linear regression network performs, at first glance, surprisingly
well on this dataset. We will also investigate where a linear regression model
has limited prediction capabilities, and where a nonlinear network becomes ad-
vantageous to use.

Chapter 4. Network Activations 65

4.1.1 Performance of Activations Available in ænet

To determine which activation function works best for 2D silica, a 70-10-10-1 (8
radial and 62 angular basis function input) network architecture was trained for
600 epochs. Networks using each activation function available in ænet (linear,
sigmoid, tanh or twist activation functions) were compared (figure 4.1). Note
that each network used only one of each type of activation function eg. a tanh
network would have tanh activations in all hidden units of the network. The
only exception to this is that in the final layer a linear activation function is al-
ways used since a larger spread of energies can be mapped to the outputs (they
are not confined to (-1,1) or (0,1)).

FIGURE 4.1: 70-10-10-1 network optimized with l-BFGS using lin-
ear, sigmoid, tanh, and tanh with linear twisting activation func-

tions. The 2D silica dataset is used.

Sigmoid (logistic) function
In figure 4.1, we see that, not surprisingly, the sigmoid network was the slowest
to converge and converged to a higher error than networks using other activa-
tions. As mentioned previously, the derivative of the sigmoid function is small
compared to tanh, and this causes the weight updates to be very small. As
mentioned in other works [35, 34], the sigmoid function tends to lead to neu-
rons saturating at the tails for any large positive or negative input values. The
sigmoid function also has a non-zero mean, which can lead to the network op-
timization requiring a larger number of iterations. As discussed in reference

Chapter 4. Network Activations 66

[49], since the sigmoid function always produces a positive output, all of the
weight updates have the same sign during backpropagation. The weights are
always increasing or decreasing as a group during weight updates. This leads
to a zigzagging in the optimization that is slow and inefficient. It should also
be noted that if the inputs to the network are too small and close to zero, it
may result in small weight updates (slowing optimization). It is ideal to ensure
that weights are initialized to values that are not too small. Otherwise, they can
shrink inputs even more and slow weight optimization.

Hyperbolic tangent (tanh) function
Along with the twist function, the tanh function performs second best to the
linear activation function at 600 epochs, but still appears to be converging. The
tanh function converges much more slowly than the linear function. The tanh
function has two regions where small derivatives near the tails lead to small
weight updates. This situation occurs when the inputs are largely positive or
negative. In figure 4.2, the tanh network is run for longer and found to con-
verge to a slightly lower value than the linear function. We will return to this
after discussing the results for the remaining activation functions.

Tanh with linear twisting (twist) function
The twist (tanh with linear twisting) function is a scaled tanh function [50] with
a small linear term added. It is meant to be more efficient to evaluate than tanh
[49] and help avoid the flatter regions near the tails of tanh. These regions have
small derivatives causing the weights to be updated very slowly during back-
propagation if the inputs are largely negative or positive. In the twist function,
the linear term added to the tanh is intended to circumvent this issue. In this
experiment, however, we did not find that the twist function performed signif-
icantly differently than the tanh function.

Linear (identity) function
Perhaps the most interesting result is that the network of linear activation func-
tions converged faster than networks using nonlinear activation functions and
also led to the lowest error. Using a linear activation not only accelerates the
time spent training a neural network, but it also results in a network function

Chapter 4. Network Activations 67

that is quicker to evaluate than networks activated by nonlinear functions. Af-
ter compressing the network to a linear regression model it would require more
floating point operations (FLOPs) to compute the nonlinear transformation of
inputs than just a weighted sum output from a nonlinear network.

To show that a network made up of linear activations compresses to a single
layer, let us compress a network of 3 layers. Say that the network has inputs
X(1), biases b(l) and linear activation function, f (l)a (x) = x, in layer l. The out-
put of the network can be expressed as a nested function, since the activation
outputs are equivalently the inputs for the following layer. Given a linear acti-
vation, f l

a(W(l)X(l)) = (W(l)X(l)), the network function for a 3 layer network is
expressed as:

a3 = f (3)a (W(3) f (2)a (W(2) f (1)a (W(1)X(1) + b(1)) + b(2)) + b(3))

= f (3)a (W(3) f (2)a (W(2)X(2) + c(2)) + b(3))

= f (3)a (W(3)X(3) + c(3))

= W(3)X(3) + c(3)

Where X(2) = W(1)X(1), X(3) = W(2)X(2) and c(l) is the addition of b constants
from the previous layer with the current layer. Since the activation input is
mapped directly to the output from the previous layer, the network collapses
to a single layer. This layer is simply a linear combination of the inputs plus a
constant (bias) term.

Training over more epochs it becomes apparent that the nonlinear tanh func-
tion can achieve an error that is 17% lower than the linear function (figure 4.2).
It takes about twice as many epochs, however, to achieve convergence. It would
still be interesting to determine whether the linear network could produce an
NNP capable of predicting well on unseen structures.

To test the performance of the tanh and linear network, the NNP produced
by each network was used to predict energies of 1000 structures that were not
included in the training data. This independent data consisted of structures
equally sampled from each MD trajectory at different temperatures. Note that
these are the same MD trajectories from which the training set was sampled
from. The independent data is sampled from structures taken from later por-
tions of the trajectory. In figure 4.3, the energies predicted by the network on the

Chapter 4. Network Activations 68

FIGURE 4.2: The network using a tanh activation was run for 600
more epochs. The error converges lower than the linear network,

but takes twice as many epochs to converge.

independent testing data were plotted against the actual energies of the inde-
pendent testing data. A perfect fit would mean that the predicted energies have
a one-to-one mapping to the actual energies. In figure 4.3, it is apparent that
the linearly activated network performs just as well as the network activated
by tanh. This is an interesting result, because if only linear activation functions
are needed to produce a predictive potential, the network function can be cal-
culated more quickly. But what is really happening in the network?

Chapter 4. Network Activations 69

FIGURE 4.3: Top: Energies predicted by a 70-10-10-1 network us-
ing tanh activation functions are plotted against the true energy
values. Bottom: Energies predicted by a 70-10-10-1 network us-
ing linear activation functions are plotted against the true energy

values.

Chapter 4. Network Activations 70

4.1.2 Toy model: Pair potential H2

In the previous experiment, we discussed how this model, that is essentially
linear regression, does a surprisingly good job at generating a well perform-
ing NNP. Typically, a neural network requires nonlinear activation functions to
generate nonlinear mappings from input data to output data. In the ænet ap-
proach, the inputs are projected onto a set of symmetry basis functions prior
to network optimization. A linear regression network in ænet is doing a linear
combination of basis functions. This means that a linear network in ænet is ac-
tually capable of nonlinear mappings. Let us further examine the capabilities
and performance of these linear networks.

In these experiments, we will use a toy model to better understand how
linear and nonlinear networks perform in ænet. For simplicity, a pair poten-
tial of a neutral H2 molecule was chosen. To generate training data, hydrogen
atoms were manually placed at fixed distances apart and the corresponding
energies were computed. The distances and corresponding energies were uni-
formly sampled from this set of configurations. Since the pair potential is a
function of distance only between two particles, the system only has one degree
of freedom. Therefore only the radial symmetry functions are required to map
coordinates to potential energy surface. To generate data independent of the
training and testing data, the energies were more densely sampled at various
distances. The resulting training set size was 85, and the testing set size was 15.
There were 500 samples in the independent testing set.

Performance for Linear and Tanh Networks with respect to Number of Radial
Basis Functions

In this first test, we will look at how the number of radial basis functions affects
the quality of the neural network fit. The number of radial basis functions is
increased from N = 1, 2, 3, 4, 8 (where N is the number of radial basis functions)
on a N-10-10-1 network architecture. Recall that the G2 symmetry functions
have the following functional form:

G2 = exp−η(Rij−Rs)2
fc(Rij)

Chapter 4. Network Activations 71

where fc(Rij) is the cutoff function, used to ensure a smooth cutoff at Rc.

fc(Rij) =

0.5 ·
[

cos
(

πRij
Rc

)
+ 1
]

Rij ≤ Rc

0.0 Rij > Rc

The parameters used for η were sampled between η = 0.003214 to η = 2.74972
(the default range of η values). The Rs value was kept at zero, and an Rc cutoff
of 6.500 Å was used. This test is implemented for both linear and tanh activa-
tion networks. The approximation of the pair potential by the linear and tanh
networks are compared.

In figure 4.4, the true DFTB energies are plotted as a function of distance
along with the neural network predictions of the energies at those distances.
One may notice that at a distance of about 2.7 Å there is a jump in the energy.
This artifact is the result of maintaining a fixed spin polarization during en-
ergy calculations for data generation. At smaller interatomic distances, the fixed
spins come into close contact, and by Pauli exclusion principle they cannot oc-
cupy the same energy state. This results in fluctuations that would normally
not be observed if the spins of the electrons were permitted to flip.

In this experiment, the number of radial basis functions are increased from
1 radial basis function to 4 radial basis functions. In figure 4.4, we see that the
network with nonlinear activations outperforms the network with linear acti-
vations. We see that contrary to the expectation that the linear network will
perform just as well as the tanh network, The linear network can not approx-
imate the curve with fewer than 4 radial basis functions. However, even with
only one RBF, the nonlinear network is able to learn the function to a very close
approximation. Here we have changed the problem in two ways. Firstly, the
number of basis functions have been decreased to a smaller number. Secondly,
the target function contains highly nonlinear parts. The 2D silica dataset was
sampled around equilibrium only. We will return to these points in section 4.2.2.

In figure 4.4, we see that there are no clear changes as the number of radial
basis functions are increased from 1 to 4. Keep in mind that the network has
an architecture of N-10-10-1 which provides more capacity for the network to
learn nonlinear fits. In section 4.1.2, we will look at how decreasing the network
capacity also decreases the accuracy of the fit for the nonlinear tanh network.

Chapter 4. Network Activations 72

FIGURE 4.4: Energies predicted by the neural network are plotted
with the true energies for each number of radial basis function.
For the linearly activated network (left), increasing the number of
RBFs for the linear network increases the capacity for fitting the
nonlinear pair potential curve. The neural network with tanh ac-
tivations (right) is capable of fitting the nonlinear activation func-

tion with only 1 RBF.

Chapter 4. Network Activations 73

FIGURE 4.5: For the linear network, a linear transformation is ap-
plied to each neuron. Adding the gaussian-like functions together

allows the network to learn a nonlinear function.

Figure 4.5, provides a graphical representation for what is happening within
the linear network. The input nodes output a signal of a gaussian-like functions.
The gaussian-like functions are scaled by the network weights, and if the weight
is negative, it is flipped. Since the activation function is linear, the sum of the
weighted inputs are mapped directly to themselves. So the weighted gaussian-
like functions are simply added together.

Analyzing figure 4.4, we can see that for the network with linear activations,
the number of radial basis functions determine how well it will be able to ap-
proximate a function. For one radial basis function, we see that the network can
only predict a monotonically decreasing Gaussian-like function (recall that the
Gaussian is scaled by a cosine cutoff function). This is because the output of
the neural network is the Gaussian-like function scaled by the network weights
and bias:

yout = 2We−η(rij)
2
+ W0 (4.1)

where the linear combination is multiplied by 2, since the distance from atom
1 to atom 2 is equivalent to the distance from atom 2 to atom 1. In figure 4.5,

Chapter 4. Network Activations 74

we can see that the network with 1 RBF can only be mapped with a positive or
negative weight to the output. Therefore, the network can not learn anything
more than an upright or inverted gaussian-like function.

When 2 RBFs are input into the network, it becomes possible to predict a
non-monotonic function with one turning point. This is possible because one of
the network weights is positive and the other is negative. The addition of two
inputs with alternate signs for the weights is shown graphically in figure 4.5. If
the weights were all positive, or all negative, the network would only be able
to predict a monotonically increasing or decreasing function. As more RBFs are
included into the network, the network becomes better able to approximate the
nonlinear function.

The linear network with only radial basis functions as input is almost equiv-
alent to an ’RBF network’. An RBF network architecture typically consists of
one input layer, one hidden layer with RBF activations and one output layer
with linear activations. The network function then looks like

y(x) =
N

∑
i

wiφ(||x− ci||) + bi (4.2)

Where wi are the weights at neuron i, x is the input vector, ci is the center vec-
tor at neuron i, bi is the bias and φ is the radial basis function activation. An
RBF network also learns a linear combination of radial basis functions. The
only difference between this network and a linear network in ænet with inputs
mapped onto radial basis functions is that the parameters in ænet are not opti-
mized during learning. This may make it more difficult for a network to learn
unless RBF parameters are densely sampled over a large range. The sensitivity
of the network fit to η parameters is discussed in the following section (section
4.1.2).

RBF networks with one hidden layer are capable of being universal approx-
imators on a compact subset RN [70]. This suggests that in principle, if enough
basis functions are used in the input layer in ænet, a linear network is sufficient
to learn the PES of the training data. The decision to use more basis functions
with linear activations or fewer basis functions with nonlinear activations is es-
sentially choosing whether to use a wide (shallow1) or deep2 neural network. In

1A shallow neural network has one hidden layer.
2A deep neural network has multiple hidden layers.

Chapter 4. Network Activations 75

[60], Mhaskar et al discuss how deep networks can often approximate functions
using significantly fewer parameters.

RBF Sensitivity to η Parameters

FIGURE 4.6: The network potential generated with different η val-
ues is used to predict the true DFTB energies for the pair-potential
curve. Each network has a 30-20-20-1 network architecture and
uses linear activation functions. Higher η values correspond to
smaller interatomic separations. Top: η values up to ηmax = 2.7497
are used. Middle: η values up to ηmax = 4.7497 are used. Bottom:

η values up to ηmax = 5.7497 are used.

Chapter 4. Network Activations 76

One significant difference between the RBF networks and the ænet model,
is that the parameters for basis functions in ænet are predetermined. RBF net-
works learn basis function parameters as well as their coefficients. Recall that
the width of the radial basis symmetry function used in these experiments is
controlled by the η value. Larger η values correspond to compressed symmetry
functions, and smaller η values correspond to stretched symmetry functions.
To test how the range of η values effect the function approximation, 30 RBFs
were tested for different ranges of η. Since the linear network does not approxi-
mate the curve well for small interatomic separations, larger η values were more
densely sampled. In figure 4.6, a 30-20-20-1 network with linear activations was
trained for varying η values. 3 curves were generated shifting the highest η val-
ues from ηmax = 2.7497 up to ηmax = 5.7497. Shifts to higher η values increase
the sensitivity of the RBF around smaller interatomic distances.

As the η values increase, the network is better able to approximate the high
energy regime. This highlights a limitation of treating ænet like an RBF network
(for linearly activated networks). Since the parameters of the basis functions
cannot be learned, a very large number of parameters over a wide range of val-
ues would be required to closely approximate the function. The linear network
in ænet lacks the flexibility of a true RBF network.

NN Capacity Required to Learn NNPs

If nonlinear activations are used in the network instead, how much network ca-
pacity is required for a good fit? In section 4.1.2, the tanh networks consistently
estimated the curve very closely. This is possibly due to overfitting, since the
network capacity was 2 layers with 10 neurons each. In the test illustrated in
figure 4.7, a 1 layer network of N nodes with 1 radial basis function input was
tested, where the number of nodes are N ∈ {1, 2, 3, 4, 8}. A network with 1 RBF
and 1 neuron did not have enough capacity to fit the curve. It did, however, get
the general trend right (figure 4.7). Increasing to 2 neurons did not change the
fit very much. It was not until a 3 neuron network was used that the network
closely approximated the curve with small fluctuations. This indicates that even
small tanh networks are sufficient to fit the pair potential curve.

Chapter 4. Network Activations 77

FIGURE 4.7: Network potentials trained on various architectures
are used to predict the pair-potential curve. The number of neu-
rons are varied from 1-4 in the hidden layer. Top left: 1-1-1 tanh
network. Top right: 1-3-1 tanh network. Bottom left: 1-4-1 tanh

network. Bottom right: 1-8-1 tanh network.

Chapter 4. Network Activations 78

4.2 Graphene

To test how what we’ve learned on the simple pair potential generalizes, we will
look at graphene. Recall that the graphene dataset has 500 structures sampled
from MD trajectories at 4 different temperatures (300K, 500K, 750K, and 1000K).
In this experiment, the neural network potential was generated using a N-10-
10-1 (where N is the number of symmetry functions) linear or tanh network
and optimized with the l-BFGS optimizer. In general 26 symmetry functions
are used unless otherwise specified.

4.2.1 Role of Angular Basis Functions

To examine how the addition of angular basis functions affects the ability for
the network to learn we will train a network in the presence and absence of
angular basis functions. This will provide insight into how much of a role an-
gular basis functions play in constructing the potential energy surface. Here,
the number of radial basis functions are reduced to one. The number of angular
basis functions will either be 18 (to be consistent with other runs in this chapter),
or reduced to 0 (to remove any dependence on angular basis functions). In fig-
ure 4.8, the loss for each network activated by either a tanh or linear activation
function is shown. Here we see that for the network using angular basis func-
tion inputs, the linear network converged to a lower error (0.9 [meV/atom])
than the tanh network (1.3 [meV/atom]). We saw in section 4.1.2 that the num-
ber of radial basis functions increase the quality of the fit for linear networks for
atoms that have a nonlinear radial dependence. In this experiment, only one
radial basis function is being used, and the network is still performing slightly
better than the tanh network. This result suggests that the angular basis func-
tions are compensating for the reduction in radial basis functions, allowing the
linear network converge to a lower error than the tanh network.

Now we will look at what happens when the angular basis functions are
removed. In figure 4.9, we see that both the tanh network and the linear net-
work converge to a higher error than when angular basis functions are included.
We see that the linear network, however, quickly converges to a much higher
error than before (13.8 [meV/atom]). Whereas the tanh network convergence
increases only to 8.5 [meV/atom]. This is still close to our target accuracy of 5
[meV/atom] and is acheived on a network that is using only one radial basis

Chapter 4. Network Activations 79

FIGURE 4.8: The graphene dataset is used to train 19-10-10-1 linear
and tanh networks where there is one radial basis function and 18

angular basis functions.

function as input. This result is consistent with previous tests on the pair poten-
tial model (section 4.1.2), where the tanh network performed much better than
the linear network for a fewer number of radial basis functions.

FIGURE 4.9: The graphene dataset is used to train a network with
only one radial basis function (and no angular basis functions).
Linear and tanh activation functions are used. The linear network

gets stuck in a local minima and converges at a higher error.

Chapter 4. Network Activations 80

4.2.2 Sampling and Data Augmentation

Let us return to the question of why the linear network performs better than the
tanh network on graphene for an equivalent number of basis functions. In the
pair potential experiments, the two hydrogen atoms were brought very close
together, and then pulled apart. This created a nonlinear interaction potential
where the energy was highest at close distances, decreased to a minimum at the
ideal bond length, and then increased back to zero as they were pulled apart.

In a typical MD simulation, the most frequently visited configurations would
occur near energy minima, as higher energies occur less frequently. While a
range of temperatures (300K-1000K) were sampled to generate graphene struc-
tures, configurations are less likely to access high energy regions of the potential
energy surface from temperature sampling alone. If the configurations do not
explore the high energy regime, then the PES is incompletely sampled. As a
result, a neural network potential trained on the incomplete sample does not
generalize to these energies.

Of course, in supervised learning, the neural network has limited capacity to
predict well on examples that are very different than what was provided in the
reference data. If a NNP is trained on a vast amount of data that samples low
energy configurations, and a rare event occurs, the NNP will not approximate
as well to high energy events. Ideally, the neural network would have access to
a dataset that samples a large amount of configuration space, but sampling all
of phase space would be computationally intractable.

The curvature of the potential energy surface is low near energy minima rel-
ative to the rest of the curve. If the potential energy surface is sampled only near
the minima, the potential energy surface will be easier to learn. This is due to
the fact that more nonlinear regions of the potential energy surface are ignored.
Hence, a linear combination of radial basis functions and angular basis func-
tions may be sufficient to predict data sampled from MD trajectories. A more
robust potential however, needs to train on a larger sampling of configuration
space. This can be accomplished through data augmentation.

To include structures in the data set that explore higher energies, the unit
cell was scaled by up to +/ − 10% around structures obtained from MD. The
set of scaling factors used to multiply coordinates and lattice vector were SF∈
{−0.10,−0.05, 0.00, 0.05, 0.10} (where SF is the scaling factor). Scaling the data

Chapter 4. Network Activations 81

increases the complexity of the function to be learned by the network.
To determine how scaling affects the ability for the network to learn, dif-

ferent combinations of the amount of augmented data to the amount of non-
augmented data to include in a reference dataset were explored. Previously all
of the data was non-augmented, and came entirely from MD trajectories. The
ratio of the amount of augmented data to the amount of non-augmented data
in the reference data set is varied from 100:0, 50:50, 25:75 and 0:100. The scaled
data is expected to have the most nonlinear mapping from coordinates to po-
tential energy surface.

In figure 4.10, the loss curves are plotted for each ratio of augmented to non-
augmented data. To be more specific, the total dataset consisting of 25%, 50%
and 100% augmented data is combined with 75%, 50% and 0% non-augmented
data. The losses for each combination are plotted alongside the loss of a dataset
consisting of 100% MD trajectory sampled structures for reference.

When 25% of the data is augmented, the network converges to 5.4 [meV/atom].
Augmenting half the data increases the error convergence to 6.8 [meV/atom].
Augmenting all the data nearly doubles the error of augmenting a quarter of
the data. When 100% of the data is augmented the error converges to 10.6
[meV/atom]. Here we see that scaling the data significantly increases the diffi-
culty for the network to learn a mapping from coordinates to PES. This is due to
the fact that there is a larger spread of energies, and an increase in nonlinearity
of the PES.

Chapter 4. Network Activations 82

FIGURE 4.10: Loss curves are plotted for various percentages of
augmented graphene data. If 0% of the data is scaled, the dataset
consists entirely of structures from MD trajectories. If 100% of the
data is scaled, the dataset consists of all augmented structures.
Percentages in between 0% and 100% indicate a combination of

the two.

Chapter 4. Network Activations 83

4.3 Titanium Dioxide (TiO2)

In this section we will look at a dataset that has been augmented in multiple
ways and compare to our graphene dataset. This dataset, based on Titanium
Dioxide (TiO2) structures, was provided as an example made publicly available
with the ænet software. We will compare the spread of energies in this dataset
to the spread of energies in the graphene dataset. From here, we will determine
a rough estimate for how much of the graphene dataset should be augmented
and how much should come from MD trajectories to compare to the example
dataset provided by ænet.

While the dataset contained 7694 structures (obtained from DFT) in total, the
number of atoms in each structure varied from 6-95 atoms. In total, there are
165229 atomic environments in the TiO2 dataset. In the graphene dataset, there
are 256000, meaning that there are 90771 more atomic environments to train on
than in the TiO2 dataset.

The TiO2 reference data was augmented in 3 different ways [3]:

1. scaling the lattice constants to a range of +/- 10% around ground state

2. gradually tilting the crystal structures

3. stretching and compressing in one crystal dimension

To simplify analysis, since we have only been looking at how changes in radial
distances of atoms affect the networks ability to learn a neural network poten-
tial, only the first augmentation step is taken into account when implementing
data augmentation. The other two augmentation steps would change the angu-
lar distributions, and since we have not looked into how angular basis functions
play a role in ænet, these steps are excluded. In a first comparison of the TiO2

dataset to the graphene dataset, we will look at how networks with linear and
nonlinear activation functions converge during training on TiO2. This will give
us an idea of how data augmentation increases the complexity of the poten-
tial energy surface. For this test, the loss is computed as the number of radial
basis functions are increased. In figure 4.11, we see a 63-10-10-1 (with one ra-
dial basis function and 62 angular basis function) network optimized with the
l-BFGS optimizer using either the linear or tanh activation functions. At one
radial basis function, we see that tanh does significantly better than the linear

Chapter 4. Network Activations 84

FIGURE 4.11: 63-10-10-1 networks (one RBF) using either linear
or tanh activation functions are optimized with l-BFGS. The TiO2

reference data is used.

network. Here tanh network converges to a testing error of ∼ 15 [meV/atom],
and the linear network convergest to a testing error of∼ 38 [meV/atom] (where
5 [meV/atom] is the target error [3]). We saw that in the pair potential exper-
iments (section 4.1.2), the tanh network was better able to learn a nonlinear
mapping given fewer radial basis function inputs than the linear network.

As we increase the number of radial basis functions from 1 to 8, we see that
the linear network gets consistently better as the number of radial basis func-
tions increase (figure 4.12). This is consistent with what we learned in section
4.1.2, where increasing the number of radial basis functions improves the lin-
ear network’s capacity for learning a nonlinear mapping from input data to
output data. At 8 radial basis functions (figure 4.13), the linear network con-
verges to ∼ 17.5 [meV/atom] which is 20.5 [meV/atom] lower than when only
one radial basis function is used. For the tanh network, the error converges to
8.5 [meV/atom] which is 6.5 [meV/atom] lower than the error at 1 radial basis
function. The tanh network, however, takes longer to converge.

Chapter 4. Network Activations 85

FIGURE 4.12: N-10-10-1 network (increasing RBFs from 1 to 8) us-
ing only linear activation functions and optimized with l-BFGS.

The TiO2 reference dataset is used.

FIGURE 4.13: 70-10-10-1 networks (8 RBFs) with either tanh or lin-
ear activation functions are optimized with the l-BFGS optimizer.

The TiO2 reference dataset is used.

Chapter 4. Network Activations 86

4.3.1 Data Augmentation

Since ænet trains on the cohesive energy per atom, to compare my data to the
TiO2 dataset (containing augmented structures), I compared the distribution
of cohesive energy per atom for each structure in each data set. The cohesive
energy per atom is given by:

Ecoh/atom =
Ecoh
NTot

=
1

NTot

(
Esys −

Nspecies

∑
atom

EatomNatom

) (4.3)

Where NTot is the total number of atoms in the system, Esys is the total energy
of the system, Eatom is the atomic energy of each atomic species, Natom is the
number of atoms that belong to each atomic species (eg. NSi = 36 and NO = 72
if there are 36 silicon atoms and 72 oxygen atoms in the system) and Nspecies

is the total number of atomic species in the system (eg. if we are looking at
2D silica, the summation will be over 2 species: oxygen and silicon). Eatom is
determined by computing the energy of an isolated atom of a given species.

To get a general idea of how much to scale MD data, the Ecoh/atom spread
of unscaled MD data was compared to the TiO2 dataset. The distribution of
Ecoh/atom for the TiO2 data set is visualized in figure 4.14. While most of the data
is between -10 and -5 eV/atom, some strongly distorted structures give rise to
energies as high as 20 eV/atom. Since we are looking mostly at how changing
the number of radial basis functions affect learning, the graphene dataset will
only be augmented by expanding or compressing the system by a scaling fac-
tor between +/- 10% of the original coordinates. This should keep the focus
mainly to changes in radial distance from reference atoms, and how radial basis
functions can enhance or reduce the quality of the fit.

To get a rough estimate of how much scaled data should be included in
graphene, the range of energies in the graphene dataset was compared to that
in the TiO2 dataset. The spread of energies for graphene was measured by its
range, which is the difference of maximum and minimum cohesive energy per
atom. Because TiO2 and graphene have different energy minima in each respec-
tive dataset, we compared the overlap between the two datasets as follows.

In graphene, the total spread in energies arise from thermal fluctuations. We
will assume that the energies in the TiO2 dataset corresponding to this range
also arise from thermal fluctuations. The range of energies in the graphene

Chapter 4. Network Activations 87

FIGURE 4.14: Distribution of cohesive energies per atom in the
complete TiO2 dataset.

dataset is:

RG = max(Ecoh/atom)−min(Ecoh/atom) (4.4)

We were interested in how many of the TiO2 structures were within RG of the
minimum energy in the TiO2 dataset. In other words, what fraction of the TiO2

dataset have energies below RG in TiO2. The range RG in TiO2 is given by,

RG in TiO2 = min(Ecoh/atom) + RG (4.5)

Of the 7815 structures in the TiO2 dataset, only 1446 fell within this energy
range. This represents only 18.5% of the TiO2 dataset.

Since the ænet example produced a potential that was suitable for MD, a
similar ratio of lower energy data (obtained from MD) to higher energy data
(obtained from compression and stretching the coordinates) will be used for
training in the remaining tests. Approximately 20% of structures will be sam-
pled from the MD trajectory, and 80% of structures will be obtained from scaled
data.

Recall that previously only 5 scaling factors were drawn uniformly from the
interval (-0.1,0.1) for stretching or compressing coordinates and lattice vectors.

Chapter 4. Network Activations 88

FIGURE 4.15: The distribution of cohesive energies per atom in
the Top: non-augmented graphene dataset (structures sampled
entirely from MD). Middle: augmented graphene dataset (struc-
tures sampled from the stretched or compressed dataset) Bottom:
TiO2 dataset where energies that are higher than the range of

graphene in TiO2 are removed.

Chapter 4. Network Activations 89

In the following runs, each structure in the dataset (retrieved from MD trajec-
tories at 300K, 500K, 750K and 1000K) will be stretched or compressed by 10
scaling factors drawn randomly from (-0.1,0.1). Instead of having energies clus-
tered around values corresponding to these preset scaling factors, the random
sampling of scaling factors should help smooth the distribution of energies. We
can see the distributions of energies for the non-augmented graphene dataset,
the augmented graphene dataset and the RG in TiO2 dataset (with higher ener-
gies removed) in figure 4.15.

To generate an augmented dataset for graphene, the stretched and com-
pressed structures will be randomly sampled to make up 80% of the training
data. The remaining 20% of the reference data will be randomly sampled from
various MD trajectories. To summarize, datasets including data augmentation
will be generated in the following steps:

1. Run various MD trajectories at different temperatures and write structures
every n steps to generate structures in the unscaled dataset.

2. Scale all the coordinates and lattice vectors by 10 scaling factors which are
drawn randomly from -0.1 to 0.1.

3. 80% of the training data is randomly sampled from the set of augmented
structures.

4. 20% of the training data is randomly sampled from the set of MD trajec-
tory structures.

This algorithm will provide a way to generate a graphene dataset that is
roughly comparable to the example TiO2 dataset provided by ænet. This will
serve as a starting point for developing a more robust potential. We will return
to this in chapter 5.

Chapter Summary

• Linear networks in ænet are similar to one layer RBF networks,
but basis functions have fixed parameters.

• tanh activation networks still learn effectively for low number
of RBF (when restricting input to only include radial basis func-
tions) compared to linear activation networks.

Chapter 4. Network Activations 90

• Parameters selected for radial basis indicate how sensitive the
radial basis functions will be over corresponding length scales.

• Strictly sampling MD trajectories around equilibrium lead to
less complex potential energy surfaces.

• Important to scale data to explore PES more completely. This
will inevitably lead to more a more difficult problem.

91

Chapter 5

Bulk and 2D Materials

5.1 Materials

In this chapter we will explore how the ænet algorithm performs on different
material compositions and structures. First we will discuss how the potential
energy surfaces differ between materials. From here we will apply what we’ve
learned in the previous chapter (Chapter 4) and sample an augmented dataset
for graphene to explore a more complex potential energy surface.

5.1.1 2D Silica and Bulk SiO2

In this experiment, the 2D silica bilayer was compared to its 3D counterpart,
bulk SiO2. To get a clearer picure of how the potential energy surface of the
two materials differ, only structures obtained from temperature sampling are
included in the reference dataset. This is to avoid the added complexity intro-
duced by stretching and compressing structures. Temperature sampling allows
us to explore near-equilibrium states of the potential energy surface, so these
neural network potentials will be able to better predict frequently visited config-
urations. In the following set of runs, a 70-10-10-1 neural network architecture
with tanh activation functions is optimized with the l-BFGS optimizer. There
are 2000 structures in each reference dataset (sampled from MD trajectories).
The reference data is spit into 85% training data and 15% testing data. A cutoff
radius of Rc = 6.5 is used.

After training each type of structure, the bulk silica was found to converge
to a lower error than the 2D silica (figure 5.15). It is possible that this may be the
result of greater symmetry in the bulk system. Each atom in the bulk material

Chapter 5. Bulk and 2D Materials 92

FIGURE 5.1: Loss curves for 2D and bulk silica (datasets are sam-
pled from MD trajectories). A network architecture of 70-10-10-1

is optimized using l-BFGS.

has repeating neighbouring atoms in each direction, whereas the bilayer silica
has vacuum on two edges.

The results in chapter 4, suggest that more nonlinearity increases the com-
plexity of the potential energy surface making it more difficult for ænet to con-
verge. In this chapter, to further explore whether the nonlinearity of the poten-
tial energy surface is responsible for the difficulty for the network to learn, data
is augmented by stretching and compressing and the neural network potentials
are used to make predictions on these structural energies. Here the cohesive en-
ergy per atom for each structure was determined as a function of scaling factor
for stretching or compressing around the ground state. First, a geometry relax-
ation was performed on each structure where lattice vectors were allowed to
change. Once the structures were minimized, a range of scaling factors on the
interval of (-0.1,0.1) were chosen to scale the coordinates and lattice vectors. For
negative scaling factors, the structures are compressed up to 10% of the ideal
(minimized) structure. Likewise, positive scaling factors indicate that the coor-
dinates and lattice vectors are being expanded by up to 10% around the ideal
structure.

These scaling experiments are inspired by tests using the pair potential (chap-
ter 4). For the pair potential, atoms that are really close have a rapidly increasing

Chapter 5. Bulk and 2D Materials 93

energy, and when they get pulled away from the ideal bond length the energy
increases until there is no longer an interaction at all. Here we will push ma-
terials outside the range of configurations for which the neural network was
trained. We note that this is a more complicated many-body system, so the
comparison is not direct.

Once the dataset was generated, the neural network potential (trained on
reference data which sampled MD trajectories) was used to predict the energies
of all the scaled structures. For brevity, we will refer to datasets that consist only
of structures sampled from MD trajectories as dataset A. The neural networks
were expected to predict best around a scaling factor of zero, which corresponds
to the ideal structure of the material. This is because MD simulations sample
around equilibrium.

In figure 5.2, the cohesive energy per atom is plotted for each scaling factor
used to expand or compress the structures. To provide an idea of where the
neural network is likely to learn best, the mean and maximum values of the
cohesive energy per atom in the reference data set are plotted for each material
(figure 5.2). In each experiment, the neural network potential was able to pre-
dict the energy curve very closely around equilibrium, and within the energy
range upon which the network was trained. From observing the red line indi-
cating the maximum value of cohesive energy per atom in the reference data
set, we see that the neural network is able to extrapolate fairly well outside of
the values for which it was trained. This indicates that the network is learning
the derivatives, since the shape of the curve is preserved for a small range of
scaling factors beyond the range of energies for which the network was trained.
It eventually, begins to predict poorly as the energies continue to increase.

Note that during MD, the lattice vectors are fixed, so the cohesive energy
with respect to the scaling factor curve is not a direct indication of the struc-
tures that are explored during MD. With fixed lattice vectors, volume is fixed, so
the expansion of one bond must come at the compression of others. Stretching
or compressing the coordinates and lattice vectors for augmentation, however,
enforces the bond lengths to change as a group.

Chapter 5. Bulk and 2D Materials 94

FIGURE 5.2: Cohesive energy per atom as a function of scaling
factor. The red horizontal line corresponds to the maximum value
of cohesive energy per atom in the training set. The orange hori-
zontal line corresponds to the mean value of cohesive energy per
atom. The true cohesive energies per atom are plotted with the
ANN prediction of the energies at these points. Top: 2D silica en-

ergies. Bottom: Bulk silica

High pressure MD sampling

In the previous experiment, we implemented temperature sampling around
equilibrium. Now we will look at what happens if we train a neural network

Chapter 5. Bulk and 2D Materials 95

potential on MD data that was forced out of equilibrium. In the following ex-
periment, we train on an MD trajectory that samples high pressure 2D silica by
maintaining fixed lattice vectors that compress the system by 4.5%. In figure 5.3,
we see that the loss curve for the 2D silica sampled near equilibrium converged
to a lower value than the loss curve for the 2D silica sampled away from equi-
librium at a high pressure. This indicates that it is more difficult for the network
to train on data sampled out of equilibrium.

FIGURE 5.3: Loss curves for 2D silica where data is sampled near
equilibrium, or away from equilibrium (high pressure). A network

architecture of 70-10-10-1 is optimized using l-BFGS.

In figure 5.4, we compare the predictions of the neural network potentials
trained on MD data sampled near and away from equilibrium. For the high
pressure 2D silica fit, the neural network potential is biased to predict well on
compressed structures. This is expected, as the network was trained on com-
pressed structures. When predictions are made on structures augmented by
higher scaling factors, the fit is significantly less accurate than the fit of the net-
work trained on data near equilibrium. We conclude that training on data sam-
pled away from equilibrium makes it more difficult for the network to general-
ize to other parts of the curve. This is likely due to a more complex mapping
between structures and energies.

Chapter 5. Bulk and 2D Materials 96

FIGURE 5.4: Cohesive energy per atom as a function of scaling
factor. The red horizontal line corresponds to the maximum value
of cohesive energy per atom in the training set. The orange hori-
zontal line corresponds to the mean value of cohesive energy per
atom. The true cohesive energies per atom are plotted with the
ANN prediction of the energies at these points. Top: 2D silica
energies. Notice that the network potential makes biased predic-
tions. This is due to MD sampling around fixed lattice vectors

corresponding to this region. Bottom: Bulk silica

Chapter 5. Bulk and 2D Materials 97

5.1.2 hBN and cBN

In this experiment, hexagonal boron nitride is compared to cubic boron nitride.
For these runs, lattice vectors were optimized as well as geometries. The same
procudure for training as outlined in for the SiO2 runs (section 5.1.1) was used
here.

FIGURE 5.5: Loss curves for hexagonal boron nitride and cubic
boron nitride (datasets are sampled from MD trajectories). A net-

work architecture of 70-10-10-1 is optimized using l-BFGS.

The loss curves for the boron nitride system indicate that the bulk material
converges to a lower loss than the 2D material (figure 5.5), however, the differ-
ence is less exaggerated than for the SiO2 experiments. Overall, the loss curves
for the boron nitride systems are lower than the loss curves for the high pressure
SiO2 systems. The difference in loss curves between the high pressure silica and
boron nitride is consistent with the idea that a dataset generated near equilib-
rium with smaller forces is easier to train than a dataset generated away from
equilibrium.

When predicting the cohesive energy per atom as a function of scaling fac-
tor for the boron nitride systems, the hexagonal boron nitride fit appears to be
better over a larger range of scaling factors. This seems to contradict the results
of the loss curves. However, there is a larger spread of energies in the hexag-
onal boron nitride reference data set than for the cubic boron nitride reference

Chapter 5. Bulk and 2D Materials 98

data set. For hexagonal boron nitride, the range in cohesive energies are 20
meV/atom larger than for the cubic boron nitride reference data. In general it
can be more difficult to train over a larger energy range.

We note that cubic boron nitride might have less radial deviation from equi-
librium state than hexagonal boron nitride when thermal energy is added to the
system. It is possible that thermally distorting cubic boron nitride did not lead
to structures that are similar to the stretched and compressed augmented data.
Therefore, the network might learn the equilibrium structures well, but fail to
make correctly on the augmented dataset.

Overall, cubic boron nitride may have trained better due to training over a
slightly smaller spread of energies and exploring fewer configurations that have
features similar to the augmented dataset.

Chapter 5. Bulk and 2D Materials 99

FIGURE 5.6: Cohesive energy per atom as a function of scaling
factor (used to expand or compress structures) and the network
potential predictions of these energies. The red dashed line indi-
cates the maximum energy included in the reference data set. The
orange dashed line indicates the average value of the energy in-
cluded in the reference data set. Top: Hexagonal boron nitride.

Bottom: Cubic boron nitride.

5.1.3 Graphene and Diamond

Here graphene and diamond are compared to one another. To generate training
data, the coordinates and lattice vectors were relaxed. The same procedure for
training as outlined in the previous two sections is also used here.

The loss curves (figure 5.7) of graphene and diamond both converged to

Chapter 5. Bulk and 2D Materials 100

FIGURE 5.7: Loss curves for graphene and diamond (datasets are
sampled from MD trajectories). A network architecture of 26-10-

10-1 is optimized using l-BFGS.

FIGURE 5.8: Cohesive energy per atom as a function of scaling
factor for graphene and diamond.

the same error, though the loss for graphene converged more quickly than for
diamond. When comparing curves of cohesive energy per atom as a function
of scaling factor (figure 5.8), diamond was found to be significantly more non-
linear than graphene. The convergence for diamond was likely slower due to

Chapter 5. Bulk and 2D Materials 101

this high degree of nonlinearity. We note that the loss curve for diamond and
graphene converged to the highest error of all the systems investigated. In the
following section, we will look at how sampling more nonlinear regions of the
curve affects the fit. When looking at the network predictions on diamond and
graphene (figure 5.9), we see that a very small amount of the cohesive energy
curve is fit. As expected, the network predicts best near equilibrium.

FIGURE 5.9: Network potential predictions on the graphene and
diamond datasets. The dashed red line indicates the maximum
value of cohesive energy in the dataset. The orange dashed line
indicates the mean value of cohesive energy in the dataset. Top:

graphene Bottom: diamond.

Chapter 5. Bulk and 2D Materials 102

5.2 Impact of data augmentation

In this next experiment, we will look at the impact of data augmentation on the
complexity of the potential energy surface of graphene. For these runs, we will
generate an additional dataset which we will refer to as dataset B. This dataset
will consist of augmented and non-augmented data as described in chapter 4.
The ideal structure is scaled up to +/-10% around its original coordinates and
lattice vectors. Then this distribution of stretched and compressed structures
is randomly sampled to make up 80% of the training data. The other 20% of
the reference data will come from the non-augmented dataset i.e. structures
sampled from MD trajectories at various temperatures. In total 5000 structures
(including augmented data and non-augmented data) were included in the ref-
erence dataset. This dataset was split into 85% training data and 15% testing
data.

In figure 5.10, the network potential trained on dataset B is compared to the
network potential trained on dataset A. Both potentials were used to predict
structures that were scaled +/-10% around ground state. We can see that, not
surprisingly, the potential trained on dataset B is able to predict the curve better
than the potential trained on dataset A. Many of the structures that were gener-
ated using this range of scaling factors are explicitly represented in this training
dataset. The network potential trained on dataset A generally only predicts the
structures correctly around the ground state.

It is interesting to take notice of the average and maximum energy included
in each dataset. In the top plot of figure 5.10, the average cohesive energies
for each reference dataset are plotted. In the bottom, the maximum energy in
each reference dataset are plotted. By observing the maximum energy in each
dataset, we see that the neural network is able to generally fit the shape of the
curve up to this point. The potential trained on dataset A does not fit very close
to the curve anywhere besides zero scaling factor. This potential only does well
for the ideal case. We should note however, that this is not a perfect test since
we are predicting structures with varying lattice vectors by a neural network
trained on data with fixed lattice vectors. The potential does particularly poorly
when trying to fit highly compressed structures, where the cohesive energy per
atom rapidly changes with respect to scaling factor. The potential trained on
dataset B has learned the general shape of the curve. However, it does more

Chapter 5. Bulk and 2D Materials 103

poorly where there is a steeper derivative.

Augmented dataset performance

FIGURE 5.10: Cohesive energy per atom as a function of scaling
factor. The ANN prediction corresponds to a network trained on
MD data only (dataset A). The ANN (Data Augmentation) predic-
tion corresponds to the augmented dataset (dataset B). Top: The
mean value of cohesive energies per atom in the dataset are plot-
ted for dataset A (orange line) and dataset B (green line). Bottom:
The maximum value of cohesive energy per atom in the training
set is plotted for dataset A (orange line) and dataset B (green line).

Chapter 5. Bulk and 2D Materials 104

Another point worth mentioning is that there is a large gap between the
mean and the maximum energies in the augmented reference data. This sug-
gests that even if most of the dataset samples low energy configurations, sam-
pling some data at high energy configurations can help improve the general
fit.

Now that we have seen how the potential trained on the dataset B compares
to the potential trained on dataset A, let us look at how the dataset B performs
overall. In this first test, the potential trained on dataset B is used to make pre-
dictions on separate datasets. The first dataset consists entirely of augmented
structures (referred to as modified structures). The second dataset consists en-
tirely of MD data (referred to as original structures). These datasets are made
up of structures that are independent of training and testing datasets.

FIGURE 5.11: The network trained on dataset B is used to predict
energies of non-augmented data (blue) and augmented data (or-

ange)

In figure 5.11, the predicted and true energies are plotted against one another

Chapter 5. Bulk and 2D Materials 105

for each dataset. The modified structures span a much larger range of energies
than the original structures. However, they are further away from a perfect fit
than the original structures.

To quantify this, the squared errors are taken between the predicted ener-
gies and the true energies. These errors are then represented as a histogram
to plot the frequency at which each squared error value occurs. To enhance
the differences at small values, the squared error is expressed on a logarithmic
scale. Finally, the mean squared error for each dataset is plotted as a vertical
line. In figure 5.12, we see that the mean squared error for the original struc-
tures is approximately an order of magnitude better than that of the modified
structures. This implies that while training the neural network, the testing error
computed on the augmented dataset will be much higher than the actual error
on the structures most commonly encountered in MD. Specifically, the testing
loss on the augmented dataset is not a good predictor of how the network will
perform in MD, since the error is averaged over structures that do not generally
come up in MD.

FIGURE 5.12: The squared error of the scaled and unscaled data
sets are compared. The frequency of the unscaled data is normal-
ized to the number of examples for the scaled data i.e. the counts
for the unscaled data were doubled since there were 2000 modified

structures and 1000 original structures.

While the NNP predicts relatively well on the energies, there is low corre-
lation between predicted and true forces for the modified structures. In figure

Chapter 5. Bulk and 2D Materials 106

5.13, the predicted vs. true errors are plotted for the predictions of the forces on
the original structures and augmented structures separately. In the top figure,
we see that the network generally predicts the forces on the original structures.
In the bottom figure, we see that the forces are greatly over-predicted by the
network. If we look again at figure 5.10, we can see that the neural network fit
winds around the curve of true energies. Therefore, the derivative is constantly
changing direction. Since the derivative of the potential gives us the force, it
is not surprising that there is a low correlation between the predicted and true
energies for the modified graphene structures. Since MD simulations require
correct forces to integrate the equations of motion, the derivatives of neural
network potential must be accurate enough for MD. It is not sufficient to gener-
ally learn the energies i.e. predictions on augmented data will yield unphysical
forces.

Chapter 5. Bulk and 2D Materials 107

FIGURE 5.13: Force predictions by the neural network trained on
dataset B (augmented dataset). Top: Forces are predicted on orig-
inal structures. There is some correlation between predicted and
true energies. Bottom: Forces are predicted on the modified struc-
tures. There is very little correlation between predicted and true
values. This is expected as derivatives of the network potential

away from equilibrium are not learned by the network.

Chapter 5. Bulk and 2D Materials 108

In figure 5.13, we see that there is a correlation between predicted and true
forces for the predictions made on MD data using a network trained on dataset
B. With a pearson correlation coefficient of r = 0.77, we see that the predicted
and target forces are correlated, but not as strongly correlated as the energies
(pearson correlation coefficient of r = 0.99). Here we will compare the force
predictions two different neural network potentials for graphene. The neural
networks are either trained on the augmented dataset, or on MD structures only.
Both neural networks will make predictions on MD data only.

In figure 5.14, we see that the neural network trained on MD structures only
has a very strong correlation (r = 0.97) between predicted and target quantities.
This result indicates that the neural network potential is capable of making a
good prediction on the derivative of the potential energy surface. We note that
by training over a larger spread of energies, the force predictions may be less
accurate for the network trained on dataset B. In this case, the target function is
more complicated as it has to include regions of high nonlinearity. To improve
the force predictions by the neural network trained on dataset B, more training
examples may be required, and potentially an increase in network capacity.

Chapter 5. Bulk and 2D Materials 109

FIGURE 5.14: Force predictions by the neural network trained on
dataset B (augmented graphene dataset) compared to predictions
made by neural network trained on dataset A (MD graphene data).
Top: Forces predictions made by the potential trained on dataset
B. Bottom: Force predictions made by the potential trained on

dataset A.

Chapter 5. Bulk and 2D Materials 110

5.3 Comparing 2D materials

Comparing the loss curves of all 2D materials (Figure 5.15), graphene was found
to converge to the highest error, and hBN was found to converge the fastest to
the lowest error. To explore why graphene converged to a higher error than

FIGURE 5.15: Loss curves for all 2D materials (datasets are sam-
pled from MD trajectories). A network architecture of 70-10-10-1 is
optimized for hexagonal boron nitride and 2D silica using l-BFGS.
A network architecture of 26-10-10-1 is optimized for graphene us-

ing l-BFGS.

the other materials, we compare the cohesive energy scaling tests of previous
materials. To get a clearer idea of how much nonlinearity there is in each curve,
the rate of change of cohesive energy is taken with respect to scaling factor. In
figure 5.16, we see that the rate of change near the origin is the steepest for
graphene. By looking near the origin, we restrict our view to the part of the
curve which is most frequently sampled during MD. The steepness of the curve
around the origin indicates that there is more nonlinearity between the energies
and interatomic distances for graphene than for 2D silica or hexagonal boron
nitride. This interpretation, that the nonlinearity increases the difficulty of the
potential energy surface, is supported throughout this work.

Chapter 5. Bulk and 2D Materials 111

FIGURE 5.16: Top: Cohesive energy per atom as a function of
scaling for each 2D material. Bottom: The rate of change of co-
hesive energy per atom as a function of scaling factor for each 2D

material.

5.3.1 Chapter Summary

• Enforcing close encounters of atoms by maintaining a smaller box size (in-
creasing the pressure) increases nonlinearity between energies and atomic
coordinates.

• Training on a dataset that spans a larger range of energies may improve
general shape of the neural network predictions, however it may not suf-
ficiently learn the forces of augmented structures.

Chapter 5. Bulk and 2D Materials 112

• Temperature sampling alone may not result in as much structural change
for some materials compared to others (eg. hBN, cBN)

• Some materials have a more nonlinear potential energy surface compared
to others eg. diamond compared to graphene.

113

Chapter 6

Recommendations

We have looked at how sampling and data augmentation affects the quality of
the neural network fit and extrapolation capabilities. We have also explored
the added difficulty of learning more complex regions of the potential energy
surface. Here we will provide some general recommendations for generating a
neural network potential and discuss some suggestions for improving the qual-
ity of the model.

6.1 Sampling

The entirety of a high dimensional potential energy surface cannot be evalu-
ated. For this reason, we must identify the regions of configuration space that
are most important. To get the basic features of the potential energy surface,
one should implement temperature sampling near equilibrium. By thermally
distorting ideal structures, the ideal bond lengths and lattice constants can be
obtained. We know that the most frequently visited energy states occur around
the minima, so it is important that this be sufficiently represented in the training
data.

In this work, we sampled the canonical ensemble at various temperatures
using MD simulations. To avoid correlations in the training data, the MD trajec-
tories should be sampled using a sufficiently large window. To cheaply generate
structures using a large sampling window, force fields methods can be imple-
mented. A higher level calculation (eg. ab-initio, semi-empirical) can be per-
formed on a set of structures obtained using force fields simulations. Structures
can be added to the training set until the neural network potential converges
below the target error (we used a target error of 5 [meV/atom]). Note that it

Chapter 6. Recommendations 114

may not be sufficient to only look at how well the network makes predictions
on energies. The predictions of the network on forces will be a better indicator
of how well the neural network potential will perform in an MD simulation.

Once a neural network potential has achieved an acceptable error, it can be
used to generate new structures to add to the training data. If the network is fail-
ing to predict certain configurations, the target quantities can be computed to
correct the predictions made by the neural network. These new configurations
can then be provided as new examples in the training set. Since generating a
large reference dataset is expensive, this has the added benefit of being able to
cheaply evaluate the neural network potential to generate new configurations,
instead of implementing an MD simulation that evaluates a computationally
expensive potential.

6.1.1 Training the Network

Symmetry function parameters determine how sensitive the network will be
over corresponding distances. As suggested by Behler [11], the highest η value
for the radial symmetry functions should correspond to the shortest bond length
in the system and symmetry functions should span configuration space in an
unbiased way. Generally, as the number of basis functions increase, so does the
accuracy. Using a large number of basis functions, however, greatly increases
the computational cost.

Choosing the best network architecture for the reference data depends on the
complexity of the problem and varies between datasets. Choosing a network
architecture that is too small can result in a model that does not have enough
capacity to describe the problem. Increasing the number of hidden layers in
neurons may increase the capacity for a network to learn, but it also increases
the computational cost of training and evaluating the network. If the network
has too many parameters, there is also the risk of overfitting to the training data.
The optimal network architecture will balance having enough model capacity as
well as being compact enough to reduce the computational cost associated with
training and evaluating the network. Various architectures should be tested to
determine which architecture is optimal.

In this work, the l-BFGS optimizer was used as it consistently converged to

Chapter 6. Recommendations 115

a low error (almost independently of random seed) and did not require opti-
mization of the learning rate parameter. In general, the online gradient descent
method is the least computationally demanding of the methods. In this work
we found it to converge to the highest error compared to the other two optimiz-
ers available in ænet. Artrith et al. [3] found that the Levenberg-Marquardt
method tends to converge faster with respect to training iterations than the
l-BFGS method. It may be efficient for small datasets, but becomes compu-
tationally demanding for large datasets and network architectures due to the
inversion of the Hessian matrix. For this reason, the l-BFGS method (which ap-
proximates the Hessian matrix) is a good choice for large datasets or network
architectures. If using the online gradient descent method or the Levenberg-
Marquard method, learning rate parameter should be tested to achieve the low-
est possible error. The gradient descent and Levenberg-Marquardt methods
were also shown to have some sensitivity to random seeds. It would be useful
to run the optimization more than once to converge to the lowest possible error
when using these optimization schemes.

6.1.2 Extrapolation Capabilities

As discussed in Behler’s review on constructing high-dimensional neural net-
work potentials [12], since configuration space cannot be completely sampled,
failures of the neural network potential will not necessarily manifest in a high
testing error. If regions of configuration space are not represented in the refer-
ence data, we cannot adjust the model to be predictive there. This is a conse-
quence of the complexity of a high dimensional potential energy surface. The
dimensionality of the system is given by 3N-6 where N is the number of atoms
in the system (3 degrees of freedom for each atom minus the total translation
and rotation of the system). Thus, as the number of atoms increase, the more
complicated the function will be to model.

Behler addresses this using two different methods. In the first approach,
the minimum and maximum values of the symmetry functions used during
training define an interval upon which the network is likely to perform best.
When new structures are presented to the neural network and mapped onto
symmetry functions, the minimum and maximum values of these symmetry
functions can be compared to the interval upon which the network is likely

Chapter 6. Recommendations 116

to perform best. If the minimum and maximum symmetry function values lie
outside of the range of this interval, then a warning should be issued that the
neural network may not make an accurate prediction. The identified structures
can then be added to the training data to improve the applicability of the neural
network potential.

A second approach, suggested by Behler [12], is to identify unphysical struc-
tures using multiple neural network potentials. Here, multiple neural networks
are trained on the same training data. The only difference between the neural
network potentials are that they are trained on different architectures. The net-
works should be of comparable quality eg. the network should have enough
capacity to describe the fit. Once the networks are trained, they can be used in
MD to generate new configurations. The same simulation conditions should be
maintained to ensure that the results are comparable.

Once the configurations are obtained, each neural network should be used
to make predictions on all of the configurations. If all of the neural network po-
tentials make similar predictions of the target quantities on the configurations,
there is likely a sufficient amount of training data sampled from this region of
configuration space. If predictions are very different from one another, more
training data is required. These configurations can be added to the reference
dataset to improve the model.

To continue improving the extrapolation capabilities of the neural network
potential, data augmentation can be implemented. This can be achieved through
scaling coordinates and lattice vectors as discussed in chapter 5 or adding ran-
dom fluctuations to the coordinates, for example.

117

Chapter 7

Conclusions and Future Work

In this work we used feed-forward artificial neural networks to interpolate the
relationship between local structural environment and atomic energies for six
different materials (graphene, diamond, hexagonal boron nitride, cubic boron
nitride, 2D silica and bulk silica). We explored how various aspects of the
dataset i.e. sampling and baseline complexity of the potential energy surface
of the material contributes to the difficulty of the problem. When the training
set consists entirely of structures sampled from MD trajectories, we found that
the network performs very well (MAE∼0.5-1.0 [meV/atom] compared to a tar-
get error of 5 [meV/atom]). We found that this reference dataset was fit to the
same degree of accuracy by a linear regression model. Furthermore, it achieved
a faster rate of convergence. We then saw that while a network of linear activa-
tion functions is almost equivalent to a one layer RBF network, a large number
of basis functions are needed to approximate the potential energy surface for
regions that are highly nonlinear. Nonlinear activation functions, however, are
able to interpolate nonlinear mappings very well on an incomplete basis set.
This is especially important for network potentials that are designed for a sys-
tems of diverse composition, as the number of basis functions scale with the
number of atomic species. Even for a small number of neurons, we see that
tanh is able to effectively learn the general shape of the potential energy surface
(section 4.1.2).

We then found that augmentation of the dataset significantly increases the
complexity of the potential energy surface. Since high energy configurations
rarely occur during MD sampling around the minima, the potential energy sur-
face interpolated from a dataset containing only MD data will not have a high
degree of nonlinearity. It is therefore sufficient to use a network of linear acti-
vations to interpolate the potential energy surface. In order to generate a robust

Chapter 7. Conclusions and Future Work 118

potential, however, rare events must be explicitly accounted for. We saw that
on an augmented dataset (TiO2) the network using linear activation functions
had a much higher error (∼ 17.5 [meV/atom]) compared to the error from the
network using tanh activation functions (∼ 8.5 [meV/atom]). This indicates
that for more complex potential energy surfaces with a high degree of nonlin-
earity, there is a significant benefit to using a network of nonlinear activation
functions.

Following this analysis on activation functions and potential energy surface
complexity, the baseline complexity of the potential energy surface for each ma-
terial was tested. This was tested by computing the cohesive energy per atom
as a function of scaling factor used to compress or expand the system around
the equilibrium structure. Here we saw that sampling away from equilibrium
(2D silica) led to a more difficult potential energy surface for the network to
learn. Moving away from the energy minima results in more nonlinearity of the
potential energy surface curve. We then turned our attention to graphene and
diamond which both converged to higher errors than all other materials. Our
scaling experiments suggest that diamond has a highly nonlinear potential en-
ergy surface, and that graphene has the most nonlinear potential energy surface
compared to all other 2D materials.

We learned that the neural network trained on the augmented graphene
dataset was able to fit the curve of cohesive energy per atom with respect to
scaling factor quite well. It failed to make any meaningful predictions on the
forces of the augmented structures, although it predicted well on the MD struc-
tures. We also noted that while this network potential converged to a high MAE
overall, the errors of predictions made on structures obtained from MD were an
order of magnitude better than the errors of predictions made on structures that
were augmented.

Lastly, from the convergence of the error on the boron nitride networks, we
see that cubic boron nitride converges to a lower loss but predicts less well on
structures that are not close to the equilibrium configuration. This is likely the
result of less deviation from the equilibrium state as thermal energy is added to
the system than for hexagonal boron nitride.

Naturally, the next steps for this work would involve refining the neural net-
work potentials trained on an augmented dataset. To refine the potentials, as
suggested by Artrith et al [3], a preliminary neural network potential could be

Chapter 7. Conclusions and Future Work 119

used to generate structures drawn from molecular dynamics trajectories. These
trajectories can be used to run a higher level DFTB calculation and add struc-
tures into the dataset iteratively. Alternatively, configuration space could be
searched using a genetic algorithm as implemented by Artrith et al [4], as this
method has been shown to be competitive with the traditional ænet method but
uses significantly fewer training examples.

Ultimately, machine learned potentials are a promising approach for acceler-
ating materials simulations. Due to their flexible functional form, they can learn
complex high dimensional potential energy surfaces. Neural network poten-
tials can be as accurate as the underlying method which was used to generate
the reference data, but they are significantly cheaper to evaluate. This allows
us to do materials simulations at time scales and system sizes we previously
could not access (unless we made approximations and fit to reproduce specific
quantities), but at the same level of accuracy of a high level quantum mechanics
method.

120

Bibliography

[1] Balint Aradi, Ben Hourahine, and Th Frauenheim. “DFTB+, a sparse matrix-
based implementation of the DFTB method”. In: The Journal of Physical
Chemistry A 111.26 (2007), pp. 5678–5684.

[2] Nongnuch Artrith and Alexie M Kolpak. “Understanding the composi-
tion and activity of electrocatalytic nanoalloys in aqueous solvents: A
combination of DFT and accurate neural network potentials”. In: Nano
letters 14.5 (2014), pp. 2670–2676.

[3] Nongnuch Artrith and Alexander Urban. “An implementation of artifi-
cial neural-network potentials for atomistic materials simulations: Per-
formance for TiO2”. In: Computational Materials Science 114.Supplement
C (2016), pp. 135 –150. ISSN: 0927-0256. DOI: https://doi.org/10.1016/
j.commatsci.2015.11.047. URL: http://www.sciencedirect.com/
science/article/pii/S0927025615007806.

[4] Nongnuch Artrith, Alexander Urban, and Gerbrand Ceder. “Construct-
ing first-principles phase diagrams of amorphous LixSi using machine-
learning-assisted sampling with an evolutionary algorithm”. In: The Jour-
nal of Chemical Physics 148.24 (2018), p. 241711. DOI: 10.1063/1.5017661.
eprint: https://doi.org/10.1063/1.5017661. URL: https://doi.org/
10.1063/1.5017661.

[5] Nongnuch Artrith, Alexander Urban, and Gerbrand Ceder. “Efficient and
accurate machine-learning interpolation of atomic energies in composi-
tions with many species”. In: Phys. Rev. B 96 (1 2017), p. 014112. DOI:
10.1103/PhysRevB.96.014112. URL: https://link.aps.org/doi/
10.1103/PhysRevB.96.014112.

[6] Albert P Bartok, Risi Kondor, and Gabor Csanyi. “Publisher’s Note: On
representing chemical environments [Phys. Rev. B 87, 184115 (2013)]”. In:
Physical Review B 87.21 (2013), p. 219902.

http://dx.doi.org/https://doi.org/10.1016/j.commatsci.2015.11.047
http://dx.doi.org/https://doi.org/10.1016/j.commatsci.2015.11.047
http://www.sciencedirect.com/science/article/pii/S0927025615007806
http://www.sciencedirect.com/science/article/pii/S0927025615007806
http://dx.doi.org/10.1063/1.5017661
https://doi.org/10.1063/1.5017661
https://doi.org/10.1063/1.5017661
https://doi.org/10.1063/1.5017661
http://dx.doi.org/10.1103/PhysRevB.96.014112
https://link.aps.org/doi/10.1103/PhysRevB.96.014112
https://link.aps.org/doi/10.1103/PhysRevB.96.014112

BIBLIOGRAPHY 121

[7] Albert P Bartók et al. “Gaussian approximation potentials: The accuracy
of quantum mechanics, without the electrons”. In: Physical review letters
104.13 (2010), p. 136403.

[8] Axel D. Becke. “Density-functional thermochemistry. III. The role of exact
exchange”. In: The Journal of Chemical Physics 98.7 (1993), pp. 5648–5652.
DOI: 10.1063/1.464913. eprint: https://doi.org/10.1063/1.464913.
URL: https://doi.org/10.1063/1.464913.

[9] Jörg Behler. “Atom-centered symmetry functions for constructing high-
dimensional neural network potentials”. In: The Journal of chemical physics
134.7 (2011), p. 074106.

[10] Jörg Behler and Michele Parrinello. “Generalized neural-network repre-
sentation of high-dimensional potential-energy surfaces”. In: Physical re-
view letters 98.14 (2007), p. 146401.

[11] Jörg Behler. “Constructing high-dimensional neural network potentials:
A tutorial review”. In: International Journal of Quantum Chemistry 115.16
(2015), pp. 1032–1050. ISSN: 1097-461X. DOI: 10.1002/qua.24890. URL:
http://dx.doi.org/10.1002/qua.24890.

[12] Jörg Behler. “Perspective: Machine learning potentials for atomistic sim-
ulations”. In: The Journal of Chemical Physics 145.17 (2016), p. 170901. DOI:
10.1063/1.4966192. eprint: https://doi.org/10.1063/1.4966192. URL:
https://doi.org/10.1063/1.4966192.

[13] Torbjörn Björkman et al. “Defects in bilayer silica and graphene: common
trends in diverse hexagonal two-dimensional systems”. In: Scientific re-
ports 3 (2013), p. 3482.

[14] S Francis Boys. “Electronic wave functions-I. A general method of calcu-
lation for the stationary states of any molecular system”. In: Proc. R. Soc.
Lond. A 200.1063 (1950), pp. 542–554.

[15] David FR Brown, Mark N Gibbs, and David C Clary. “Combining ab ini-
tio computations, neural networks, and diffusion Monte Carlo: An effi-
cient method to treat weakly bound molecules”. In: The Journal of chemical
physics 105.17 (1996), pp. 7597–7604.

http://dx.doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
http://dx.doi.org/10.1002/qua.24890
http://dx.doi.org/10.1002/qua.24890
http://dx.doi.org/10.1063/1.4966192
https://doi.org/10.1063/1.4966192
https://doi.org/10.1063/1.4966192

BIBLIOGRAPHY 122

[16] Weiwei Cai et al. “Thermal transport in suspended and supported mono-
layer graphene grown by chemical vapor deposition”. In: Nano letters 10.5
(2010), pp. 1645–1651.

[17] Data camp. [Online; accessed June 27, 2018]. URL: https://www.datacamp.
com/community/tutorials/deep-learning-python.

[18] C. Crespos et al. “Multi-dimensional potential energy surface determi-
nation by modified Shepard interpolation for a molecule–surface reac-
tion: H2+Pt(111)”. In: Chemical Physics Letters 376.5 (2003), pp. 566 –575.
ISSN: 0009-2614. DOI: https : / / doi . org / 10 . 1016 / S0009 - 2614(03)
01033 - 9. URL: http : / / www . sciencedirect . com / science / article /
pii/S0009261403010339.

[19] Balázs Csanád Csáji. “Approximation with artificial neural networks”. In:
Faculty of Sciences, Etvs Lornd University, Hungary 24 (2001), p. 48.

[20] G. Cybenko. “Approximation by superpositions of a sigmoidal function”.
In: Mathematics of Control, Signals and Systems 2.4 (1989), pp. 303–314. ISSN:
1435-568X. DOI: 10.1007/BF02551274. URL: https://doi.org/10.1007/
BF02551274.

[21] Richard Dawes et al. “Interpolating moving least-squares methods for
fitting potential energy surfaces: A strategy for efficient automatic data
point placement in high dimensions”. In: The Journal of chemical physics
128.8 (2008), p. 084107.

[22] Richard Dawes et al. “Interpolating moving least-squares methods for
fitting potential energy surfaces: Computing high-density potential en-
ergy surface data from low-density ab initio data points”. In: The Journal
of chemical physics 126.18 (2007), p. 184108.

[23] M Elstner. “The SCC-DFTB method and its application to biological sys-
tems”. In: Theoretical Chemistry Accounts 116.1-3 (2006), pp. 316–325.

[24] Marcus Elstner and Gotthard Seifert. “Density functional tight binding”.
In: Phil. Trans. R. Soc. A 372.2011 (2014), p. 20120483.

[25] Marcus Elstner et al. “Self-consistent-charge density-functional tight-binding
method for simulations of complex materials properties”. In: Physical Re-
view B 58.11 (1998), p. 7260.

https://www.datacamp.com/community/tutorials/deep-learning-python
https://www.datacamp.com/community/tutorials/deep-learning-python
http://dx.doi.org/https://doi.org/10.1016/S0009-2614(03)01033-9
http://dx.doi.org/https://doi.org/10.1016/S0009-2614(03)01033-9
http://www.sciencedirect.com/science/article/pii/S0009261403010339
http://www.sciencedirect.com/science/article/pii/S0009261403010339
http://dx.doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274

BIBLIOGRAPHY 123

[26] Mazran Esro et al. “Structural and electrical characterization of SiO2 gate
dielectrics deposited from solutions at moderate temperatures in air”. In:
ACS applied materials & interfaces 9.1 (2016), pp. 529–536.

[27] Clement Faugeras et al. “Thermal conductivity of graphene in corbino
membrane geometry”. In: ACS nano 4.4 (2010), pp. 1889–1892.

[28] David Feller. “Benchmarks of improved complete basis set extrapolation
schemes designed for standard CCSD (T) atomization energies”. In: The
Journal of chemical physics 138.7 (2013), p. 074103.

[29] David Feller, Kirk A. Peterson, and J. Grant Hill. “Calibration study of the
CCSD(T)-F12a/b methods for C2 and small hydrocarbons”. In: The Journal
of Chemical Physics 133.18 (2010), p. 184102. DOI: 10.1063/1.3491809.
eprint: https://doi.org/10.1063/1.3491809. URL: https://doi.org/
10.1063/1.3491809.

[30] David Feller, Kirk A. Peterson, and J. Grant Hill. “On the effectiveness of
CCSD(T) complete basis set extrapolations for atomization energies”. In:
The Journal of Chemical Physics 135.4 (2011), p. 044102. DOI: 10.1063/1.
3613639. eprint: https://doi.org/10.1063/1.3613639. URL: https:
//doi.org/10.1063/1.3613639.

[31] Ken-Ichi Funahashi. “On the approximate realization of continuous map-
pings by neural networks”. In: Neural networks 2.3 (1989), pp. 183–192.

[32] Michael Gaus, Qiang Cui, and Marcus Elstner. “DFTB3: extension of the
self-consistent-charge density-functional tight-binding method (SCC-DFTB)”.
In: J. Chem. Theory Comput 7.4 (2011), pp. 931–948.

[33] Peter MW Gill. “Molecular integrals over Gaussian basis functions”. In:
Advances in quantum chemistry. Vol. 25. Elsevier, 1994, pp. 141–205.

[34] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of train-
ing deep feedforward neural networks”. In: Proceedings of the thirteenth
international conference on artificial intelligence and statistics. 2010, pp. 249–
256.

[35] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier
neural networks”. In: Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics. 2011, pp. 315–323.

http://dx.doi.org/10.1063/1.3491809
https://doi.org/10.1063/1.3491809
https://doi.org/10.1063/1.3491809
https://doi.org/10.1063/1.3491809
http://dx.doi.org/10.1063/1.3613639
http://dx.doi.org/10.1063/1.3613639
https://doi.org/10.1063/1.3613639
https://doi.org/10.1063/1.3613639
https://doi.org/10.1063/1.3613639

BIBLIOGRAPHY 124

[36] J. Grant Hill et al. “Extrapolating MP2 and CCSD explicitly correlated
correlation energies to the complete basis set limit with first and second
row correlation consistent basis sets”. In: The Journal of Chemical Physics
131.19 (2009), p. 194105. DOI: 10.1063/1.3265857. eprint: https://aip.
scitation.org/doi/pdf/10.1063/1.3265857. URL: https://aip.
scitation.org/doi/abs/10.1063/1.3265857.

[37] Pierre Hohenberg and Walter Kohn. “Inhomogeneous electron gas”. In:
Physical review 136.3B (1964), B864.

[38] William G Hoover. “Nonequilibrium molecular dynamics”. In: Annual
Review of Physical Chemistry 34.1 (1983), pp. 103–127.

[39] Josef Ischtwan and Michael A Collins. “Molecular potential energy sur-
faces by interpolation”. In: The Journal of chemical physics 100.11 (1994),
pp. 8080–8088.

[40] Josef Ischtwan and Michael A Collins. “Molecular potential energy sur-
faces by interpolation”. In: The Journal of chemical physics 100.11 (1994),
pp. 8080–8088.

[41] Masa Ishigami et al. “Atomic structure of graphene on SiO2”. In: Nano
letters 7.6 (2007), pp. 1643–1648.

[42] Anubhav Jain et al. “The Materials Project: A materials genome approach
to accelerating materials innovation”. In: APL Materials 1.1 (2013), p. 011002.
ISSN: 2166532X. DOI: 10.1063/1.4812323. URL: http://link.aip.org/
link/AMPADS/v1/i1/p011002/s1\&Agg=doi.

[43] Quasar Jarosz. [Online; accessed June 27, 2018]. URL: https://commons.
wikimedia.org/wiki/File:Neuron_Hand-tuned.svg.

[44] Christof Köhler et al. “Theoretical investigation of carbon defects and dif-
fusion in α-quartz”. In: Physical Review B 64.8 (2001), p. 085333.

[45] Walter Kohn and Lu Jeu Sham. “Self-consistent equations including ex-
change and correlation effects”. In: Physical review 140.4A (1965), A1133.

[46] Pekka Koskinen and Ville Mäkinen. “Density-functional tight-binding for
beginners”. In: Computational Materials Science 47.1 (2009), pp. 237–253.

[47] David C Langreth and MJ Mehl. “Beyond the local-density approximation
in calculations of ground-state electronic properties”. In: Physical Review
B 28.4 (1983), p. 1809.

http://dx.doi.org/10.1063/1.3265857
https://aip.scitation.org/doi/pdf/10.1063/1.3265857
https://aip.scitation.org/doi/pdf/10.1063/1.3265857
https://aip.scitation.org/doi/abs/10.1063/1.3265857
https://aip.scitation.org/doi/abs/10.1063/1.3265857
http://dx.doi.org/10.1063/1.4812323
http://link.aip.org/link/AMPADS/v1/i1/p011002/s1\&Agg=doi
http://link.aip.org/link/AMPADS/v1/i1/p011002/s1\&Agg=doi
https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg
https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg

BIBLIOGRAPHY 125

[48] Ask Hjorth Larsen et al. “The atomic simulation environment—a Python
library for working with atoms”. In: Journal of Physics: Condensed Matter
29.27 (2017), p. 273002. URL: http://stacks.iop.org/0953-8984/29/i=
27/a=273002.

[49] Yann LeCun et al. “Efficient backprop”. In: Neural networks: Tricks of the
trade. Springer, 1998, pp. 9–50.

[50] Yann LeCun et al. “Generalization and network design strategies”. In:
Connectionism in perspective (1989), pp. 143–155.

[51] Changgu Lee et al. “Measurement of the elastic properties and intrinsic
strength of monolayer graphene”. In: science 321.5887 (2008), pp. 385–388.

[52] Jae-Ung Lee et al. “Thermal conductivity of suspended pristine graphene
measured by Raman spectroscopy”. In: Physical Review B 83.8 (2011), p. 081419.

[53] Sönke Lorenz, Axel Groß, and Matthias Scheffler. “Representing high-
dimensional potential-energy surfaces for reactions at surfaces by neural
networks”. In: Chemical Physics Letters 395.4-6 (2004), pp. 210–215.

[54] Binit Lukose et al. “On the reticular construction concept of covalent or-
ganic frameworks”. In: Beilstein journal of nanotechnology 1 (2010), p. 60.

[55] Gia G Maisuradze et al. “Interpolating moving least-squares methods for
fitting potential energy surfaces: Detailed analysis of one-dimensional ap-
plications”. In: The Journal of chemical physics 119.19 (2003), pp. 10002–
10014.

[56] Andrei Malashevich, Sohrab Ismail-Beigi, and Eric I Altman. “Directing
the Structure of Two-Dimensional Silica and Silicates”. In: The Journal of
Physical Chemistry C 120.47 (2016), pp. 26770–26781.

[57] Hegoi Manzano et al. “Benchmark of ReaxFF force field for subcritical
and supercritical water”. In: The Journal of Chemical Physics 148.23 (2018),
p. 234503.

[58] Sergei Manzhos et al. “A nested molecule-independent neural network
approach for high-quality potential fits”. In: The Journal of Physical Chem-
istry A 110.16 (2006), pp. 5295–5304.

[59] Richard M Martin. Electronic structure: basic theory and practical methods.
Cambridge university press, 2004.

http://stacks.iop.org/0953-8984/29/i=27/a=273002
http://stacks.iop.org/0953-8984/29/i=27/a=273002

BIBLIOGRAPHY 126

[60] Hrushikesh Mhaskar, Qianli Liao, and Tomaso A Poggio. “When and why
are deep networks better than shallow ones?” In: AAAI. 2017, pp. 2343–
2349.

[61] Gaus Michael, Cui Qiang, and Elstner Marcus. “Density functional tight
binding: application to organic and biological molecules”. In: Wiley Inter-
disciplinary Reviews: Computational Molecular Science 4.1 (), pp. 49–61. DOI:
10.1002/wcms.1156. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/wcms.1156. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/wcms.1156.

[62] PB Mirkarimi, KF McCarty, and DL Medlin. “Review of advances in cu-
bic boron nitride film synthesis”. In: Materials Science and Engineering: R:
Reports 21.2 (1997), pp. 47–100.

[63] Hendrik J. Monkhorst and James D. Pack. “Special points for Brillouin-
zone integrations”. In: Phys. Rev. B 13 (12 1976), pp. 5188–5192. DOI: 10.
1103/PhysRevB.13.5188. URL: https://link.aps.org/doi/10.1103/
PhysRevB.13.5188.

[64] Grégoire Montavon and Klaus-Robert Müller. “Deep Boltzmann machines
and the centering trick”. In: Neural Networks: Tricks of the Trade. Springer,
2012, pp. 621–637.

[65] Robert S Mulliken. “Electronic population analysis on LCAO–MO molec-
ular wave functions. I”. In: The Journal of Chemical Physics 23.10 (1955),
pp. 1833–1840.

[66] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve re-
stricted boltzmann machines”. In: Proceedings of the 27th international con-
ference on machine learning (ICML-10). 2010, pp. 807–814.

[67] Kyoung Tai No et al. “Description of the potential energy surface of the
water dimer with an artificial neural network”. In: Chemical physics letters
271.1-3 (1997), pp. 152–156.

[68] Shyue Ping Ong et al. “Python Materials Genomics (pymatgen): A robust,
open-source python library for materials analysis”. In: Computational Ma-
terials Science 68 (Feb. 2013), pp. 314–319. ISSN: 09270256. DOI: 10.1016/
j.commatsci.2012.10.028. URL: http://linkinghub.elsevier.com/
retrieve/pii/S0927025612006295.

http://dx.doi.org/10.1002/wcms.1156
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1156
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1156
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1156
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1156
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
https://link.aps.org/doi/10.1103/PhysRevB.13.5188
https://link.aps.org/doi/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
http://linkinghub.elsevier.com/retrieve/pii/S0927025612006295
http://linkinghub.elsevier.com/retrieve/pii/S0927025612006295

BIBLIOGRAPHY 127

[69] Leo Paradis et al. Diamond heat sink. US Patent App. 10/114,601. 2003.

[70] Jooyoung Park and Irwin W Sandberg. “Universal approximation using
radial-basis-function networks”. In: Neural computation 3.2 (1991), pp. 246–
257.

[71] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. “Generalized Gra-
dient Approximation Made Simple”. In: Phys. Rev. Lett. 77 (18 1996), pp. 3865–
3868. DOI: 10.1103/PhysRevLett.77.3865. URL: https://link.aps.org/
doi/10.1103/PhysRevLett.77.3865.

[72] Dirk Porezag et al. “Construction of tight-binding-like potentials on the
basis of density-functional theory: Application to carbon”. In: Physical Re-
view B 51.19 (1995), p. 12947.

[73] Frederico V Prudente and JJ Soares Neto. “The fitting of potential energy
surfaces using neural networks. Application to the study of the photodis-
sociation processes”. In: Chemical physics letters 287.5-6 (1998), pp. 585–
589.

[74] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating errors”. In: nature 323.6088 (1986),
p. 533.

[75] Kevin Ryczko et al. “Convolutional neural networks for atomistic sys-
tems”. In: Computational Materials Science 149 (2018), pp. 134–142.

[76] Franco Scarselli and Ah Chung Tsoi. “Universal Approximation Using
Feedforward Neural Networks: A Survey of Some Existing Methods, and
Some New Results”. In: Neural Networks 11.1 (1998), pp. 15 –37. ISSN: 0893-
6080. DOI: https://doi.org/10.1016/S0893-6080(97)00097-X. URL:
http://www.sciencedirect.com/science/article/pii/S089360809700097X.

[77] Thomas P Senftle et al. “The ReaxFF reactive force-field: development, ap-
plications and future directions”. In: npj Computational Materials 2 (2016),
p. 15011.

[78] J. C. Slater. “Atomic Shielding Constants”. In: Phys. Rev. 36 (1 1930), pp. 57–
64. DOI: 10.1103/PhysRev.36.57. URL: https://link.aps.org/doi/10.
1103/PhysRev.36.57.

[79] Li Song et al. “Large scale growth and characterization of atomic hexago-
nal boron nitride layers”. In: Nano letters 10.8 (2010), pp. 3209–3215.

http://dx.doi.org/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
http://dx.doi.org/https://doi.org/10.1016/S0893-6080(97)00097-X
http://www.sciencedirect.com/science/article/pii/S089360809700097X
http://dx.doi.org/10.1103/PhysRev.36.57
https://link.aps.org/doi/10.1103/PhysRev.36.57
https://link.aps.org/doi/10.1103/PhysRev.36.57

BIBLIOGRAPHY 128

[80] Sho Sonoda and Noboru Murata. “Neural network with unbounded ac-
tivation functions is universal approximator”. In: Applied and Computa-
tional Harmonic Analysis 43.2 (2017), pp. 233 –268. ISSN: 1063-5203. DOI:
https://doi.org/10.1016/j.acha.2015.12.005. URL: http://www.
sciencedirect.com/science/article/pii/S1063520315001748.

[81] Bobby G Sumpter and Donald W Noid. “Potential energy surfaces for
macromolecules. a neural network technique”. In: Chemical physics letters
192.5-6 (1992), pp. 455–462.

[82] Jerry Tersoff. “New empirical approach for the structure and energy of
covalent systems”. In: Physical Review B 37.12 (1988), p. 6991.

[83] Laurence Vel, Gerard Demazeau, and Jean Etourneau. “Cubic boron ni-
tride: synthesis, physicochemical properties and applications”. In: Mate-
rials Science and Engineering: B 10.2 (1991), pp. 149–164.

[84] Jingang Wang et al. “Electrical properties and applications of graphene,
hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures”.
In: Materials Today Physics 2 (2017), pp. 6 –34. ISSN: 2542-5293. DOI: https:
/ / doi . org / 10 . 1016 / j . mtphys . 2017 . 07 . 001. URL: http : / / www .
sciencedirect.com/science/article/pii/S2542529317300597.

[85] Lanhua Wei et al. “Thermal conductivity of isotopically modified single
crystal diamond”. In: Physical Review Letters 70.24 (1993), p. 3764.

[86] Yongjie Zhan et al. “Large-area vapor-phase growth and characterization
of MoS2 atomic layers on a SiO2 substrate”. In: Small 8.7 (2012), pp. 966–
971.

[87] Guishan Zheng et al. “Implementation and benchmark tests of the DFTB
method and its application in the ONIOM method”. In: International Jour-
nal of Quantum Chemistry 109.9 (2009), pp. 1841–1854.

http://dx.doi.org/https://doi.org/10.1016/j.acha.2015.12.005
http://www.sciencedirect.com/science/article/pii/S1063520315001748
http://www.sciencedirect.com/science/article/pii/S1063520315001748
http://dx.doi.org/https://doi.org/10.1016/j.mtphys.2017.07.001
http://dx.doi.org/https://doi.org/10.1016/j.mtphys.2017.07.001
http://www.sciencedirect.com/science/article/pii/S2542529317300597
http://www.sciencedirect.com/science/article/pii/S2542529317300597

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Review of Literature
	Interpolating the Potential Energy Surface
	Materials
	2D Silica and Bulk Silica
	Graphene and Diamond
	Hexagonal Boron Nitride and Cubic Boron Nitride
	Experiments

	Background
	Atomistic Simulations
	Density Functional Theory
	The Kohn-Sham Ansatz
	Solving the Kohn-Sham Equations
	Basis Sets
	Self-Consistency Scheme

	Density Functional Tight Binding (DFTB+)
	Energy from charge fluctuations
	Energy from repulsive interactions
	Band structure energy
	pseudo-atoms
	Parameter Sets
	Implementation Details for DFT and DFTB
	K-Point Sampling

	Running Molecular Dynamics

	Machine Learning Basics
	Feed-forward Artificial Neural Networks
	Backpropagation
	Online vs. Batch Training Methods
	Optimization Methods
	Model Validation
	Machine Learning in Atomistic Simulations
	Behler-Parinello Symmetry Basis Functions
	Atomic Energy Network (ænet)

	Methods
	Data generation
	2D and 3D systems
	TiO2
	Run Summary

	Workflow
	Performance Metrics
	Loss Curves
	Predicted vs. True
	Pearson Correlation Coefficient
	Squared Error

	Convergence Studies
	Cutoff Radius
	Training Set Size
	Time Between Snapshots
	Optimizers and Sensitivity to Random Seeds

	Network Activations
	2D Silica
	Performance of Activations Available in ænet
	Toy model: Pair potential H2
	Performance for Linear and Tanh Networks with respect to Number of Radial Basis Functions
	RBF Sensitivity to Parameters
	NN Capacity Required to Learn NNPs

	Graphene
	Role of Angular Basis Functions
	Sampling and Data Augmentation

	Titanium Dioxide (TiO2)
	Data Augmentation

	Bulk and 2D Materials
	Materials
	2D Silica and Bulk SiO2
	High pressure MD sampling

	hBN and cBN
	Graphene and Diamond

	Impact of data augmentation
	Augmented dataset performance

	Comparing 2D materials
	Chapter Summary

	Recommendations
	Sampling
	Training the Network
	Extrapolation Capabilities

	Conclusions and Future Work
	Bibliography

