
Building an On-Ball Screen Dataset Using
Supervised and Unsupervised Learning

by

Neil Seward

A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Applied Science

in

Electrical and Computer Engineering

University of Ontario Institute of Technology

Supervisor: Dr. Masoud Makrehchi

September 2018

Copyright c© Neil Seward, 2018

Abstract

Applications of statistics and machine learning in sports analytics have made signif-

icant advances since the early days of Bill James’ publication, Baseball Analyst. In

the publication, analysts and researchers would investigate matters such as how often

a batter would reach first base to determine which players were the most optimal to

acquire. This type of data that recorded when players reached bases was relatively

simple and cheap to acquire. Over time, more complex data became available to

different professional sporting leagues.

In the National Basketball Association(NBA), cameras were installed in arenas

to track player and ball movements. Movement tracking data enabled analysts and

researchers to explore locations of players during in-game events, instead of providing

insights from box score summaries and play-by-play data. The new tracking data has

enabled teams to create insights from focus points that teams find valuable, such as

on-ball screens. Important, detailed annotations like on-ball screens are not recorded

in standard data sets. In order to capture the time stamps of the different events that

are not recorded in standard data, teams have to employ analysts to record these time

stamps and provide additional labels to the data.

As available performance data expanded, the scientific methods and tools used

to analyze the data expanded as well. Recent advances in machine learning have

shown different applications of neural network layers to be able to create abstract

i

information from large and complex data sets. With the advance in applications of

neural networks, several complex problems in sports analytics have been approached

with this new technology.

We propose using unsupervised learning methods to create detailed labels of iden-

tified on-ball screen instances. To create the initial set of on-ball screen instances and

to assist in proposing new instances, we use convolutional neural networks to classify

positive and negative screens. Once our model is trained, we develop a framework to

propose new annotation times to expand the data set, at the same time minimizing

the amount of time for analysts to view game footage when verifying new screens.

Using the established set of screens, we use several unsupervised learning methods to

provide additional details to the screens identified. The new detailed labels provide

additional insight into the screens identified as well establishing a framework to elim-

inate the costly process of creating multi-labelled instance of on-ball screens using

human annotations.

ii

Acknowledgements

I would first like to thank my supervisor, Dr. Masoud Makrechi. He has great

patience and gave me the freedom I needed in my studies to approach topics, such as

sports analytics, that may not be a common area of research in the lab. I would like

to extend my gratitude to the Social Computing and Collective Intelligence Lab at

UOIT for all of the help you have provided me, feedback given on my work, and the

friendships I have developed.

I would also like to acknowledge Jackson Wang at the University of Toronto, who

was a great mentor to me and helped guide me through a lot of the initial work that

served as the basis for this thesis. Talking with him about different sports analytics

papers was a real treat as it is rare to find researchers in this specific field. I would

like to thank Keith Boyarsky as well for providing insight from an organizational

standpoint on what professional sports teams look for in academic research.

iii

Contents

Abstract i

Acknowledgements iii

Contents iv

List of Figures vi

List of Tables vii

Abbreviations viii

1 Introduction 1
1.1 Introduction to Basketball . 1

1.1.1 Basketball Glossary . 2
1.2 Motivation . 3

1.2.1 Player Tracking Data . 4
1.3 Problem Description . 4
1.4 Proposed Solution . 6
1.5 Contributions . 7
1.6 Organization of Thesis . 9

2 Background 10
2.1 Neural Network Architectures . 10

2.1.1 Feed Forward Neural Networks 10
2.1.2 Convolutional Neural Networks 12
2.1.3 Sequence to Sequence Learning 13

2.2 Topic Modelling . 15
2.2.1 Latent Dirichlet Allocation . 16

2.3 Embedding and Clustering Methods 17
2.3.1 T-Distributed Stochastic Neighbour Embedding 17
2.3.2 K-Means Clustering . 17

iv

3 Related Work 19
3.1 Predicting Shots Using Spatiotemporal Features 19
3.2 Predicting Trajectories Using Recurrent Networks 20
3.3 Identifying On-Ball Screen Annotations 20
3.4 Classifying Player Actions . 21
3.5 Trajectory Cluster Identification . 21
3.6 Topic Modelling in Basketball . 22

4 On-Ball Screen Classification and Proposals Using Convolutional
Neural Networks 23
4.1 Obtaining On-Ball Screen Annotations 23
4.2 Data . 24
4.3 Model . 24
4.4 Classification . 26

4.4.1 Role Identification . 27
4.5 Detection . 30

4.5.1 Non Max Suppression . 30
4.5.2 Proposal Run-Time Comparison 35

5 Unsupervised Learning Methods for Labelling On-Ball Screen
Annotations 37
5.1 Feature Extraction . 37

5.1.1 Behaviour Learning from Trajectories 37
5.2 Methodology . 43

5.2.1 Trajectory2Vec Model . 43
5.2.2 Action Identification Using Clustering 43
5.2.3 Building Documents from Actions 45

5.3 Modelling Topics from Screen Documents 47
5.3.1 Creating a Baseline Model From Players in Screen 47

6 Conclusions and Future Works 49
6.1 Conclusions . 49

6.1.1 Preparing a Data Set for Binary Classification 49
6.1.2 Proposing New Annotations Using Detection 50
6.1.3 Creating Multi-Class Labels For Annotations Using Topic Mod-

elling . 51
6.2 Limitations . 51
6.3 Future Works . 52

6.3.1 Expanding Screen Classification Data Set 52
6.3.2 Comparing Detection Algorithms 52
6.3.3 Neural Inference Models . 53

Bibliography 54

v

List of Figures

1.1 Box Score Sample [1] . 3
1.2 Play By Play Descriptions [1] . 3
1.3 SportVU Movement Data . 4
1.4 Movement Plot Legend . 5
1.5 On-Ball Screen Approach and Execution 5
1.6 On-Ball Screen Defensive Schemes . 6

2.1 Sample Neuron . 11
2.2 Feed Forward Neural Network . 12
2.3 Convolutional Network Architecture 13
2.4 Recurrent Neural Network Architecture 14
2.5 Seq2Seq Architecture . 15
2.6 Topic Distribution over Document . 16

4.1 Example On-Ball Screen Action Inputs 24
4.2 Architecture of Convolutional Network 25
4.3 Roles Extracted From Approach . 29
4.4 Non Max Suppression of Output Probabilities 33
4.5 Detection Precision and Recall Curve 35

5.1 Movement Behaviour Attributes . 38
5.2 Pair Wise Distances for Approach . 40
5.3 Pair Wise Distances for Execution . 40
5.4 Sliding Window Behavioural Feature Extraction 41
5.5 Actions Identified from Behavioural Clustering 45
5.6 Pairwise Action Document . 46
5.7 Actions Present in Approach and Execution 47

vi

List of Tables

4.1 Wiens Features for Screens . 27
4.2 Screen Role Determination . 28
4.3 On-Ball Screen Classification Results 29
4.4 On-Ball Screen Detection Results . 34

5.1 Behavioural and Domain Feature Input 42
5.2 Topic Modelling Results . 48

vii

Abbreviations

LDA Latent Dirichllet Allocation.

NBA National Basketball Association.

NMF Non-Negative Matrix Factorization.

PCA Principle Component Analysis.

ReLU Rectified Linear Unit.

RNN recurrent neural network.

seq2seq Sequence to Sequence.

viii

Chapter 1

Introduction

1.1 Introduction to Basketball

In basketball, two teams play against each other over a period of four quarters, each

quarter containing twelve minutes of action. At any time, the court contains five

players from one team and five from the other team. In order for a team to win against

their opponent, their offense must score as much as possible, as well as limiting their

opponent’s offense to less points than what they scored. In basketball, teams score

when they successfully shoot the basketball into the net before the shot clock expires.

Each basket scored can count for two or three points, depending on where the shot

was taken on the court.

Basketball is a sport that provides continuous evaluation throughout a game,

where almost all decisions in the sport can be evaluated to whether the decision

contributed to a successful shot taken. Basketball’s evaluation method is very unique

compared to other sports. In hockey, teams do not score as often as in basketball,

sometimes not even scoring once in a single game. Without a high scoring game, it

becomes relatively difficult to attribute players’ actions to a valuable metric. Although

1

baseball teams do not score as frequently as basketball, baseball is the only other team

based sport that discrete evaluations are valuable. Player actions in baseball always

result in positive and negative actions, where each action can be attributed to a ball,

strike, out, taking base, or scoring a run. For analysts in baseball and basketball,

overall game summaries (also known as box-scores) and game logs (also known as

play-by-play) have been the main source of data for research now for decades. For

basketball, these summaries would contain numerous descriptions of common events

in the game, such as baskets scored, assists, etc.

1.1.1 Basketball Glossary

• Shot: offensive scoring attempt when a player forces the ball to leave his hands

and towards that basket

• Pass: offensive player in possession of the ball throws the ball to another player

on offense

• Possession: a 24 second period of time where one team is tasked with scoring

and the other team is tasked with defending

• Play: a team on offense makes a series of consecutive moves and passes among

players in order to get an effective shot during a possession

• Guard: player on defense designates a player to prevent scoring or any other

success on the offensive end by preventing passes, shot, etc.

• Screen: an offensive tactic used to free an offensive player of the defensive

player that is guarding them

2

1.2 Motivation

Although detailed, game summaries in basketball are limited to conventional events.

These box scores, seen in Figure 1.1, and play-by-play summaries, as portrayed in

Figure 1.2, do not contain information on offensive or defensive play information.

For some teams, these specific annotations are extremely valuable when evaluating

player performance and observing play execution. In order for teams to get annotation

information beyond the standard game summaries and play-by-play information, they

employ analysts to create human labels. For this task, analysts would spend an entire

game with their notebook, writing down when a specific action occurs and the players

specifically involved in the action. Because there is so much to record in such a short

period of time, analysts can miss actions, or make mistakes when identifying players

involved in actions.

Figure 1.1: Box Score Sample [1]

Figure 1.2: Play By Play Descriptions [1]

3

1.2.1 Player Tracking Data

Our work utilizes the publicly available SportVU tracking data from the 2015-16

NBA season [28], [27]. This tracking data contains the X,Y positions of ten players,

and the X,Y,Z positions of the ball. The data is recorded for the entire game at 25

frames/second. An example of the player tracking data can be seen in Figure 1.3. To

visualize the movement of the player over time, a fading effect from light to dark is

added to represent the start time to end time.

Figure 1.3: SportVU Movement Data

1.3 Problem Description

Regarding the research presented, the specific action we want to provide additional

context for is the on-ball screen. On-ball screen actions are a specific offensive strategy

in basketball that involves using a stationary player offensive player that is not in

possession of the ball as a wedge to free the ball-handling player of the defender

guarding them. In the on-ball screen actions, there are two main acts: the approach

of the players to the screen, seen in Figure 1.5a, and the execution after the screen

was utilized, seen in Figure 1.5b. There are instances of screens where the screen

4

D Defense O Offense Ball Movement Stopping

Figure 1.4: Movement Plot Legend

O

O

D

(a) Approach

O O

D

(b) Execution

Figure 1.5: On-Ball Screen Approach and Execution

is set for players without possession of the ball, otherwise known as off-ball. Our

research specifically is focused on identifying on-ball screens and not off-ball screens.

In Figure 1.4, the ball handler belongs to the offense, O, and is in possession of

the ball. The player defending the ball handler belongs to the defense, D. The player

that sets the screen to impede the on-ball defender is part of the offense. For this

specific instance of an on-ball screen, the on-ball defender follows the ball-handler

through the screen, but travels under the player setting the screen instead of moving

over the screen. Because the on-ball defender moves under the screen, the specific

defensive label for this instance would be an under.

Not every action sequence for a screen is executed on defense in the same fashion.

There is no defined number of different types of on-ball screens in basketball, but

one can define a set of screen outcomes for classification purposes. In Wiens et al.,

they define four distinct types of on-ball screens for defensive execution schemes: the

on-ball defender goes under the screen, the on-ball defender goes over the screen, the

on-ball defender switches with the screen defender, and the on-ball defender and the

5

O O

D

D

(a) Under

O O

D

D

(b) Over

O O

D

D

(c) Switch

O O

D

D

(d) Trap

Figure 1.6: On-Ball Screen Defensive Schemes

screen defender trap the ball handler [31]. The four defensive execution schemes can

bee seen in Figure 1.6.

1.4 Proposed Solution

One of the initial goals of this research was to create a standard data set for on ball

screens utilizing available movement data. By outlining these specific actions, we can

use these on-ball screen actions to continue this research to provide additional labels

for defensive execution schemes. By starting with an initial ground truth set, we are

able to develop a classifier using convolutional networks to observe raw games outside

of the training set to detect new screen actions in unseen games. Using detection on

the raw probability outputs from unseen games, we can propose screen annotations,

minimizing the time needed to label screen annotations from new games.

6

Our work focuses on finding the true labels behind on-ball screen actions. We

provide a methodology for analysts to create a set of defined on-ball screen actions.

Our research showcases an unsupervised learning application to create additional

labels for identified on-ball screen annotations. In this work, we show that behavioural

and domain specific feature representation can act as input in sequential learning

methods. The encoded state that is learned from feature representations of trajectory

sequences can be used as a vector representation of a player’s action during an on-ball

screen. We represent these actions as words in an on-ball screen vocabulary and create

relative text documents for a screen. Once we create a data set of text documents and

a corresponding vocabulary for on-ball screens, we use topic modelling techniques to

identify additional labels that we can provide to identified on-ball screen actions.

1.5 Contributions

• In order to create the framework for proposing new screen annotations, we train

convolutional neural networks on a ground truth set of human annotations.

Although this is not the first application of machine learning models for the

task of binary classification of on-ball screens, the research presented the first

known use of deep learning models when classifying these actions. The trained

classifier obtains a validation accuracy of 91%.

• On top of building a classifier, we describe our approach to proposing new

annotations in unseen games. Using non-max suppression to smooth raw out-

put from the trained model, our framework creates precise predictions of when

on-ball screens occur in games outside the ground truth set. When detection

new annotations, our approach obtains a recall of 90% and a precision of 40%.

Because our approach creates input without any prepossessing to identify do-

7

main specific features, the annotation proposals can be made in a much shorter

amount of time.

• Once we have created a base set of on-ball screen annotations, our framework

enables analysts to create additional labels for the four defensive schemes pro-

vided in Figure 1.6. We apply unsupervised learning methods to enable basket-

ball teams to create detailed on-ball screen annotations using standard SportVU

tracking data.

• Using a set of identified on-ball screens, our framework draws from different

topic modelling techniques used in text processing to identify ”topics” or specific

types of executions on both offense and defense for on-ball screens. In our

research, we represent an on-ball screen as a text document. The trajectories

of each of the players involved in the screen annotations are represented within

a vocabulary set of actions. We use unsupervised learning techniques similar to

Neural Machine Translation learning to identify actions in player trajectories.

As input to the model that identifies actions from player trajectories, we use

a combination of behavioural and domain specific features in a sequence to

describe a player’s movement.

• Once a vocabulary of screen actions is set for the approach and the execution,

we combine actions at each phase of the screen to form pairwise ”words” to use

for topic modelling. Using the contextual vocabulary, we form text documents

of each screen annotation as input to a Latent Dirichlet Allocation(LDA) model.

As output from the LDA model, each of the screen annotations is assigned to

one of four topics, representing the defensive execution scheme of the screen.

Using LDA to provide class outputs, we achieve an average precision of 37%

and an average recall of 35% on all four classes.

8

1.6 Organization of Thesis

The thesis proceeds as follows. In Chapter 2, background is presented to the differ-

ent neural network architectures used. In Chapter 3 overviews of related research in

machine learning applications in sports analytics are given. In Chapter 4, we provide

the framework used to create an on-ball screen classifier and detection system using

convolutional neural networks. In Chapter 5, we further explore the ground truth

annotations using sequence to sequence models and topic modelling, and create ad-

ditional labels that depict the defensive execution scheme of the screens. In Chapter

6, the research presented in this thesis is concluded and future works are outlined.

9

Chapter 2

Background

2.1 Neural Network Architectures

Specifically in this thesis, the models used at the core of the work contributed involve

different variants of neural networks. Neural networks has seen success in predicting

simple game outcomes and tournament champions in sports analytics research [17],

[6], [30]. Applications of complex neural networks using movement tracking data is

relatively infant, where the bulk of the research using this data has been done since

2016 [39], [18].

2.1.1 Feed Forward Neural Networks

Neural networks are systems of neurons and neuron connections that are tuned

through gradient descent optimization as machine learning models [10]. The op-

erations of these networks can be explained as functions of a brain, where signals

coming from a neuron in the brain depend on previous signals from other neurons as

input. In neural networks, the neurons are different than the human brain.

In neural networks, input to neurons are a product of the previous neurons’ out-

10

+ b∑
i

wixi

Neuron

w2
x2

w1x1

w
0 x

0

f (+ b)∑
i

wixi

Activation

Figure 2.1: Sample Neuron

puts and the corresponding weights for these neurons. The neuron produces a single

output as a product of an activation function on the neuron inputs. A sample neuron,

along with the weighted input and activated output, can be observed in Figure 2.1.

In the different architectures applied throughout the research, the activation that is

commonly used in different architectures is the Rectified Linear Unit activation func-

tion(ReLU) [12]. Depending on the network, we also apply a dropout regularization

method to prevent over fitting [15].

In feed forward networks, the overall structure beyond the internal of the neuron

is relatively simple. These networks have a raw input layer and a single output

layer for the prediction task at hand. In between the input and output layers in the

network are hidden layers. These hidden layers can be of higher dimensional than the

input layers, but can also compress the input by using less neurons than the input

layer, depending on the purpose of the prediction task [20], [13]. A representation

of a three-layer feed forward network can be seen in Figure 2.2. The output layers

produce inputs for gradient descent optimization, which is used to tune the weights

of the hidden layers through backpropagation [10].

11

Hidden Hidden

Output

Input

Figure 2.2: Feed Forward Neural Network

2.1.2 Convolutional Neural Networks

Convolutional networks are an advanced form of neural networks that perform espe-

cially well with images. The components in a convolutional network layer are similar

to a hidden feed forward layer. Both contain contain weights and biases that are

tuned, but where feed forward layers are comprised of a single row of neurons, con-

volutional layers have three dimensions of neurons [22]. Because of the shape of the

convolutional layer, these networks have the capability to handle much larger data

inputs, such as image data. A sample architecture of a convolutional neural network

is portrayed in Figure 2.3.

An additional feature of a convolutional layer is the operations of filtering and

pooling. Convolution filters produce different levels of abstraction from the input as

a product of kernel-sized filter matrix multiplication. As the network become deeper

with more layers of convolution filters, higher levels abstraction can be extracted.

Max-pooling layers summarize subsections of the outputs produced by filters, by

selecting the maximum output from matrix multiplication, subject to kernel size and

stride size [22].

12

Filter Pool Flatten

Convolution Layer

Max Pooling Layer

Fully Connected Layer

Figure 2.3: Convolutional Network Architecture

2.1.3 Sequence to Sequence Learning

Sequence to Sequence(seq2seq) learning is an applied form of deep learning that uses

recurrent neural network(RNN) layers to process sequential data. A key building

block in seq2seq models is the recurrent layer. Recurrent neural networks are neural

networks where the neurons in the layers have the ability to ”remember” hidden

information and utilize memory for future predictions [9]. The use of hidden units in

RNN prediction can be defined as

ht = f(Wtxt + Ut−1ht−1 + bt) (2.1)

Where the hidden (ht) unit at time t consists of a non-linear activation function

f , such as ReLU [12] that receives input from xt and the previous hidden unit ht−1.

The previous hidden unit at time t− 1 is amplified by the hidden weights U and the

input at time t is amplified by the weight matrix W . An illustration of a recurrent

layer is depicted in Figure 2.4.

13

x1 x2 xT...

h1 h2 hT
...

RNN

y1 y2 yT...

W1 W2 WT

U1

Figure 2.4: Recurrent Neural Network Architecture

In the past, seq2seq learning has been used in language translation tasks where

an input of a sentence from one language is given and the model is trained to produce

the same sentence, but translated to a target language [2], [38]. The sequence input is

fed into an encoder network, consisting of a RNN layer. As the input is fed through,

the encoder provides a single encoded state. The encoded state serves as input, along

with additional decoding input to a decoder network. The decoder network consists

of an additional recurrent network layer that produces a target sequence from the

encoded state and the decoder input. In Figure 2.5, the encoder receives an input

{x1, x2, ...xt} and produces an encoded state z. The decoder receives the encoded state

z as the initial hidden state as well as separate input {y1, y2, ...yt−1}, which produces

an output sequence {y1, y2, ...yt}. After the decoded output is produced, it can be

compared to the target sequence to calculate the reconstruction loss. For sequence to

sequence learning, the goal is always to produce a decoded sequence that is as close

to the target sequence as possible by minimizing the loss from reconstruction. To do

this, the reconstruction loss can be defined as

Loss =
n∑
t=1

‖yt − ŷt‖2 (2.2)

Where yt is the decoded output at time t, ŷt is the target output at time t. A

14

depiction of the encoder and decoder network layers in a seq2seq architecture can be

observed in Figure 2.5.

x1 x2 x3 xT...

z...

Encoder

x1 x2 xT−1...

z
...

Decoder

y1 y2 y3 yT...

Figure 2.5: Seq2Seq Architecture

2.2 Topic Modelling

Topic modelling is an unsupervised learning method most commonly associated with

text processing. In text processing, topic modelling is applied to find hidden meanings

behind bodies of text by placing documents into categories, or ”topics”. These doc-

uments are assigned into topics entirely based on their underlying content; how that

content relates to all possible topics, and how each item in the document’s content

relates to the topics.

For understanding, we define the following terms [5]:

• A word is the one-hot encoded representation of an element in a vocabulary

set, denoted by {1, ..., V }, where the V th word in the vocabulary is denoted by

wv = 1 and wu = 0 for all u 6= v.

• A document is a collection of N words denoted by w = {w1, ..., wN}.

• A corpus is a collection of M documents denoted by C = {d1, ..., dM}.

15

2.2.1 Latent Dirichlet Allocation

Latent Dirichllet Allocation(LDA), is a latent variable model, similar to Non-Negative

Matrix Factorization(NMF) [25], and Principle Component Analysis(PCA) [8]. LDA

can be applied to a corpus of sports articles to find words related to different sports

like basketball(”dunk”, ”alley-oop”, ”three-point”), hockey(”icing”, ”puck”), volley-

ball(”spike”, ”serve”), etc.

In LDA, each document has a probability distribution for k different topics, θd [5].

From the document d, each word in the document has its own probability distribution

inferred for topics {1, ..., T}, zdn . From the topic distribution zdn , words can be

inferred. A depiction of the topic distributions for a text document can be seen in

Figure 2.6, where the input to the LDA model is the Bag-of-Words representation of

the vocabulary within the document.

Raptors Win Game 7
In a stunning finish last night, the Raptors won their
playoff series against the Cavs. Closing out the fourth
quarter with a game-winning three-point shot, Kyle
Lowry secured the team's advance to the Finals. The
Cavs got into the penalty early, with Lebron getting
four fouls in the last quarter, he was benched during
clutch time.

Basketball Hockey

Basketball

- three-point: 0.098
- quarter: 0.0061
- foul: 0.0073
- dunk: 0.098

Hockey

- slap-shot: 0.098
- shot: 0.0053
- penalty: 0.0057
- puck: 0.095

Hockey

- benched: 0.0061
- shot: 0.098

Figure 2.6: Topic Distribution over Document

16

2.3 Embedding and Clustering Methods

2.3.1 T-Distributed Stochastic Neighbour Embedding

Embedding is the process of representing high dimensional data in a low dimensional

space. This practise is often done to reduce high dimensional data, like images, into

vector sizes that can be easily used in clustering for further interpretation. A popular

form of embedding in machine learning research is T-Distributed Stochastic Neigh-

bour Embedding(t-SNE), [14]. In the high dimsensional representation, t-SNE models

similarity between points as join probability distributions. When t-SNE is applied

to high dimensional data, the model minimizes the KL-Divergence in the probability

distributions of the high dimensional data and the low dimension embeddings. As

the model is optimized, similar points in high dimension space are pushed closer to-

gether in the embedded space, while dissimilar points are pushed farther apart in the

embedded space. [23].

Because t-SNE does not maintain distances between points on separate embed-

ding runs [14], many have cautioned against using the embedded results as input for

clustering algorithms. Although t-SNE is known not to be reliable for clustering,

it has shown promise when embedding SportVU movement data and other features

that can be used to assign clusters in sports data for further analysis, including in

trajectory analysis [40], [33].

2.3.2 K-Means Clustering

K-Means is a clustering analysis tool that aims to assign n data points to a pre-

determined k clusters [29]. Each of the points is assigned to a cluster based on how

close the point is to the means each of the clusters. The cluster which has the smallest

distance to its mean is assigned to its population. Once all of the data points are

17

assigned to clusters, the means of each cluster population is recalculated. With the

new means, the data points are re-assigned based on the new distances to each mean.

The entire process of assigning to cluster populations and re-calculating means is

repeated until there is convergence among the assignment of points to cluster centers.

18

Chapter 3

Related Work

3.1 Predicting Shots Using Spatiotemporal Fea-

tures

One of the most researched areas in sports analytics has been predicting shot success.

Predicting whether a scoring attempt is successful is key for team management and

analysts when evaluating player and team performance. With a strong prediction

model, teams have the ability to determine the value behind decisions made by players

before attempts are made [7].

There has been several different models produced that approach the problem of

shot prediction using movement tracking data. In the realm of soccer, Lucey et

al. found that including descriptions of the offensive play(free-kick, counter-attack)

and other contextual information produced a robust logistic regression model [7].

For basketball, Harmon et al. found that channel information can be used to portray

player information in an image representation of a possession as input to a convolution

network prediction model [11].

19

3.2 Predicting Trajectories Using Recurrent Net-

works

With the introduction of complex deep learning frameworks came more complex prob-

lems in sports analytics. Predicting trajectories in sports has been shown to have

many different applications, including determining optimal defense positioning [24].

Using a combination of recurrent network layers, Zheng et al. were able to create a

model that predicts player trajectories in basketball through a combination of macro

and micro goals [42]. Using recurrent models presented originally in handwriting gen-

eration, Shah et al. used predictions of the basketball trajectory to predict whether

a shot was successful [37].

3.3 Identifying On-Ball Screen Annotations

Previously [32], [18], there has been work to show how accurate machine learning

models can be used to propose event annotations. In the work presented by Wiens

et al. [32], annotation times are proposed using a set of logic rules surrounding

stationary ball and player movement. Not all of the proposals are actually on-ball

screens, but contain movement that satisfies the logic. Once the proposals are made,

human annotations are created from the proposals that creates positive and negative

labels from the proposals. For the classification task of whether a proposal is positive

or negative, features are extracted. These features involve pairwise distances that

involve the ball, as well four as roles identified for players involved in the screen

action.

Once the proposals are made, summary pairwise distance features are extracted

for the screen roles for both their approach and execution after the screen was set.

20

Each feature is binarized into five bins. Using a support vector machine model, they

are able to identify both positive and negative screens.

3.4 Classifying Player Actions

One of the first applications of neural networks using tracking data has been iden-

tifying plays and offensive strategy, [39], [35], [36]. In work presented by Wang and

Zemel, they were given a set of offensive plays to classify using convolutional networks

[39]. As part of the input to the network, a pictorial representation was given utilizing

different coloured channels to represent different roles between the offense, defense,

and the ball. The roles represented in the image went far beyond just three categories

of offense, defense, and ball and were formed to represent player position on offense

(point guard, shooting guard, etc). The roles were formed from an auto-encoder neu-

ral network that found the ”true” position details of each offensive player, placing

them in one of five roles.

3.5 Trajectory Cluster Identification

In the realm of spatial-temporal data mining, trajectory clustering is a key tool used

when identifying trajectories like shipping routes [41], and player trajectories [33],

[16]. There is a need to identify paths taken by objects over a period of time. By

identifying these trajectories through unsupervised methods, we can understand the

underlying movement patterns among a large set of trajectories.

In the previous clustering works, trajectories were compared through different dis-

tance similarity measures [3]. These methods were useful for finding similar trajecto-

ries in a confined space and over a similar period of time, but do not have the ability

21

to find similar clusters regardless of location and time variance. In work presented by

[41], trajectories can be clustered using behavioural representations and deep learn-

ing. Because the trajectories can be represented as a sequence of behavioural features,

the deep learning methods used were able to find similar clusters, regardless of the

longitude and latitude positions.

3.6 Topic Modelling in Basketball

Luke Borne and Alex Miller [33] employ unsupervised learning techniques to create

labelled offensive possessions using topic modelling practises. To create a vocabulary

of words from the movement in a possession, player actions are first extracted by

segmenting movement by acceleration logic. Once these actions are extracted, the

underlying movement in each action is represented by Bezier curve parameters that

can be used in clustering algorithms. Each of the clusters formed from the actions

can be considered a single word in a vocabulary of player actions.

Once the actions are extracted and the vocabulary is formed, the possession can

be represented as a text document of actions identified. The model used to identify

topics from the text documents formed is Latent Dirichlet Allocation [4].

22

Chapter 4

On-Ball Screen Classification and

Proposals Using Convolutional

Neural Networks

4.1 Obtaining On-Ball Screen Annotations

Because our later work aims to provide detailed labels beyond simple on-ball screen

identification, our unsupervised model requires a large set of on-ball screens action se-

quences. Inspecting 14 games in the 2015-16 NBA season, we identified approximately

1200 on-ball screen instances. For future use in identifying on-ball screen instances,

we trained a convolutional neural network to use in proposing future on-ball screen

instances in order to minimize watching game footage when creating human anno-

tations. We approach creating new annotations using detection algorithms on raw

probability outputs throughout possessions.

23

Figure 4.1: Example On-Ball Screen Action Inputs

4.2 Data

As input into our image, we construct snapshots that contain movement trajectories

of players on offense and defense, as well as the ball. The extractor produces an

image over a specified window with trajectory channels for offense, defense, and the

ball. In the images, the tracked movement of players on offense and defense is limited

to a 25x25 pixel window surrounded by the ball as the window’s center. The ball is

red, players on offense are green, and players on defense are blue. To see an example

input into the network, it is shown in Figure 4.1. For each instance, we define a four

second window to provide the entire context of the approach and the execution of

the screen is set. We assume that the entire approach of the screen starts within the

two seconds before the screen time and we assume that the execution scheme of the

screen is finished in the two seconds after the screen time.

4.3 Model

Our classification model consists of three convolution layers, each with max-pooling

layers, seen in Figure 4.2. The model’s learning rate begins at 0.001 and decays

24

Conv2D Pool Conv2D Pool FC

Figure 4.2: Architecture of Convolutional Network

at a rate of 0.1/3000 iterations over 10 000 iterations. Through trial and error, it

was determined that a higher learning rate of 0.01 was too high to find the optimal

trained model, and a smaller learning rate of 0.0001 was too slow to achieve the best

trained model in a timely fashion. Although we started with a learning rate of 0.001,

the learning rate needed to shrink as the model changed as the loss values became

smaller with the optimization of the model’s weights. We applied dropout layers to

each pooling layer and the fully connected layers with a dropout rate of 0.2. To

prevent over fitting when training the model, we introduced dropout. We train the

model on a batch size of 64. In order to train the network on such a large set of data,

we decided to use batch processing.

We optimize our model by minimizing a combined loss that is dependant on

cross entropy and L2 regularization [34], with a standard Adam optimizer [19]. The

representation of the combined loss can be seen below.

Loss = −
∑
i

yi log ŷi +
1

2
λw2 (4.1)

Where yi is the ground truth of class i and ŷi is the raw probability output from

the model for class i, representing the cross entropy loss term. The L2 regularization

term penalizes the loss as a product of the regularization constant λ and the square

of the weights w.

25

4.4 Classification

Once finished with the human annotations, our training data set contains 12 an-

notated games with 1028 annotations, and a validation set with one game and 92

annotations. The model is trained on a 50/50 split between on-ball screen action

sequences and non screen action sequences. For validation, the model is evaluated on

a separate 50/50 split.

In Table 4.3, we compare our method of using a convolutional network to the

methods previously presented by Wiens et al., where they train a support vector

machine model on mutli-agent pairwise distance features [32]. These features are

described in Table 4.1 and are formed during the approach and execution phases of

the screen.

Each of the features from both the approach and the execution are binned into

quintiles. We describe these specific features in detail for context when comparing

our model to the baseline model described by Wiens et al. [32]. In order to prepare

these features as input, we need to create a method to identify the four player roles

involved from the tracking data. We develop the framework to identify these roles in

Section 4.4.1. For each player in the four identified roles, the pairwise features listed

in Table 4.1 are calculated against the ball, and the three other role players.

26

Feature Equation

Minimum distance between player a and player b at the

moment of the screen

mint dt,a,b

Sum of distance between player a and player b over the

approach window

1
s

∑s
t=1 dt,a,b

Difference in distance between player a and player b at

the start of the screen window and the moment of the

screen (approach)

(ds,a,b−d1,a,b)
s

Difference in distance between player a and player b at

the moment of the screen and the end of the screen win-

dow (execution)

(dn,a,b−ds,a,b)
n−s

Sum of distance between player a and player b over the

execution window

1
n−s
∑n

t=s dt,a,b

Table 4.1: Wiens Features for Screens

4.4.1 Role Identification

In all on-ball screens, there are traditionally four players involved in the action. For

the purposes of the thesis, we assume that there are always the same four roles in

each on-ball screen. Each of these four players have unique offensive and defensive

roles during a screen action. In order to extract these roles from the action sequence,

we observe movements by players during the approach phase of the screen. We

determined different hard logic rules for the four different roles in the action: ball

handler, on-ball defender, screen setter, and the screen defender.

The logic we present determines the four roles for the screen annotation using only

27

the approach window and excludes the execution window. For these equations, we

define the approach window from the beginning of the screen, where time t = 1 to the

screen moment t = n. The ball handler(bh) is the player on the offensive team(Off)

with the smallest mean squared error with the ball(b). We determine the on-ball

defender(bd) to be the player on defense(Def) that has the smallest mean squared

error with the ball handler. The screen setter(ss) is the player on offense, aside from

the ball handler, that is closest to the ball at the moment of the screen, n. The screen

defender can be defined as the player on defense, aside from the on-ball defender,

that is the player with the smallest mean squared error with the screen setter. These

extracted roles can be observed in the approach windows shown in Figure 4.3. We

provide equations for the role formation in Table 4.2.

Role Equation

Ball Handler(bh) bh = min(pεOff){ 1n
∑n

t=1(bt − pit)2}

Ball Defender(bd) bd = min(pεDef){ 1n
∑n

t=1(bht − pit)2}

Screen Setter(ss) ss = min(t=n|pεOff |pi 6=bh){||bt − pit||}

Screen Defender(sd) sd = min(pεDef |pi 6=bd){ 1n
∑n

t=1(sst − pit)2}

Table 4.2: Screen Role Determination

28

(a) Ball Handler (b) On-Ball Defender

(c) Screen Setter (d) Screen Defender

Figure 4.3: Roles Extracted From Approach

Model Accuracy Loss

Convolution Network 0.91 0.27

Wiens Features + Support Vector Machine 0.91 0.18

Wiens Features + Logistic Regression 0.91 0.24

Wiens Features + Random Forest 0.88 0.29

Wiens Features + Naives Bayes 0.91 0.65

Wiens Features + Feed Forward Network 0.9 0.29

Wiens Features + Gradient Boosting 0.82 0.36

Table 4.3: On-Ball Screen Classification Results

29

From observing the classification results, our convolution network approach with

raw image input performs as well as previous methods used for screen classification.

Without the pre-processing needed for the Wiens Features described in Table 4.1,

we can create a model for classification that performs as well as models that require

costly features.

4.5 Detection

With the goal in mind of developing a model that can best detect new screen actions,

we evaluate several models on how they perform detecting these actions on new

games. To ensure consistency, we separated one game from the training data set

for testing purposes. When evaluating the performance of the different models, we

applied a Non Max Suppression detection algorithm that uses the raw probability

outputs from unseen annotations.

4.5.1 Non Max Suppression

In Non Max Suppression, we applied a smoothing function over a specific time win-

dow throughout a probability map. For the smoothing function, we applied the max

probability of a specified window to the entire window. Once the entire instance

is smoothed, all probability windows that do not meet a certain threshold are sup-

pressed. The proposed centers of the screen actions are the non-suppressed local

maximum at each window radius. The screen proposal algorithm is detailed in Algo-

rithm 4.1 and the non-max suppression algorithm used for screen proposals is detailed

in Algorithm 4.2.

When evaluating the results of proposing screen annotations, we use precision and

recall. Let P represent Precision, where TP are the true positives identified and the

30

Algorithm 4.1 Screen Proposal Algorithm

1: procedure Propose(event, k, radius,model, threshold)
2: event.moments← event.moments

k
. Down sampled by factor of k

for each: moment in event.moments
3: annotation← make annotation(moment, radius)
4: features← get features(moment, annotation)
5: probs← predict proba(features,model)
6: proposals← NMS(annotation, probs, threshold, radius)
7: return proposals

Algorithm 4.2 Non-Max Suppression Detection Algorithm

1: procedure NMS(annotation, probs, threshold, radius)
2: probs← smooth(probs)
3: probs[probs < threshold]← −1
4: proposal centers← arg local maximas(probs)
for each: proposal center in proposal centers
5: proposal← make window(proposal center, radius)
6: return proposals

FP are the false positives identified. Precision can be defined as P = TP
FP+TP

. Let

R represent Recall, where FN represent the false negatives classified. Recall can be

defined as R = TP
TP+FN

.

The detection process is focused on identifying true positives throughout an entire

game. There can be an infinite number of false action sequences that are identified

throughout that game, but only n possible sequences can be properly detected as

true positives in the game data. The best way to evaluate a model’s ability to detect

these n screens in a new game is to see how true the proposals are through precision,

and to evaluate the model’s ability to identify all n screens through recall. It is not

practical to evaluate accuracy in this setting.

The effect of non-max suppression on raw probability outputs can be seen in

Figure 4.4. In the last plot in Figure 4.4, the green dots are the proposal centers

referenced in Algorithm 4.2. In Figure 4.5 the precision and recall outputs from

changing the probability threshold of the detection can be observed. While increasing

31

the probability threshold in the initial stages would eliminate many false positives,

the model was not sensitive enough to produce any meaningful changes in recall until

the probability threshold went above 0.8. One explanation of this phenomenon could

be that the model is very confident in the true positives in the data set, and that only

an extremely high probability threshold would eliminate proposal that otherwise be

eliminated at a lower threshold.

32

711.0 711.5 712.0 712.5 713.0 713.5 714.0 714.5 715.0
0.90
0.92
0.94
0.96
0.98
1.00
1.02 Raw Probability

711.0 711.5 712.0 712.5 713.0 713.5 714.0 714.5 715.0
0.90
0.92
0.94
0.96
0.98
1.00
1.02 Smooth Probability

711.0 711.5 712.0 712.5 713.0 713.5 714.0 714.5 715.0
0.96
0.97
0.98
0.99
1.00

NMS Probability

(a) Suppression of Wiens Output

704 706 708 710 712 714 716 718
0.0
0.2
0.4
0.6
0.8
1.0 Raw Probability

704 706 708 710 712 714 716 718
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Smooth Probability

704 706 708 710 712 714 716 718
0.2
0.0
0.2
0.4
0.6
0.8
1.0 NMS Probability

(b) Suppression of Convolutional Output

Figure 4.4: Non Max Suppression of Output Probabilities

33

Model Recall Precision

Convolution Network 0.88 0.38

Wiens Features + Support Vector Machine 0.65 0.10

Wiens Features + Logistic Regression 0.65 0.10

Wiens Features + Random Forest 0.80 0.05

Wiens Features + Naives Bayes 0.60 0.10

Wiens Features + Feed Forward Network 0.65 0.10

Wiens Features + Gradient Boosting 0.67 0.10

Table 4.4: On-Ball Screen Detection Results

The methods used by Wiens et al. produced a robust classifier for on-ball screens

[32]. Because the input for the Wiens Feature based classifier is constant throughout

the entire annotation window, the model will produce a constant probability during

detection, seen in Figure 4.4a. With constant probabilities, the detection algorithm

with propose a high amount of false positives, thus producing high recall and low

precision with proposing new annotations.

Where our approach differs is a non-constant input over the annotation window.

We produce image snapshots that show a sliver of the annotation window. These

snapshots are entirely different as the movement progresses throughout the window,

seen in Figure 4.4b, the model produces a non-constant probability output. When

the probability has a range throughout the window, the detection algorithm is able to

be more precise with the proposal times and ignore movement during the annotation

window that does not resemble the screen moment.

34

0.0 0.2 0.4 0.6 0.8 1.0
Probability Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n/
Re

ca
ll

Probability Threshold During Detection

precision
recall

Figure 4.5: Detection Precision and Recall Curve

4.5.2 Proposal Run-Time Comparison

One of the observations that were made when preparing the datasets for the con-

volution network classifier and the classifier from previous work done by Wiens et

al., [32], was that the preparation time for the convolution network was considerably

smaller. This can be attributed to the prepossessing that is needed for the Wiens

Features described in Section 4.4.1. In the preparation of the Wiens Features, the

Euclidean distance between players is calculated n times for all of the movement

frames, thus giving a Big O run-time for the feature preparation of O(n). In our

proposed method of using raw movement as input to convolutional networks, there is

no feature preparation, providing a smaller run time of O(1).

Although the Big O run-time for the Wiens preparation is relatively small, this

preparation is done over an entire game of tracking data, which has 72 000 movement

35

frames. We saw a preparation time for a single game go from 20 minutes for our

method, go to several hours for the feature preparation of the Wiens Features.

36

Chapter 5

Unsupervised Learning Methods

for Labelling On-Ball Screen

Annotations

5.1 Feature Extraction

5.1.1 Behaviour Learning from Trajectories

In topic modelling, a vocabulary of words has to be created to form documents [4]. For

the purpose of using topic modelling as a form of unsupervised learning for labelling

screen actions, a vocabulary of player actions can be established. This vocabulary

should be based on player movement patterns, as well as relational movement to other

roles present in the screen action.

Previously, Bornn et al. would use actions identified from trajectory clustering

for offensive possession modelling [33]. The actions identified for all ten players on

the court were formed from Bezier curve used to represent a players trajectory. The

37

Bezier curve parameters and control points were then used to create clusters of similar

player trajectories. Because they used Bezier curve parameters formed entirely from

coordinates, the actions, or clusters identified, were dependant on player location and

not on player behaviour. Once player actions were identified, in order to preserve

relational context, the actions of all the players at time t were used as the base of

single pair-wise actions for each time step.

In work presented by Yao et al., sequences of behavioural features can be used as

input to a seq2seq model to find similar trajectories in shipping routes [41]. These

behavioural inputs included a feature set extracted from longitude and latitude coor-

dinates, as well as the time spend travelling.

The behavioural features extracted and used as input for action identification are

similar to the features presented by Yao et al., such as speed and rate of turn [41].

A sample of three time stamps of player movement can be seen in Figure 5.1, where

each data point used can be described by its time from the game clock, its x location,

and its y location on the court. These attributes form the basis for the speed and

rate of turn calculations.

p1(t1, x1, y1)

p2(t2, x2, y2)

p3(t3, x3, y3)

Figure 5.1: Movement Behaviour Attributes

38

Speed for player p at time i is defined as

spi =

√
(xpi − xpi−1

)2 + (ypi − ypi−1
)2

tpi − tpi−1

(5.1)

where xpi is the player p’s x location at time i and ypi is the player p’s y location

at time i.

Rate of turn for player p at time i is defined as

rpi = arctan
xpi − xpi−1

ypi − ypi−1

(5.2)

Domain Specific Features

We also include several features such as pairwise distances between role players in-

volved in the screen as well as the hoop and the screen locations, similar to those used

as summary features to describe the approach and execution movement in previous

on-ball screen classification efforts described by Wiens et al. [32]. We define domain

specific features as the pairwise distance of each of the four role players to the ball

handler, the screen setter, the hoop, and the fixed location of the screen. The pairwise

distances used as features can be seen for a player for the approach phase in Figure

5.2 and for the execution phase in Figure 5.3.

39

(a) Movement of Screen Defender (Green)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Game Clock

10

15

20

25

30

Eu
cli

de
an

 D
ist

an
ce

Ball Handler Distance
Screen Setter Distance
Hoop Distance
Screen Location Distance

(b) Distances

Figure 5.2: Pair Wise Distances for Approach

(a) Movement of Screen Defender (Green)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Game Clock

10

12

14

16

18
Eu

cli
de

an
 D

ist
an

ce
Ball Handler Distance
Screen Setter Distance
Hoop Distance
Screen Location Distance

(b) Distances

Figure 5.3: Pair Wise Distances for Execution

Sliding Window Extraction

When forming actions from trajectories, it is necessary to form several summaries

of the trajectories. Trajectory summaries for the purpose of seq2seq learning can be

done by creating behavioural features from a sliding window approach [41]. For each

of the windows extracted from a single trajectory, we create summary features on

space, time, and multi-agent pair wise distances specific to screen roles to create a

40

description of the movement in the trajectory.

Each feature window formed from the trajectory overlaps with other windows

denoted by an offset amount. In our work and in previous work by Yao et al., the

offset used is half of the defined window length [41]. The offset is set this way so that

each trajectory frame is represented in two windows. In our sliding window feature

extraction, our window length is ten frames long and the offset is five frames long,

where a single trajectory of length 50 from either the approach or the execution of a

screen should have five windows. A visualization of the sliding window is shown in

Figure 5.4.

F1 F2 F3 F5F4 F6 F7 FT...

B1 B2 B3 BT

Figure 5.4: Sliding Window Behavioural Feature Extraction

Once the feature windows are extracted, moving behaviour sequences can be

formed. With respect to the extracted features, moving behaviours are formed from

the differences of the attributes between two records. A window for player p has

R records, denoted as W = {p1, ..., pR}, where each frame in the window consists

of speed, rate of turn, and the list of pairwise distances described in 5.1.1. The

behaviours extracted from the frames are described in Table 5.1.

41

Feature Description

Change in Time ∆t = tpi − tpi−1

Change in Speed ∆s = spi − spi−1

Change in Rate of Turn ∆r = rpi − rpi−1

Change in Distance to Ball Handler ∆bh = bhpi − bhpi−1

Change in Distance to Screen Setter ∆ss = sspi − sspi−1

Change in Distance to Hoop ∆hp = hppi − hppi−1

Change in Distance to Screen Location ∆sl = spi − slpi−1

Table 5.1: Behavioural and Domain Feature Input

From previous work in representing behavioural sequences using seq2seq learning

[41], each of the features listed in Table 5.1 should be represented in by summary

statistics. Where all features fεF extracted to behaviours B can be represented by

its mean, max, min, 75% quantile, 50% quantile, and 25% quantile. For each index

in the sequence, the entire behaviour window extracted, at time i is comprised of 48

features, shown below.

Bi = {∆t,∆s,∆r,∆bh,∆hp,∆sl} × {mean,max,min, 75%, 50%, 25%} (5.3)

42

5.2 Methodology

5.2.1 Trajectory2Vec Model

Once feature sequences are formed, we can learn the representation of each trajectory

segment from seq2seq embedding. The seq2seq model used for our work in trajectory

embedding is comprised of an encoding RNN layer and a decoder RNN layer. Both

the encoder and the decoder include a single RNN with 128 hidden units, producing

an embedded state for a input sequence of size 5.

When training the model, we train over 300 000 steps, with a batch size of 64,

and a learning rate of 0.001 that decays by 0.1 every 100 000 steps. We optimize the

model through minimizing the reconstruction loss of the input sequences, defined as

Loss =
n∑
t=1

∥∥∥Bt − B̂t

∥∥∥
2

(5.4)

Where the reconstructed output, B̂, of the input features B is over the sequence

length n, which is determined from the sliding window feature extraction phase.

5.2.2 Action Identification Using Clustering

To configure these embedded representations of player trajectories in the approach

and execution of on-ball screens as actions, groups of similar trajectories need to be

assigned to the vector representations. As output from the Trajectory2Vec model, the

embedded representations of the player trajectories are in very high dimensional space

(size 128). In order to assign the trajectory representations to groups, the similarities

of trajectories to each other needs to be maximized to improve clustering results. In

order to reduce the dimensions that the representations occupy and to maximize the

closeness of related trajectories, we embed the representations through t-SNE. t-SNE

43

embedding reduces the dimensions of latent representation of the trajectory from 128

to 3, as well as minimizing the distance between related trajectories and maximizing

the distance between dissimilar trajectories.

Once the t-SNE embeddings of the trajectory representations are produced, clus-

ters can be assigned to each trajectory. To assign trajectories to groups, we use the

k-Means clustering algorithm. In order to ensure all trajectories in documents pre-

sented for topic modelling are assigned to action clusters, we applied k-Means. If

actions are not assigned to all embedded trajectories, then not all on-ball screens can

be represented for the purposes of topic modelling. k-Means is stochastic in nature,

but it ensures clusters are assigned to all available trajectories, even though some

trajectories may belong to different clusters in new implementations of k-Means.

Because the behavioural input does not depend on traditional player location,

similar trajectories across the court can be identified entirely based on how fast they

turn, how close they get to the ball-handler, etc. Although the trajectories identified

in clusters are not dependant on location, for simplicity, we show similar behaviour

trajectories that occur in close areas in Figure 5.5. For the actions portrayed in Figure

5.5, we used the behavioural and domain specific features as input for seq2seq embed-

ding, and we identified 50 actions(clusters) using k-Means from the dimensionality

reduced representation from t-SNE.

44

(a) Action 14 (b) Action 10

(c) Action 5 (d) Action 28

Figure 5.5: Actions Identified from Behavioural Clustering

5.2.3 Building Documents from Actions

After identifying player actions from behaviour sequences, documents can be created

by representing the actions as words in a text document. In previous topic modelling

research, text documents were represented in a Bag-of-Words representation, where

counts of each word in a vocabulary were tallied [5], [4]. When representing documents

using Bag-of-Words, the context that each word is in is lost.

In detecting defensive schemes in on-ball screens, it is extremely important to know

which player is guarding which player [33], [32]. This defensive guarding information

can be considered as pair-wise, multi-agent information. In order to preserve this

multi-agent relational information, our word representation must preserve context.

45

Although we can represent an on-ball screen document in a Bag-of-Words context,

there is no way for the model to know which specific player is performing which

action. In order to represent this context to the topic model, we concatenate the four

simultaneous actions for the players involved in a screen into a single pairwise action,

similar to the pairwise representation shown previously by Miller et al. [33]. These

pairwise actions preserve context for actions, where each action a player takes can

be observed in relation to other player actions in an approach or execution window.

Because each screen has an approach and an execution, we represent an entire screen

as two pairwise actions instead of eight independent actions. The representation of a

screen as pairwise actions can be seen in Figure 5.6 and the underlying trajectories

that the pairwise actions represent can be seen in Figure 5.7.

Approach Action Execution Action

Screen Document

Figure 5.6: Pairwise Action Document

46

(a) Actions in Approach (b) Actions in Execution

Figure 5.7: Actions Present in Approach and Execution

5.3 Modelling Topics from Screen Documents

Once the approach and execution phases can be represented in a single document, we

can form labels or ”topics” from the actions in the document.

These k topics represent the four defensive executions schemes previously shown

in Figure 1.6. For each document that is represented by two pairwise actions, the

LDA model produces a topic that can be compared to the human annotations given.

For evaluation purposes, we train the LDA model on a corpus of 13 games and

single out a single game for validation. The validation set contains a distribution

of 39/20/14/20 for the Over/Under/Switch/Trap defensive execution labels in the

validation game.

5.3.1 Creating a Baseline Model From Players in Screen

Because there has been no previous work published in unsupervised learning for la-

belling on-ball screens, we establish a baseline model to show the effect that the

47

actions identified from behavioural and domain specific features have. Without the

use of actions identified from behavioural and domain specific features, we can rep-

resent a screen document from the players present during the screen. The baseline

screen document can be portrayed as a Bag-of-Words representation of the four play-

ers involved in the screen. The comparison of the established baseline model to the

proposed behavioural and domain feature seq2seq model is shown in Table 5.2.

Model Average Precision Average Recall

Player ID’s 0.28 0.31

Traj2Vec NMF 0.33 0.32

Traj2Vec LDA 0.32 0.31

Traj2Vec + Domain Features NMF 0.36 0.35

Traj2Vec + Domain Features LDA 0.37 0.35

Table 5.2: Topic Modelling Results

By creating text documents from actions identified in player movement during

an on-ball screen, we can propose defensive execution labels for already identified

screens. With the addition of domain specific features as input to behavioural se-

quence learning, the hidden representations of player movement can be better served

in the context of on-ball screens. Using the text documents created from contextual

features, we improve the unsupervised classification results of our model compared to

the baseline model proposed.

48

Chapter 6

Conclusions and Future Works

The work presented in this thesis aimed to provide a framework for building a detailed

dataset of on-ball screens in basketball using different supervised and unsupervised

learning methods. The research utilized data outside standard box scores and outside

play-by-play data to provide valuable tools for sports analysts and researchers to

create a database of important information on on-ball screens, including labels for

defensive execution schemes.

6.1 Conclusions

6.1.1 Preparing a Data Set for Binary Classification

The first problem approached in the work presented was creating a standard on-

ball screen data set. In order to create a framework to expand team’s data sets

of screen annotations, we used a supervised learning approach using convolutional

networks. In order to first train our network, we created a set of human annotations

of positive and negative screen annotations for the binary classification task. We

annotated 14 games worth of screens, enough to produce a trained convolutional

49

model that matches the performance of state of the art models [32], but without the

large overhead of identifying domain specific roles to the screen annotations. Without

processing these features derived from the screen roles, we saw a large reduction in

data preparation time.

6.1.2 Proposing New Annotations Using Detection

Once we had a robust model for binary classification, we were able to utilize it to

propose new annotations without any human interaction. The difference in feature

preparation between our convolutional model and the models that used the Wiens

Features, described in Table 4.1, became ever more noticeable when detecting new

annotations. Previous methods require a large amount of processing time for identify-

ing domain specific roles, where the input to the convolutional model did not require

any role specific information. Our convolutional network was able to produce variable

output probabilities across the annotation window, where previous methods failed to

do so. Previous methods used summary features across the entire screen annotation

window, thus producing constant probabilities. Because our models produces vary-

ing output probabilities over an annotation window, we were able to obtain a higher

recall and a higher precision than current models. Using the non-max suppression

algorithm, our convolutional model shows promise in producing new screen annota-

tions, as well as minimizing the amount of time needed to process input for proposing

annotations.

50

6.1.3 Creating Multi-Class Labels For Annotations Using Topic

Modelling

The second half of the research shown in the thesis was centered around using un-

supervised learning to create multi-class labels on screen annotations. This work

utilized methods used previously in text processing, specifically topic modelling. We

were able to represent a screen annotation as a text document, where trajectory seg-

ments in the approach and the execution of the screen can be treated as actions or

”words” in a document.

Traditionally, topic modelling uses Bag-of-Words as input, removing context from

words in a document and representing the document as a tally of the unique words.

Specifically in the four different defensive schemes or ”topics” we aim to create for

the documents, it is very important to understand how players on offense and defense

interact with each other. In order to preserve the context in the input to the topic

model, we create pairwise actions to represent four players movement as one. By

representing a screen annotation as a text document for topic modelling, we can pro-

duce multi-class labels in an unsupervised learning setting. Compared to a baseline

model without any input from domain feature seq2seq learning or behavioural fea-

ture seq2seq learning, our approach produces more accurate results in unsupervised

labelling of defensive execution schemes in on-ball screens.

6.2 Limitations

When observing the results of the supervised learning and unsupervised learning

applications for the purposes of creating a detailed and accurate data set of on-ball

screens, there is a clear difference in results between the two learning types. Our

application of convolutional neural networks produced a classifier and detector that

51

would work excellent in a formal setting and could produce accurate predictions

compared to other supervised models. For our work in providing multi-class labels

using an unsupervised learning model, our results are not accurate enough to replace

supervised learning models. Previous work by Wiens et. al has shown supervised

learning models to be much more accurate in providing labels for defensive sub-

types of the execution of on-ball screens [31]. All though our work is less expensive

computationally and does not require human annotations, our model cannot out-

perform a supervised model and is useless in a practical sense when providing these

important details to teams.

6.3 Future Works

6.3.1 Expanding Screen Classification Data Set

In the initial phase of the data set development, we observed the impact that adding

more annotated games had to the performance of the model. As we added more

games, the validation accuracy continued to improve. We chose not to spend more

time annotating more games and instead focused on the detection work proposed in

the chapter. We would like to observe the threshold at which the model does not

improve it’s validation accuracy with the addition of more annotated games.

6.3.2 Comparing Detection Algorithms

In the section of the thesis focused on detecting new screen annotations, our main

focus in the research was to show the improvement in precision and recall that the

convolution network approach had when creating new annotations. We also described

how the approach allowed a faster input preparation time. We did not explore other

52

detection algorithms besides non-max suppression. It would be important for fu-

ture research to find the best detection algorithm when dealing with raw probability

outputs over a window.

6.3.3 Neural Inference Models

The second phase of this thesis was to provide a framework to label screen annota-

tions using the four defensive execution schemes described in Figure 1.6. Although

our model outperforms the established baseline model, it does not provide results that

would be accurate enough to out-perform analysts in creating these labels. We could

improve these results would be done by using more complex deep learning models

that can represent the non-deterministic moving relationships players have during a

screen. One particular model that has shown promise with inferring relationships be-

tween interacting objects in movement data is the neural relationship inference model

proposed by Kipf et al. [21]. The model described relies on inferring interactions be-

tween moving objects, such as players in tracking data, in a graph neural network

structure [26]. Using the inferred relationships created from the neural relationship

model, they were able to predict player movement with greater accuracy than their

baseline recurrent network model. The movement that was used for trajectory predic-

tion in the inference model came from on-ball screen annotations. Their work shows

the impact that relationship inference in an on-ball screen can have on predicting

movement sequences. We believe the addition of the relationship inference model

would contribute to improving the results of the unsupervised labelling of the screen

annotations.

53

Bibliography

[1] National Basketball Association. stats.nba.com.

[2] Dzmitry Bahdanau, Cho KyungHyun, and Bengio Yoshua. Neural machine

translation by jointly learning to align and translate. International Conference

on Learning Representations, 2015.

[3] Phillip Besse, Brendan Guillouet, Jean-Michel Loubes, and Royer François. Re-

view and perspective for distance based trajectory clustering. IEEE Transactions

on Intelligent Transportation Systems, 2016.

[4] David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. Con-

ference on Neural Information Processing Systems, 2002.

[5] David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. Journal

of Machine Learning Research, 3:993 – 1022, 2003.

[6] Chenjie Cao. Sports data mining technology used in basketball outcome predic-

tion. 2012.

[7] Dan Cervone, Alexander D’Amour, Luke Bornn, and Kirk Goldsberry. Pointwise:

Predicting points and valuing decisions in real time with nba optical tracking

data. MIT Sloan Sports Analytics Conference, 2014.

54

[8] Kim Esbensen and Paul Geladi. Principal component analysis. Chemometrics

and Intelligent Laboratory Systems, 2:37–52, 1987.

[9] Felix Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-

tinual prediction with lstm. Neural Computation, 12:2451–2471, 1999.

[10] Lars Hansen and Salamon Peter. Neural network ensembles. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 12:993 – 1001, 1990.

[11] Mark Harmon, Patrick Lucey, and Diego Klabjan. Predicting shot making in

basketball using convolutional neural networks learnt from adversarial multiagent

trajectories. arXiv preprint arXiv:1609.04849, 2016.

[12] Geoffrey Hinton and Vinod Nair. Rectified linear units improve restricted boltz-

mann machines. International Conference on Machine Learning, 2010.

[13] Geoffrey Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data

with neural networks. Science Magazine, 313, 2014.

[14] Geoffrey Hinton and Laurens van der Maaten. Visualizing data using t-sne.

Journal of Machine Learning Research, 9:2579–2605, 2008.

[15] Geoffrey Hinton, Ruslan Salakhutdinov, Nitish Srivastava, and Alex Kizhevsky.

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15:1929–1958, 2014.

[16] Jennifer Hobbs, Paul Power, Long Sha, and Patrick Lucey. Quantifying the

value of transitions in soccer via spatiotemporal trajectory clustering. MIT Sloan

Sports Analytics Conference, 2018.

55

[17] Kou-Yuan Huang and Wen-Lung Chang. A neural network method for prediction

of 2006 world cup football game. International Joint Conference on Neural

Networks, 2010.

[18] Michael Kates. Player motion analysis: Automatically classifying nba plays.

Master’s thesis, Massachusetts Insitute of Technology, 2014.

[19] Diederik Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimiza-

tion. International Conference on Learning Representations, 2015.

[20] Diederik Kingma and Max Welling. Auto-encoding variational bayes. ICLR,

2014.

[21] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Richard Zemel, and Max

Welling. Neural relational inference for interacting systems. International Con-

ference on Machine Learning, 2018.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification

with deep convolutional neural networks. International Joint Conference on

Artificial Intelligence, 2015.

[23] Solomon Kullback and Richard Leibler. On information and sufficiency. Annals

of Mathematical Statistics, 22:79–86, 1951.

[24] Hoang Le, Peter Carr, Yison Yue, and Patrick Lucey. Data-driven ghosting using

deep imitation learning. MIT Sloan Sports Analytics Conference, 2017.

[25] David Lee and Sebastien Seung. Algorithms for non-negative matrix factoriza-

tion. Conference on Neural Information Processing Systems, 2001.

56

[26] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph

sequence neural networks. International Conference on Learning Representa-

tions, 2016.

[27] STATS LLC. Sportvu player tracking data. . URL https://github.com/

sealneaward/nba-movement-data.

[28] STATS LLC. Sportvu player tracking data. .

[29] Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on Infor-

mation Theory, 28:129 – 137, 1982.

[30] Bernard Loeffelholz, Earl Bednar, Kenneth W Bauer, et al. Predicting nba

games using neural networks. Journal of Quantitative Analysis in Sports, 5(1):

1–15, 2009.

[31] Avery McIntyre, Jenna Wiens, John Guttag, and Joel Brooks. Recognizing and

analyzing ball screen defense in the nba. MIT Sloan Sports Analytics Conference,

2016.

[32] Armand McQueen, Jenna Wiens, and John Guttag. Automatically recognizing

on-ball screens. MIT Sloan Sports Analytics Conference, 2014.

[33] Andrew Miller and Luke Bornn. Possession sketches: Mapping nba strategies.

MIT Sloan Sports Analytics Conference, 2017.

[34] Andrew Ng. L1 vs. l2 regularization, and rotational invariance. International

Conference on Machine Learning, 2004.

[35] Adria Sanguesa. Identifying basketball plays from sensor data; towards a low-cost

automatic extraction of advanced statistics. Master’s thesis, Aalborg University,

2017.

57

[36] Long Sha, Patrick Lucey, Yisong Yue, Peter Carr, Charlie Rohlf, and Iain

Matthews. Chalkboard- ing: A new spatiotemporal query paradigm for sports

play retrieval. International Conference on Intelligent User Interfaces, 2016.

[37] Rajiv Shah and Rob Romijnders. Applying deep learning to basketball trajecto-

ries. Knowledge Data and Discovery Workshop on Large Scale Sports Analytics,

2016.

[38] Ilya Sutskever, Oriol Vinyals, and Quoe V. Le. Sequence to sequence learning

with neural networks. Conference on Neural Information Processing Systems,

2014.

[39] Kuan-Chieh Wang and Richard Zemel. Classifying nba offensive plays using

neural networks. MIT Sloan Sports Analytics Conference, 2016.

[40] Raymond Wright, Jorge Silva, and Ilknur Kaynar-Kabul. Shot recommender

system for nba coaches. KDD Workshop on Large Scale Sports Analytics, 2016.

[41] Di Yao, Chao Zhang, Zhihua Zhu, Jianhui Huang, and Jingping Bi. Trajectory

clustering via deep representation learning. International Joint Conference on

Neural Networks, 2017.

[42] Stephan Zheng, Yisong Yue, and Patrick Lucey. Generating long-term trajecto-

ries using deep hierarchical networks. Conference on Neural Information Pro-

cessing Systems, 2016.

58

