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Abstract

Differential-algebraic equations (DAEs) result in many areas of science and engineer-

ing. In this thesis, numerical methods for solving DAEs are compared for two prob-

lems, energy-economic models and traffic flow models. An energy-economic model is

presented based on the Hubbert model of oil production and is extended to include

economic factors for the first time. Using numerical methods to simulate the DAE

model, the resulting graphs break the symmetry of the traditional Hubbert curve.

For the traffic flow models, a numerical method is developed to solve the steady-state

flow pattern including the linearly unstable regime, i.e. solutions which cannot be

found with an initial value solver.

Key words: numerical method, differential-algebraic equation, oil production, traf-

fic modelling
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Chapter 1

Introduction

1.1 Differential Algebraic Equations

Differential algebraic equations (DAEs) are common in science and engineering prob-

lems. For a detailed introduction to DAEs see Ascher et al. [3] and Brenan et al. [8].

In general, the implicit form is

F (t, y, y′) = 0, (1.1.1)

where the prime denotes the derivative of y with respect to t. This form looks similar

to implicit ordinary differential equations (ODEs). The difference comes when we

consider partitioning y, typically a vector-valued function, into two subvectors: yA,

the algebraic components and yD, the differential components. Since yA is purely

1
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algebraic, the system will not contain any terms y′

A. The system F can be separated

into two equations, one implicit ODE and an algebraic constraint

0 = f(t, yA, yD, y′

D), (1.1.2)

0 = g(t, yA, yD). (1.1.3)

In some cases, the algebraic constraint g can be substituted into f . In other cases, the

algebraic constraint can be solved for yA and then the derivative can be taken. For

both of these cases, the DAE system is transformed into an ODE system so that it

can be solved using ODE methods. Since this is not always possible, having methods

to solve DAEs directly and without manipulation is desirable.

1.1.1 Classification of DAEs

DAEs are classified similarly to ODEs. The systems of equations can be implicit, ex-

plicit, or even a mix called semi-explicit. Other classifications, such as linear constant

coefficient, linear time varying and nonlinear, also apply.

The index of a DAE is the minimum number of times all or part of the DAE system

must be differentiated with respect to time in order to convert the DAE into an explicit

ODE [9]. ODEs are therefore classified as index zero DAEs. Take for example the

following semi-explicit DAE system
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y′

D = f(t, yA, yD), (1.1.4)

0 = g(t, yA, yD). (1.1.5)

After differentiating the constraint, we get

y′

D = f(t, yA, yD), (1.1.6)

gyD
(t, yA, yD)y′

D + gyA
(t, yA, yD)y′

A = −gt(t, yA, yD). (1.1.7)

If gyA
(t, yA, yD) is non-singular we can in principle solve (1.1.7) for y′

A and the DAE

is classified as index 1. If not, then the procedure of differentiation is continued until

an explicit ODE is obtained. Often DAEs with an index greater than one are called

higher-index systems. In general, numerical methods perform better for systems with

lower indices.

1.1.2 Numerical Methods for DAEs

There are several numerical methods to solve DAEs. Backward differentiation

formulas (BDFs) take the following form

k
∑

i=0

αiyn−i = hβ0y
′

n. (1.1.8)
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Here, k denotes the number of “steps” of this method. The first one-step method

(k = 1) is the backward Euler method

y′

n =
yn − yn−1

h
. (1.1.9)

The k-step BDF method is stable for k < 7 [10]. Whereas for k ≥ 7, the method

may be stable or unstable, depending on the problem. However, the accuracy of the

method increases with k (k < 7). BDF methods are used in conjunction with New-

ton’s method to solve the system at each time step using past steps. A challenge for

higher-order BDF methods is that more than one set of initial conditions are required.

For a k-step method, k initial conditions are required. These initial conditions need

to be O(hp) accurate for a method of order p and if an error tolerance is used, it must

also be accurate to the given error. One approach to generate the initial conditions is

to recursively use a (k − 1)-step method to obtain the starting points for the k-step

method.

Now consider the implicit DAE in standard form from equation (1.1.1), by substitut-

ing the BDF method

F (tn, yn,
1

hβ0

k
∑

i=0

αiyn−i) = 0. (1.1.10)

This DAE system can be solved using Newton’s method at each time step using a

k-step backward differentiation formula.

DASPK and DASSL are software packages written by Linda Petzold [24] in the
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1980s to solve implicit ODEs and DAEs. The code is written in Fortran and is freely

available for download.

The codes replace y′

n with a BDF of order 1 to 5. Since the step size h is not necessarily

constant, a fixed leading coefficient form is used. A fixed-coefficient strategy has the

advantage of simplicity but it introduces an error due to interpolation. A variable-

coefficient strategy is much better in terms of error but at the expense of many

evaluations of the Jacobian of the system. Fixed leading coefficients are a trade off

between the two approaches. Details of the three different strategies are discussed by

Ascher et al. [2].

As an initial guess for y0
n, polynomial interpolation of the last k + 1 values is used to

obtain an accurate starting point (yn−1...yn−(k+1)).

DASPK has many features and options. For a small system, it is not too hard to

write a function F and the corresponding Jacobian function JAC. However, for a

larger or more complicated system it may be difficult. By setting INFO(5) = 0, the

DASPK code will calculate all the partial derivatives by numerical differences. The

trade offs are the reduced accuracy in the generated Jacobian and the increased run

time due to the additional function evaluations required to compute the Jacobian.

Another useful option helps with getting a consistent set of initial conditions, a crucial

aspect of all DAEs. Since DAEs have an algebraic system we should not have to

specify all the initial conditions. As can be seen from equations (1.1.4) and (1.1.5),

by providing yD, the initial conditions for yA and y′

D can be solved for. Similarly by

providing y′

D the initial conditions for yA and yD can be solved for. DASPK provides

the option to solve for either case by setting INFO(11) appropriately. Initial guesses
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are still required for all variables. Without a set of consistent initial conditions,

DASPK is unable to start to solve the system and exits with an error.

1.2 Problems

In this thesis, we will study two mathematical models, which employ DAEs, by use

of both analytical and numerical techniques. The main goal is to assess the accuracy

and efficiency of various schemes.

1.2.1 Energy-Economic Model

Chapter 2 entails an approach to energy-economic modeling. The system presented

is a non-linear, index 1, semi-explicit DAE. There are two equations, one for the

rate of production of oil, Q̇, and another for the price of oil, pE. To the best of our

knowledge, no other established (Hubbert) models of oil production in the literature

include economic aspects.

1.2.2 Traffic Flow Model

Chapter 3 presents methods for solving macroscopic traffic flow models. The system

of partial differential equations is solved on a spatial mesh creating a large system of

ODEs.

When solving for the steady-state flow of the system, there are an infinite number of

solutions. With addition of one algebraic equation and a simple parameter, a unique
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solution can be selected. The novelty in our approach lies in the computation of lin-

early unstable, stationary traffic patterns that cannot be detected with corresponding

initial value solvers.



Chapter 2

Energy-Economic Model

In this chapter, an energy-economic model is presented with a Hubbert-like oil pro-

duction function and a classical economic production function. This work has been

submitted for publication [6]. The focus of this chapter is on the numerical techniques

for solving the DAE model and the results. An analytical solution does exist for a

particular case and is used to assess the accuracy of the numerical results.

2.1 The Hubbert Curve and Peak Oil Theory

In the 1950s, Hubbert proposed a model to predict the rate of oil production
dQ

dt
,

where Q(t) is the amount in barrels extracted up until year t [16]. The model was a

bell-shaped curve given by the following differential equation

dQ

dt
= bQ (R − Q) , (2.1.1)

8
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i.e., a logistic curve

Q(t) =
R

1 + ae−bRt
, (2.1.2)

where R represents the initial reserves in place, and a and b are positive parame-

ters used to fit the model to historical data, thereby allowing extrapolation of oil

production. Equation (2.1.1) has two parts, an exponential growth term, bQ, and

a geological constraint reflecting that it becomes increasingly difficult to extract oil

as Q → R. Obviously, we impose 0 ≤ Q ≤ R. Differentiating equation (2.1.2) with

respect to t gives the oil production curve E(t)

E(t) =
dQ

dt
=

bR2

4 cosh2[bRt/2 − ln(
√

a)]
(2.1.3)

which is symmetric about the peak at Q = R/2.

Using this model in 1956, Hubbert predicted the US oil peak of 1970 very accurately.

Since then, the model has been applied to other regions with surprising accuracy. If

the model can be applied to global oil production, the natural question is, when will

the global peak in oil production occur?

2.2 The Model

Historical data shows that world oil demand increases exponentially, except during

times of global recession. In order to meet this demand, production must also in-

crease at an exponential rate. Since oil is only a finite resource, at some point the

production rate must reach a plateau and then eventually the rate will also decrease.

Oil production in Norway, the UK, and the USA has already followed this trend at a
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Variable Description

E Rate of oil production (barrels / year)
K Capital, money invested ($ / year)
L Labour, population
pE Price of oil ($ / barrel)
Q Cummulative oil production (barrels)
Y Economic output, GDP ($ / year)

Table 2.1: Variables used in the model.

national level.

Our goal is to formulate equations for the world oil production that model this trend

and also incorporate economic factors such as capital investment in oil infrastructure

and labour. The following three sections cover the economic production function, the

price for oil and oil production.

Table 2.1 lists the variables which will be used in the model in the sections that follow.

2.2.1 Production Function

A production function specifies the output of a company, an industry or country

as an expression of all its inputs. For example, the revenues of a corporation (the

output) are modeled as a function of the labour, energy, materials and other costs

(the inputs).

The relationships between the inputs of a production function are an important as-

pect. One relationship is the elasticity of substitution, σ, a non-dimensional quantity

that models the ability to replace one input by another while maintaining the same

output.
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An example of substitution is the balance of labour and machinery in a factory. If

machinery could do all the work and no labour would be needed, then the elasticity of

substitution would be σ = ∞. This also implies that labour could completely replace

machinery. If on the other hand both labour and machinery are required and one

could not replace the other, then the elasticity of substitution would be σ = 0.

Regarding the relationship between capital, K, and energy, E

(

dQ

dt

)

, it is defined as

σ−1 = −
d log

[(

∂K
∂E

)

Y

]

d log
(

K
E

) =
d log

[

∂Y/∂E
∂Y/∂K

]

d log
(

K
E

) , (2.2.1)

where Y is output [22]. Later we make the assumption that all energy comes from

oil so E will be equivalent to the oil production rate.

Constant elasticity of substitution (CES) is a property of a production function. It

means that the elasticity of substitution remains constant within the model, indepen-

dent of the values of the input variables, K and E in our case.

Kemfert [18] used a two-level nested CES production function. Here, we will assume

a slightly simpler CES production function [17]

Y = Y (E,K,L) = [β(BE)ρ + (1 − β)Kρ]
α
ρ (AL)1−α, (2.2.2)

describing Y , the economic output or global GDP, where

ρ < 1, 0 < α, β < 1. (2.2.3)

In the above production function, A is labour productivity, B is energy efficiency,
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and L is labour. All three are assumed to grow exponentially with time as follows:

A(t) = A0e
gat, (2.2.4)

B(t) = B0e
gbt (2.2.5)

and

L(t) = L0e
glt. (2.2.6)

Exponential growth is a reasonable assumption since that matches with the trend in

historical data and will likely occur for the foreseeable future. It can be shown that

the constant parameter ρ in equation (2.2.2) determines the elasticity of substitution

between capital, K, and energy, E and relates to σ as follows

ρ = 1 − 1/σ. (2.2.7)

Since σ is defined on the domain 0 ≤ σ < ∞, ρ is defined on the domain −∞ < ρ ≤ 1.

There are three interesting limiting cases for ρ. For ρ → −∞, the substitution of

capital for energy is almost impossible and the resulting production function is

Y = [min{BE,K}]α (AL)1−α. (2.2.8)

When ρ ≈ 0, the substitution of capital for energy is fairly easy. The resulting

production function leads to a Cobb-Douglas model [12] which is solved analytically

in section 2.3

Y = [(BE)βK1−β]α(AL)1−α. (2.2.9)
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The most unlikely case within the current world economy is ρ → 1, which implies

that money (capital) is a perfect substitute for oil

Y = [βBE + (1 − β)K]α(AL)1−α. (2.2.10)

2.2.2 Price of Oil

In order to determine the price of energy, pE, we maximize the profit, MY , related to

the production function (2.2.2). The profit is given by the output minus all inputs

(or costs)

MY = Y − pEE − rKK − wL, (2.2.11)

where pE denotes the price of oil, rK the rent on capital, and w the wage for labour.

Next we maximize the profit with respect to oil and capital to get two equations,

∂MY

∂E
= 0 ⇒ pE =

∂Y

∂E
(2.2.12)

and

∂MY

∂K
= 0 ⇒ rK =

∂Y

∂K
. (2.2.13)

Taking the partial derivative of the CES production function (2.2.2) with respect to

E and K yields the following two relations

pE = α[β(BE)ρ + (1 − β)Kρ]
α
ρ
−1(AL)1−αβBρEρ−1ρ (2.2.14)
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and

rK = α[β(BE)ρ + (1 − β)Kρ]
α
ρ
−1(AL)1−α(1 − β)Kρ−1ρ. (2.2.15)

After dividing equation (2.2.14) by equation (2.2.15), we have an equation describing

K in terms of E,

K = E

(

(1 − β)pE

βBρrK

)
1

1−ρ

. (2.2.16)

Substituting this expression back into equation (2.2.14) yields the price of oil as a

function of oil consumption, E,

pE =
1

E1−α
αβBρ(AL)1−α

[

βBρ + (1 − β)

(

(1 − β)pE

βBρrk

)
ρ

1−ρ

]
α
ρ
−1

. (2.2.17)

This equation will be the algebraic constraint of the DAE system to follow. Note that

this implicit function for pE has a highly nonlinear pE term on the right hand side.

In section 2.4, the applied numerical methods incorporate a root solver and use the

rearranged explicit version of equation (2.2.17).

2.2.3 Supply of Oil

Based on Hubbert’s model and supported by Pickering’s recent research [25], oil pro-

duction should scale with remaining reserves, R−Q, which represents the geological

constraint. Oil supply should also scale with the amount of oil infrastructure, KE,

representing the capital investment in infrastructure such as pipelines and refineries.

These dependencies suggest a model for oil production as follows
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E =
dQ

dt
= C Kǫ

E(R − Q)1−ǫ, 0 < ǫ < 1. (2.2.18)

The oil extraction efficiency (or productivity) parameter, C, increases exponentially

with time,

C(t) = C0e
gct, (2.2.19)

which represents technological advancement in the industry which is certainly con-

tinuing into the near future. This is not efficiency in the strict sense which varies

between 0 to 100 percent but rather the number of barrels of oil that can be ex-

tracted per dollar of capital investment. Again, R are the initial oil reserves, Q is the

total oil extracted to date, and
dQ

dt
= E is the production rate, which are the same

as the terms in the Hubbert model from equation (2.1.1).

The exponents of ǫ and 1− ǫ are introduced to model diminishing returns on capital

and reserves. Oil production does not scale linearly with capital. As Q → R, it

becomes increasingly more difficult to produce oil. Hence, more capital is required

to extract every last drop. Pickering [25] proposed that ǫ be close to zero. A value

of ǫ = 0.1 will be used in this study unless stated otherwise. Figure 2.1 shows the

diminishing returns for two cases, fixed reserves and fixed capital.

Our model has the correct scaling characteristics, sometimes referred to as the repli-

cation argument [15]. The hypothesis is that if there were two identical copies of

planet Earth, the expectation is that there would be twice the oil production of one

single planet. In other words, doubling KE and R − Q results in doubling E.

Using the oil supply function (2.2.18), we can now derive a formula for the rate of oil
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Figure 2.1: Diminishing returns of the oil supply function (2.2.18): Solid line - oil
production rate, E, vs. oil capital, KE, for fixed remaining reserves, R − Q; dashed
line - production rate vs. remaining reserves, for fixed capital.

production,
dQ

dt
, as a function of the price of oil, pE. Oil industry profits, ME, are

determined by the revenues minus the costs

ME = pEE − rEKE, (2.2.20)

where rE is the rent on oil capital. Compared to the profit MY in equation (2.2.11),

ME is not a function of labour, L, and wage, w. It is assumed that labour costs

are insignificant compared to the capital requirements for the oil industry. The oil

industry is capital intensive, not labour intensive.
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The result of maximizing profits with respect to oil capital, KE, is

∂ME

∂KE

= 0 ⇒ ∂E

∂KE

=
rE

pE

. (2.2.21)

Differentiating equation (2.2.18) with respect to KE and solving for KE yields,

KE =

(

pE ǫC(R − Q)1−ǫ

rE

)
1

1−ǫ

(2.2.22)

= (R − Q)

(

pE ǫC

rE

)
1

1−ǫ

. (2.2.23)

Now we substitute KE into equation (2.2.18),

E = C

(

pE ǫC

rE

)
ǫ

1−ǫ

(R − Q)ǫ(R − Q)1−ǫ, (2.2.24)

which can be simplified to

E =
dQ

dt
= C

1
1−ǫ

(

pE ǫ

rE

)
ǫ

1−ǫ

(R − Q). (2.2.25)

The oil production function (2.2.25) is not only dependent on the usual variables,

initial reserves, R, and cumulative production, Q, but now also a function of the

price of oil, pE. This in turn makes oil production dependent on the variables from

equation (2.2.17), such as labour availability and productivity, which affect energy

demand. We also note that there is a linear scaling, E ∼ (R − Q), which is in line

with Pickering’s research [25].

We now have a model for the price of oil and oil production. Equations (2.2.17) and
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(2.2.25) can be re-written in semi-explicit form as follows:

dQ

dt
= C

1
1−ǫ

(

pE ǫ

rE

)
ǫ

1−ǫ

(R − Q), (2.2.26)

0 = pE − αβBρ[AL]1−α

E(Q, pE)1−α

[

βBρ + (1 − β)

(

(1 − β)pE

βBρrk

)
ρ

1−ρ

]
α
ρ
−1

. (2.2.27)

The DAE system is comprised of a first-order differential equation (2.2.26) for Q and

an algebraic constraint (2.2.27).

In section 2.3, we will see how the model can be solved analytically for ρ = 0. In all

other cases, the numerical methods presented in section 2.4 will be needed.

2.2.4 Parameter Values

In order to make use of the derived model, numerical values are required for the system

parameters such as the labour productivity A, energy efficiency B, and productivity

parameter C. Hanz determined the values as follows [14].

Kemfert made use of economic and industrial data to estimate substitution of elas-

ticities for the German chemical industry [18]. Although they are not global values,

they should provide an estimate for the energy efficiency parameter B to within an

order of magnitude and should allow reasonable results from the model.

The labour productivity parameter, A can be estimated by using the CES production

function (2.2.2), the previously determined value for B and some current oil industry

estimates for the remainder of the unknowns.

Using the oil production function (2.2.18) and oil industry estimates from British
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Petroleum [7], for the current production of E = 85 mbpd, capital invested, KE =

$ 1.4×1012, and cumulative production, Q = 1012 barrels, the productivity parameter

C can be determined.

Initial conditions required to obtain a solution are determined as follows. Q0(t0) is

chosen to be fixed for t0 = 1960 and Q0 = Q(t0) = 0.2 R. The initial value for pE(t0)

can then be determined by solving the algebraic constraint (2.2.27). Evaluating the oil

production function (2.2.26) determines the initial production rate. Only one of the

three variables pE, Q or
dQ

dt
can be chosen and then the other two can be determined

by the system. This could be considered to be a weakness of the model. We chose to

select Q.

Table 2.2 lists all the parameters and their values for the model.

2.3 Results: An Analytical Model (ρ → 0)

There are several limiting cases for the CES production function shown in equations

(2.2.8) to (2.2.10). The case of ρ → 0 is particularly interesting because it is possible

to be solved analytically.

After taking the limit as ρ → 0 for equation (2.2.17), we obtain (proof by L’Hôpital’s

rule [6])

pE = β

(

αBαβ(1 − β)α(1−β)

r
α(1−β)
K

)
1

1−α(1−β) (

AL

E

)
1−α

1−α(1−β)

. (2.3.1)

Substituting this result into the our production function (2.2.25) we get

dQ

dt
= D (R − Q)E−

1−α
1−α(1−β)

ǫ
1−ǫ egt, (2.3.2)
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Parameter Description Value

A Labour productivity 2.98 × 105 $
B Energy efficiency 273 × 106 $/mega barrels
C Oil extraction

efficiency/productivity 1.5 × 10−3 $1−ǫ mega barrelsǫ−1

ga Growth rate of labour
productivity 0.03 year−1

gb Growth rate of
energy efficiency 0.015 year−1

gc Growth rate of
oil extraction
efficiency/technology 0.015 year−1

gl Population growth rate 0.01 year−1

Q0 Initial cumulative
production 0.2 R

rE Rent on oil capital 0.1
rK Rent on capital 0.1
R Initial reserves 2.2 trillion barrels
α 0.3
β 0.066
ǫ 0.1

Table 2.2: Parameter values used in the model.
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where D is a collection of parameters and g is a function of parameters as follows:

D =D(A0, B0, C0, α, β, ǫ, rE, rK), (2.3.3)

g =g(ga, gb, gc, gl; α, β, ǫ). (2.3.4)

Equation (2.3.2) can further be simplified by defining a new parameter γ as

γ =
1 − α

1 − α(1 − β)

ǫ

1 − ǫ
, (2.3.5)

which results in the simplified equation

dQ

dt
= D (R − Q)E−γegt. (2.3.6)

E can be moved to the left-hand size by using the identity, E =
dQ

dt
, yielding

(

dQ

dt

)1+γ

= D (R − Q)egt. (2.3.7)

Finally, a first-order ODE for oil production is given by

dQ

dt
= D

1
1+γ (R − Q)

1
1+γ eGt, (2.3.8)

where G = g/(1 + γ).

By separating Q to the left hand side and t to the right hand side

dQ

(R − Q)
1

1+γ

= D
1

1+γ eGtdt, (2.3.9)
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this can be integrated as follows

∫ Q(t)

Q0

dQ′

(R − Q′)
1

1+γ

=

∫ t

t0

D
1

1+γ eGt′dt′, (2.3.10)

where Q0 = Q(t0). After integration, solving for Q(t) results in the cumulative oil

production function

Q(t) = R −
[

(R − Q0)
γ

1+γ +
D

1
1+γ

G

(

eGt0 − eGt
)

]
1+γ

γ

, (2.3.11)

which cannot exceed R.

The oil production function can be determined by differentiating equation (2.3.11)

with respect to time

E(t) =
1 + γ

γ

[

(R − Q0)
γ

1+γ +
D

1
1+γ

G

(

eGt0 − eGt
)

]
1
γ

D
1

1+γ eGt. (2.3.12)

Figure 2.2 shows a graph of the analytical solution for the oil production function

(2.3.12). Total reserves of R = 2.2 trillion barrels from [7] and the initial cumulative

production in t0 = 1960 is chosen to be Q0 = 0.2 R, which is in line with historical

data. All other parameter values are from Table 2.2.

Unlike the Hubbert graph, this curve is certainly not symmetric about the production

maximum. After peak production, the decline is much steeper than the approach to

the peak. Also, Hubbert’s model required an infinite amount of time for all the

reserves to be extracted. In contrast, Q(t) = R in a finite amount of time, given

equation (2.3.11), at which point oil production will be zero.
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Figure 2.2: Analytical solution: Oil production vs. time for ρ = 0.

Figure 2.3 shows how sensitive the production curve is to the parameter for diminish-

ing returns on capital, ǫ. A slight change from the reference value ǫ = 0.10 changes

the height and year of the peak quite dramatically. Smaller values of ǫ cause earlier

and higher peaks. This can be explained by looking at the relationship between oil

supply and ǫ in equation (2.2.25) for ǫ ≪ 1,

E ∼ p
ǫ

1−ǫ

E ≈ pǫ
E. (2.3.13)

For small values of ǫ, supply is not sensitive to the price, pE. With this inelastic

demand, there is higher consumption so the peak occurs earlier. The area under the

curves in Figure 2.3 are the same which means that a higher peak will imply a steeper

decline.

Additionally, the analytical solution can be used to observe the sensitivity of the
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Figure 2.3: Oil production for ρ = 0 and three different values of ǫ.

growth parameters, gi. Figure 2.4 shows the resulting oil production curves for the

growth parameter values listed in Table 2.2 and for a second case where all growth

rates are zero for the no-growth case. Most notable when comparing the two curves

is that the rate of decline of oil production is slow for the no-growth case and much

steeper for the positive growth rates. Higher energy efficiency, oil extraction efficiency

and labour productivity result in the production peak being pushed out further in

time. However, because there is only a fixed amount of oil in the ground, higher

efficiency and productivity result in a faster decline past the peak.

2.4 Numerical Methods

In the previous section, the model was solved analytically for the case ρ → 0. This

implies that the substitution of capital for energy is easy, which is not true in most
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Figure 2.4: Oil production with non-zero exponential growth factors, gi 6= 0, and with
zero exponential growth factors, gi = 0.

cases. Thus solving the model for arbitrary values of ρ is desirable to see the impact on

oil production and energy prices. Since solving the model analytically is not possible,

the DAE system will need to be solved numerically.

We first start by characterizing the DAE system. The system can be quickly deter-

mined to be a non-linear, semi-explicit DAE. It is harder to determine the index at

first glance. We start by re-writing the system of equations (2.2.17) and (2.2.25) in

terms of the time-varying variables,

E =f(C, pE, Q), (2.4.1)

pE =g(A,B,E, L, pE), (2.4.2)
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with

f(C, pE, Q) =
dQ

dt
= C

1
1−ǫ

(

pE ǫ

rE

)
ǫ

1−ǫ

(R − Q), (2.4.3)

g(A,B,E, L, pE) =
1

E1−α
αβBρ(AL)1−α

[

βBρ + (1 − β)

(

(1 − β)pE

βBρrk

)
ρ

1−ρ

]
α
ρ
−1

.

(2.4.4)

To find the index we take the derivative of equations (2.4.1) and (2.4.2) with respect

to time

E ′ =
∂f

∂C
C ′ +

∂f

∂pE

p′E +
∂f

∂Q
Q′, (2.4.5)

p′E =
∂g

∂A
A′ +

∂g

∂B
B′ +

∂g

∂E
E ′ +

∂g

∂L
L′ +

∂g

∂pE

p′E. (2.4.6)

Substituting equation (2.4.5) into equation (2.4.6) and rearranging all the p′E terms

to the left hand side, we get

(

1 − ∂g

∂E

∂f

∂pE

− ∂g

∂pE

)

p′E =
∂g

∂A
A′+

∂g

∂B
B′+

∂g

∂E

(

∂f

∂C
C ′ +

∂f

∂Q
Q′

)

+
∂g

∂L
L′. (2.4.7)

In order for the DAE to be of index 1, we need
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1 − ∂g

∂E

∂f

∂pE

− ∂g

∂pE

6= 0. (2.4.8)

Next we determine the three partial derivatives in equation (2.4.8) by taking partial

derivatives of equations (2.4.3) and (2.4.4).

∂f

∂pE

=
ǫ

(1 − ǫ)pE

E, (2.4.9)

∂g

∂E
=

α − 1

E
pE, (2.4.10)

∂g

∂pE

=

(

α

ρ
− 1

)(

ρ

1 − ρ

) (1 − β)
(

(1−β)pE

βBρrk

)
ρ

1−ρ

βBρ + (1 − β)
(

(1−β)pE

βBρrk

)
ρ

1−ρ

. (2.4.11)

To determine the constraint, substitute equations (2.4.9)-(2.4.11) and simplify to yield

1 − (α − 1)
ǫ

(1 − ǫ)
−

(

α

ρ
− 1

) (

ρ

1 − ρ

) (1 − β)
(

(1−β)pE

βBρrk

)
ρ

1−ρ

βBρ + (1 − β)
(

(1−β)pE

βBρrk

)
ρ

1−ρ

6= 0. (2.4.12)

The left side of equation 2.4.12 is always positive for the parameters in Table 2.2 and

so the DAE system is of index 1. One case where the equation (2.4.12) could be zero

is when α = ρ = 1
ǫ
. Since ρ ≤ 1 and 0 ≥ ǫ ≥ 1, the only case that is valid is when all

three parameters are 1. This is highly unlikely given that ρ = 1 implies that capital

is a perfect substitute for oil.

Since we have already taken the derivative of the algebraic constraint and found that
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the system can be made into an explicit ODE, we can find the solution using an

ODE code like ODE45. The initial conditions must satisfy the original DAE system.

The process of transforming the DAE into an explicit ODE is certainly tedious and

certainly not desirable. In most cases and for large high-order DAE systems, it is not

even feasible.

In Hanz’s research [14], a split-step method is used. First the ODE production

function is solved with a fourth-order Runge-Kutta method, assuming pE is constant.

Then after solving for Q, pE is determined by solving the equation (2.2.27) with a

non-linear root solver. For a small enough time step, the split-step method does yield

an equivalent solution. However, this is not a solid numerical approach, since both

ODE and the algebraic constraint are not solved simultaneously.

An enhancement to the split-step method is to satisfy the algebraic constraint (2.2.27)

for each stage of the Runge-Kutta method, breaking the assumption that pE is con-

stant while calculating Q. In general, explicit Runge-Kutta methods take on the

following form [1]

yn+1 = yn + ∆t
s

∑

i=1

biki, (2.4.13)

ki = f(tn + ci∆t, yn + ∆t
s

∑

j=1

ai,jkj). (2.4.14)

The split-step method keeps pE constant for all ki which are the outputs of each stage

of the Runge-Kutta method which are values of Q̇. However, this enhanced method

solves the complete DAE (2.2.26) and (2.2.27) using the function f in equation (2.4.14)



2.4. Numerical Methods 29

for each ki. That is, each ki is a two element vector of pE and Q̇. There is no general

code for this method so it was implemented for a classical RK4 method with a fixed

step. We call this method a one-step method because it has a form similar to the

class of ODE methods of the same name.

As described in section 1.1.2, DASSL is a code that solves implicit DAEs using a

BDF method. To maximize efficiency, DASSL uses polynomial extrapolation to get

the initial guess for the next step. This reduces the number of iterations that need to

be done in the non-linear solver. It also handles step-size reduction as well as setting

the order of the BDF method appropriately.

To get an understanding of the intricacies of a DAE solver, we wrote a fourth-order

fixed-step BDF method. The method followed the generic DAE BDF method from

equation (1.1.10).

The challenge with an order k BDF method is that we require k initial values which

are accurate to order k. We solve this problem by initializing the solution with an

order 1 BDF with a reduced step-size and then grow the step-size and increase the

order. The following relation must hold: hk ≥ hkr
r , where h and k are the desired

step-size and order and hr and kr are the reduced step-size and order, respectively.

For a step-size of h = 0.1 years and the desired order k = 4, the initial step-size was

hr = 0.0001 and kr = 1 until there were enough points to move up to order 2, 3 and

eventually 4. Overall this code did not implement any of the complicated options

provided in DASSL, such as variable step-size adjustment or local error control, just

to name a few.

Having an analytical solution for ρ = 0 provides a benchmark to compare all the
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solutions from the different numerical methods. The analytical solution provides a

metric to check how large the global error is for each method. Figure 2.5 shows

the relative error from the analytical solution to the DASSL solution, the ODE45

solution, the fixed-step BDF solution and the fixed-step one-step method. Both fixed-

step methods used a time step of ∆t = 0.1 years, or equivalently 900 evaluations.

Both adaptive-step methods used a local relative error tolerance of 1 × 10−6. This

resulted in ODE45 using 105 evaluations while DASSL used only 91 evaluations.

When comparing relative error, all methods did equally well as shown in Figure

2.5. Overall DASSL is superior to the fixed-step methods when considering accuracy

per computation. DASSL and ODE45 performed similarly, however DASSL has the

advantage that it can solve the DAE directly without transforming the system of

equations into an ODE.

2.5 Results: Arbitrary ρ

Using DASSL, the solution curves for the rate of oil production,
dQ

dt
, and the price

of energy, pE, can be determined for various values of ρ. Figure 2.6 shows the rate

of oil production which has the right order of magnitude (oil production in 2007 was

approximately 85 mbpd, or 31 giga barrels per year or 3.1 × 104 mega barrels). As ρ

gets smaller, that is smaller elasticity of substitution, the production peak is higher

and the decline afterwards is steeper. For larger ρ, the peak is pushed out later in

time. None of the curves exhibit the symmetry seen in the Hubbert curve.

Figure 2.7 shows the corresponding price of energy which is too high by a factor of

10-50. The model assumes that energy is supplied entirely by oil, compared to 38
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Figure 2.5: Relative error from the analytical model of oil production for ρ = 0 for
four numerical solutions.

percent in reality according to British Petroleum [7]. When selecting parameters, the

German chemical industry was used as a proxy for the average world economy. The

result of this assumption is higher energy prices since the demand in our model is

much higher than in reality. Note that all curves in Figure 2.7 are monotonically

increasing. A more advanced model is required to model price decrease when another

form of energy replaces oil.

By increasing the value of the parameter C compared to the previous set of simu-

lations, the production peaks occur earlier and their magnitude approaches current

production levels. Results are shown in Figure 2.8. An interesting property of this

set of parameters is that all the production curves intersect at year 2020. There does

not seem to be an apparent or obvious explanation for this effect.
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Figure 2.6: Oil production curves for various values of ρ, ranging from −0.5 to 0.5 in
increments of 0.1, and C = 1.5 × 10−3. The thick line represents ρ = 0.

Figure 2.9 shows the corresponding price of energy curves. Compared to Figure 2.7,

the price of energy decreases with an increase in C.

For some conclusions regarding this model, we refer to chapter 4.



2.5. Results: Arbitrary ρ 33

1960 1980 2000 2020 2040 2060
10

7

10
8

10
9

10
10

10
11

10
12

10
13

time

oi
l p

ric
e 

[d
ol

la
r 

pe
r 

m
eg

a 
ba

rr
el

]

ρ=−0.5

ρ=0.5

Figure 2.7: The price of oil corresponding to the production curves in Figure 2.6. The
thick line represents ρ = 0.
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Figure 2.8: Oil production curves for various values of ρ, ranging from −0.5 to 0.5 in
increments of 0.1, and C = 2.5 × 10−3. The thick line represents ρ = 0.
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Figure 2.9: The price of oil corresponding to the production curves in Figure 2.8. The
thick line represents ρ = 0.



Chapter 3

Traffic Flow Modeling

In this chapter, microscopic and macroscopic models for traffic flow are presented.

Numerical methods for transient and steady-state analysis of the macroscopic model

are provided with solutions for traffic flow on a loop with a bottleneck. In particular,

we aim to produce results of the microscopic model by use of an analogous macroscopic

model. The chapter concludes with a discussion of solutions for cases when the system

is linearly unstable.

3.1 Microscopic Model

A certain type of microscopic model for vehicle traffic on a road is introduced by

Bando et al. [4]. Each vehicle is modeled as a point, that is, having no length, and

traveling along a one-dimensional road. Cars follow the car in front and passing is

not allowed. The equations that govern the movements of vehicle n, are

35
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ẋn = vn, (3.1.1)

v̇n = λ[Vop(hn) − vn]. (3.1.2)

Here, hn is called the headway, which is the length of open road ahead of car n. For

all cars but the lead car, we have

hn = xn+1 − xn, (3.1.3)

which provides a uni-directional coupling between vehicles in equation (3.1.2). More-

over, Vop is called the non-dimensional optimal velocity (OV) function and is intro-

duced by Bando et al. as

Vop(h) = tanh(h − 2) + tanh(2). (3.1.4)

It represents the velocity that a driver would like to follow a vehicle with, given a

headway h. Figure 3.1 shows the optimal velocity function. It is always positive, so

cars always try to move forward. The fastest velocity a car can assume is 1+tanh(2).

The sensitivity parameter λ determines how fast a car responds or how much it is

coupled to the vehicle it is following. Bando et al. provide the linear stability criteria

for λ for uniform car spacing h as

V ′

op(h) <
λ

2
, (3.1.5)
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Figure 3.1: Optimal velocity function.

by performing Fourier mode analysis for the linearized system about the steady-state

flow on a loop without a bottleneck. By taking the derivative of the optimal velocity

function and finding the maximum, a requirement for unconditional linear stability

independent of h can be determined to be

λ > 2. (3.1.6)

In general, however, the critical value, λcrit, for the given optimal velocity function

(3.1.4) and uniform spacing h is

λcrit = 2 sech2(h − 2). (3.1.7)
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All values of λ above the curve shown in Figure 3.2 equate to a linearly stable model

while values of λ below the line correspond to instability. In the latter case, small per-

turbations to the initial uniform flow result in the formation of stop-and-go patterns.

Indeed if equation (3.1.6) holds, then the flow is linearly stable for all h.
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Figure 3.2: Critical values of λ for linear stability.

3.1.1 On a Loop

Ward et al. [26] looked at the one-dimensional car-following model on a loop or ring

road including a bottleneck. N cars travel around the loop of length L. When cars

reach the position xn = L, they start back again at the beginning of the road at

position xn = 0. The headway hn is the same as equation (3.1.3) except that the lead

car, N , has a headway with respect to car 1 given by
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hN = L + x1 − xN . (3.1.8)

A bottle neck is added to a segment of the road, where all vehicles must reduce

their speed. The bottle neck is of length L̂L where 0 < L̂ < 1. The reduced speed is

achieved with a reduction factor rB, where 0 < rB < 1. The optimal velocity function

from equation (3.1.4) is modified to also be a function of position as follows

Vop(h, x) =











rB(tanh(h − 2) + tanh(2)), 0 ≤ x < L̂L,

(tanh(h − 2) + tanh(2)), L̂L ≤ x < L.
(3.1.9)

Ward et al. showed the dependence of the emerging steady-state traffic patterns on

three key parameters, the mean headway, h∗ = L/N , the length of the bottle neck, L̂,

and the reduction factor rB. Results are presented for rB = 0.6, N = 100, L̂ = 0.25,

λ = 3 and h∗ = 7, 2.5 and 1, corresponding to light, medium and heavy traffic,

respectively.

In steady-state, found as t → ∞ the traffic pattern does no longer change its shape.

The flux of cars, Q, is constant and given by the following equation

Q = ρv, (3.1.10)

where



3.1. Microscopic Model 40

ρ =
1

h
. (3.1.11)

At steady-state, the vehicles’ velocities approach the optimal velocity, Vop, except

near shock fronts. Substituting Vop

(

1

ρ

)

for v, we generate the flux of vehicles in the

bottle neck and for the open road.
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Figure 3.3: Four constant-flux scenarios for traffic flow on a loop with a bottle neck:
Case 1: light traffic, Case 2: heavy traffic, Case 3: light traffic in bottleneck, heavy
traffic on the open road, Case 4: heavy traffic in bottleneck, light traffic on the open
road.

Figure 3.3 presents four possible scenarios for steady-state flux. Ward et al. showed

that cases 1 and 2 represent light and heavy traffic, while cases 3 and 4 can be

disregarded since each has a non-stationary expansion fan, i.e. a dispersive shock
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front that does not allow for a stationary flow pattern. Cases 1 and 2 are two-plateau

solutions. For example, light density traffic can be described by line 1. The open

road traffic density plateau has the value on the left side of line 1, where it intersects

with the upper flux curve for the open road. Similarly the bottle neck traffic density

is given by the point on the right side of line 1 which intersects with the lower flux

curve representing the flux in the bottle neck. Qmax represents the highest allowable

flux in the system at steady-state. This is the maximum flux allowable based on

the reduction factor rB in the bottle neck. ρ@Qmax
is the corresponding density and

is approximately 0.36. It is independent of rB. The upper limit of light traffic and

the lower limit of heavy traffic are determined by a bottle neck density ρ@Qmax
of

maximum flux. Medium traffic is in between light and heavy. It has a constant flux

of Qmax inside the bottleneck and a density of ρ@Qmax
. Medium traffic has three

plateau values which remain constant. However the widths of the plateau values

depends on the average density, ρ∗.

3.2 Macroscopic Model

We will now consider a continuum description of cars, based on PDEs for velocity

and density, the latter of which replaces the headway h in discrete models. Berg

et al. [5] and Lee et al. [20] both developed macroscopic models based on Bando

et al.’s microscopic model by coarse graining the microscopic variables to obtain a

macroscopic description of traffic flow. The macroscopic models preserve the stability

criteria as presented in equation (3.1.5).

The models were developed by means of an approximation of the headway in terms
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of the density. When doing so, it is unreasonable to assume hn(x, t) = ρ−1(x, t). Lee

et al. showed with a counterexample that this relation does not take directionality

into account. Instead the density should be evaluated at the midpoint between two

vehicles

hn(x, t) = ρ−1

(

x +
1

2ρ(x, t)
, t

)

. (3.2.1)

The corresponding macroscopic traffic flow model is a system of partial differential

equations (PDEs), given by a conservation equation

ρt + (ρv)x = 0 (3.2.2)

and a momentum equation

vt + vvx = λ[Vop(ρ
−1) − v] −

λV ′

op

2ρ3
ρx +

λ

6ρ2
vxx. (3.2.3)

Numerical comparisons show a good match between the velocity profiles of the mi-

croscopic model and the macroscopic model for certain flow regimes. We aim to use

this model for the study of the bottleneck.

3.3 Numerical Techniques

In order to solve the macroscopic equations, we need to discretize the PDE system

on a grid. Assuming non-homogeneous grid spacing, a spatial function y can be
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discretized regarding its derivative yx for grid point i as

yx ≈ yi+1 − yi−1

xi+1 − xi−1

(3.3.1)

and the discretization of yxx for grid point i is

yxx ≈

yi+1 − yi

xi+1 − xi

− yi − yi−1

xi − xi−1

xi+1 − xi−1

2

. (3.3.2)

Both expressions are O((∆x)2). Since we are interested in simulating on a loop, for

the last grid point N , i + 1 will coincide with the first grid point. Similarly, for the

first grid point, i − 1 will coincide with the last grid point N . This can be achieved

in the code by either direct implementation with condition statements based on the

grid point index, or the vector can be increased by two and ghost cells can be added.

For a vector index from 1 to N , ghost cells would be the two additional cells indexed

by 0 and N + 1. Whenever index 1 is updated so would the ghost cell with index

N + 1 and similarly N and 0.

3.3.1 Transient Analysis

We will now summarize several numerical techniques that were employed in the tran-

sient case. The simplest numerical method for solving initial value problems is the

explicit Euler method. The system can advance by a simulation step-size of ∆t with

only the previous state of the system and a single evaluation of the derivative as
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follows

yn+1 = yn + ∆t f(tn, yn). (3.3.3)

For our initial conditions we can use the plateau values of ρ based on Figure 3.3.

To transition between the plateau values, we can use a piecewise linear function or

a smooth function like tanh(x). Figure 3.4 shows the difference between piecewise

linear initial conditions and smooth initial conditions after simulating up to t = 50.

Figure 3.4a shows some high frequency noise which is introduced because of the dis-

cretization of the grid and the non-smooth initial conditions. It is important that

initial conditions are smooth as in Figure 3.4b so that there are no discontinuities in

the finite difference schemes regarding yx and yxx. Piecewise linear initial conditions

are undesirable since the discretized first derivative, yx, is discontinuous so the sec-

ond derivative, yxx, grows as the mesh becomes finer with the spatial mesh distance

becoming smaller.

With a higher-order method, a large step-size can be taken and thus a shorter sim-

ulation time to compute the simulation can be achieved. Another simple method to

implement is the classical fourth-order Runge Kutta method (RK4), described in

2.4.

Figure 3.5 compares the results for the Euler and RK4 fixed step methods. Figure

3.5a shows the Euler method for a fixed step-size of ∆ = 0.001. This is the largest

time-step for which the method is stable. Figure 3.5b shows the obvious instability

of the Euler method for a larger step size of ∆ = 0.005. The RK4 method is stable
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Figure 3.4: Simulations of light traffic for piecewise linear and smooth initial condi-
tions (N=1000).

up to ∆ = 0.009, determined by empirical observation, as shown by Figures 3.5c and

3.5d. The RK4 method requires 3 function evaluations per step, where the Euler

method needs only one. However, since the RK4 method can take a step which is 9

times larger, it is still more efficient. This comes as no surprise that the RK4 method

outperforms the most simple method, the Euler method.

Both the explicit Euler method and the RK4 method are fixed step methods, meaning

that a fixed step size is selected at the beginning of the simulation, based on the

system, such that it is stable. In contrast, embedded methods provide local error

control and are able to adjust the step size based on a provided error tolerance. An

estimate for the local error can be determined by taking the difference between two

methods, one of order p and the other of order p−1. Embedded methods make use of

the same function evaluations for both methods, the order p− 1 method is embedded

in the order p method.
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Figure 3.5: Simulations of light traffic using fixed step methods.

The Fehlberg method is an order 4-5 method. It has six stages, however, the first

stage is the same as the previous time step, so it only requires five function evaluations.

The coefficients have been optimized to reduce the error in the fourth-order method.

ODE45, often used in MatLab, uses the Dormand-Prince method. It is an order 4-5

method, however, it has seven stages but requires only six function evaluations and

is optimized to reduce the error of the fifth-order method.
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The GNU Scientific Library (GSL) [13] is a numerical library with many routines and

a large reference manual intended for C and C++ programmers. RKF45 is a routine

which implements Felhberg method.

Figure 3.6 presents similar results to Ward et al.’s findings for λ = 3 for the RKF45

method for a homogeneous spatial mesh of 1000 points. Medium and heavy traffic

density settle to steady-state quickly. Light traffic in Figure 3.6a still has not con-

verged to a steady-state. There is still a small traveling wave at time t = 100, 000 at

the position x = 500.

One way to reduce the run time of the transient simulations is to coarsen the spatial

mesh by increasing the step-size. Given the steep transitions between the plateaus,

reducing the number of mesh points is not a reliable option. A non-homogeneous mesh

with a higher concentration of grid points in the vicinity of the transitions seems like

a good idea. However, there are traveling waves, which can be seen in Figure 3.4b

which would be hard to capture in the less dense areas of the mesh. Another option

would be to allow the grid to move to capture the traveling wave. Fewer grid points

could be used but more equations would be needed.

Petzold [11] generalized the moving mesh method for the following general system

F (ut, u, ux, uxx) = 0. (3.3.4)

The system of equations (3.2.2) and (3.2.3) can easily be manipulated to match this

general form. It is important to note that since x is now moving, x′, the mesh velocity,

is no longer zero. Accordingly, we find
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du(x, t)

dt
=

∂u(x, t)

∂x

dx

dt
+

∂u(x, t)

∂t
. (3.3.5)

Rearranging for ut and substituting into the general system (3.3.4) leads to

F (u′ − uxx
′, u, ux, uxx) = 0. (3.3.6)

Petzold also suggested an equation to move the mesh points as follows

αx′ + u′ux = 0, (3.3.7)

for an appropriate value of α. Allowing the mesh points to move requires an additional

N equations, bringing the total to 3N : one for the density, velocity and position of

each grid point. For a static mesh of size N = 1000, the equivalent moving mesh is

chosen to be N = 667 to offset the extra function evaluations. In total, both systems

have 2000 variables. Figure 3.7 shows the result for the moving mesh system (α = 10).

The majority of mesh points do not move and stay in their original position. The

points associated with the transition regions move along with the density function

ρ. Unfortunately, the final solution has some noise and is not as smooth as desired.

Figure 3.8 shows the result for a homogeneous mesh of size N = 667 which is much

smoother. In this sense, this moving mesh approach must be considered unsuccessful.
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3.3.2 Steady-State Analysis

Since the transient simulations take a very long time to converge to a steady-state,

another method for quick steady-state analysis is desirable. The steady-state is ob-

tained in the limit as ρt → 0 and vt → 0. By rearranging the equations (3.2.2) and

(3.2.3), we find

ρt = −(ρv)x, (3.3.8)

vt = −vvx + λ[Vop(ρ
−1) − v] −

λV ′

op

2ρ3
ρx +

λ

6ρ2
vxx. (3.3.9)

Newton’s method, as shown below, can be used to solve for the steady-state solution.

We write formally for the Newton scheme to solve F (y) = 0

∂F

∂y
(y)δ = −F (y), (3.3.10)

yv+1 = yv + δ. (3.3.11)

Using the equations (3.3.8) and (3.3.9) directly does not achieve the correct result.

Figure 3.9 shows the number of cars is no longer being conserved. The key is to treat

equation (3.3.8) simply as a constraint that can be converted to

Q = ρv, (3.3.12)
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where Q is a constant. There are an infinite number of solutions to our steady-state

problem. To select a unique solution, we seek a parametrized equation. In fact, there

are two reasonable choices for the parameter: Q, the flux, or ρ∗, the average density.

Since we are trying to conserve density and ρ∗ can easily be determined from the

initial condition, the following equation is added to the system

ρ∗ =
1

L

∫

ρ dx. (3.3.13)

Moreover, ρ∗ defines the system uniquely where Q leaves at least two possible solutions

(see Figure 3.3).

The problem now is that our system seems overdetermined. The system is still consis-

tent as the additional constraint (3.3.13) has only been introduced to limit the number

of solutions. For a mesh of size N , there are 2N variables to be solved for 2N + 1

equations. In Newton’s method, we are trying to solve a system of the form Ax = b.

DGELS is a routine provided in the Linear Algebra PACKage (LAPACK) [19] which

finds the linear least squares solution for problems of that form for overdetermined

systems using QR factorization. Remember that without the constraint (3.3.13), we

have infinitely many solutions.

QR factorization can be performed as follows: A = QR is an m × n matrix where

m ≥ n, Q is an orthogonal m×m matrix and R is an upper triangular m×n matrix

where the last m − n rows are zero
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Ax = b,

QRx = b,

QT QRx = QT b,

Rx = QT b.

Since R is an upper triangular matrix, elements of x can easily be determined in

reverse order, using only the previously determined elements.

Another modification that can be made to Newton’s method is to include dynamic

step scaling. Equation (3.3.11) takes a full step of δ. With a small modification, the

step size is modified as follows

yv+1 = yv + αδ. (3.3.14)

α is chosen such that no element of the solution vector y changes by more than 5%

every iteration

0.05 ≥ α
δi

yi

i = 1 . . . 2N (3.3.15)

Figure 3.10 shows how the scaling factor α changes over the first six iterations of
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the heavy traffic simulation. As the solution converges, the steps are smaller and the

scaling is increased to 1, so that full steps are taken.

Iterative methods require a convergence check. Rather than simply checking the

absolute error, instead the maximum absolute error for the last three iterations are

required to be within 0.5%. Figure 3.11 shows the convergence of the algorithm for

light traffic.

Despite all the improvements, Figure 3.12 shows that there are some high frequency

oscillations. Note that the largest absolute error is 3 × 10−13 so the solution has

converged but yet this solution with the high frequency oscillations is not expected.

We expect to see a smooth solution for the density of vehicles. Upon further investi-

gation, Figure 3.12b shows the oscillations at the grid points. These oscillations are

introduced by the discretization of yx from equation (3.3.1). By blending the centered

finite difference and the forward finite difference, the oscillations due to discretization

can be removed

yx ≈ β
yi+1 − yi−1

xi+1 − xi−1

+ (1 − β)
yi+1 − yi

xi+1 − xi

. (3.3.16)

This is almost but not exactly an upwinding technique [21]. A true upwinding scheme

takes into account the direction of the movement and applies either the forward or

backward biased finite difference. Figure 3.13 shows the solutions for β = 0.001 for

light, medium and heavy traffic flows.

The solutions for steady-state match well with the final time step profiles for the

transient analysis for medium and heavy traffic densities. For light densities, the cars

are weakly coupled so it takes a long transient simulation for a stationary profile to
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appear. Figure 3.6a does not match exactly Figure 3.13a since even at t = 10000 the

transient traveling wave still has not completely dampened out.

A transient simulation does provide more information than just the final steady-

state profile. However, if all that is desired is the final stationary profile then the

steady-state simulation is far more efficient. Table 3.1 shows the number of function

evaluations required to compute the steady-state profile when performing transient

analysis and steady-state analysis. On average, the transient simulation requires 100

times more function evaluations. The steady-state simulation method could be fur-

ther reduced with the implementation of a real Jacobian function. Currently the

majority of function evaluations are performed to determine the Jacobian by numer-

ical differences.

Runtime of the simulations takes on the order of minutes to hours. In order to achieve

the same result in a shorter amount of time, parallel computations are desirable. The

system of 2N +1 functions can be easily broken up and evaluated in parallel. All eval-

uations require only data from the previous time-step so there are no dependencies.

The function can be considered perfectly parallel. OpenMP [23] provides a simple

API to automatically transform a serial loop into a block of parallel code with one

simple line.

#pragma omp parallel for shared(<variables>) private(<variables>)

The #pragma statement tells the compiler that the next for loop should be made

parallel and lists the shared and private variables.
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Transient Steady-state
Light 6,087,383 23,995
Medium 1,118,626 63,985
Heavy 4,380,370 43,990

Table 3.1: Number of system function evaluations required.

3.4 The Linearly Unstable Regime

In the previous sections, λ = 3 so the model always remained linearly stable. By using

equation (3.1.7) the critical value for λ can be determined for each plateau density.

For heavy traffic flow, the λ values associated with the plateau densities are λ = 0.86

for the bottle neck and λ = 0.733 for the open road. Figure 3.14 shows the steady-

state solutions are very close for all three values of λ. Transient simulation converges

for λ = 0.86 but fails for λ = 0.733. Figure 3.15 shows that for λ = 0.733 the

transient simulation is close to the steady-state solve at t = 4000 but by t = 8000

the simulation has started to diverge. It is interesting how similar the steady-state

simulations are for the various λ values in Figure 3.14 while the transient simulations

are unstable and, hence, very sensitive to a change in λ. Hence, we have developed

a numerical tool, i.e. the steady-state solve, that allows us to determine steady-state

solutions that are unstable and, hence, never observed in transient simulations.

For medium traffic flow, the values of λ for each of the plateaus are λ = 0.698 for

the bottle neck, λ = 0.006 for the first section of the open road and λ = 1.64 for

the denser final section of the open road which is the queue of traffic waiting to get

into the bottle neck. Figure 3.16 shows the flow for λ = 3, 1.64 and 0.698 using

the steady-state solver. λ = 0.006 is far too small. It is important to note that as
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λ → 0, the vehicles are no longer coupled and do not adjust their speed based on the

vehicle they are following. There are infinitely many solutions for λ = 0 determined

by ρx = 0 and vx = 0.

The transient simulation is successful in determining the steady-state solution for

λ = 1.64. Figure 3.17 shows that for λ = 0.698, the density becomes unstable at the

beginning of the bottle neck, which is the transition between the two linearly unstable

plateaus.

Light traffic has very low density and small λ values associated with the plateaus.

In the bottle neck, λ = 0.015 and for the open road λ = 3.5 × 10−5. Figure 3.18

shows that λ = 0.015 is so small that the plateau value is never reached. λ = 0.05 is

approximately the smallest λ to reach the plateau value in the bottle neck. In terms

of transient simulation, λ = 0.015 is too small.



3.4. The Linearly Unstable Regime 56

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 100 200 300 400 500 600 700

ρ

x

t = 10000

(a) Light

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250

ρ

x

t = 500

(b) Medium

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

ρ

x

t = 5000

(c) Heavy

Figure 3.6: Transient traffic simulation for light, medium and heavy traffic densities
(λ = 3).
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Figure 3.7: Heavy traffic simulation for a moving spatial mesh of N = 667 points.
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Figure 3.8: Heavy traffic simulation for a homogeneous spatial mesh of N = 667
points.
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Figure 3.10: Dynamic step size scaling for heavy traffic.
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Figure 3.12: Simulations of light traffic using Newton’s method.
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Figure 3.13: Steady-state traffic simulation for light, medium and heavy traffic den-
sities (λ = 3).
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Figure 3.14: Steady-state solutions for heavy traffic flow for λ = 3, 0.86 and 0.733.
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Figure 3.15: Transient simulation for linearly unstable heavy traffic flow (λ = 0.733).
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Figure 3.16: Steady-state solutions for medium traffic flow for λ = 3, 1.64 and 0.698.
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Figure 3.17: Transient simulation for linearly unstable medium traffic flow (λ =
0.698).
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Figure 3.18: Steady-state solutions for light traffic flow for λ = 3, 0.05 and 0.015.



Chapter 4

Conclusion

4.1 Energy-Economic Models

From a numerical methods perspective, the energy-economic models offered an op-

portunity to investigate and implement DAE codes. Being able to work directly with

the DAE system without manipulation is certainly helpful, since algebraic manipu-

lation and differentiation was cumbersome, given all the parameters. DASSL is a

user-friendly code to use with many handy features, which make it easy to solve

systems of equations quickly and efficiently so that researchers can spend more time

creating models and analyzing results.

The analytical solution for ρ = 0 and the numerical simulation of the model for

the same case matched, as expected, and added confidence to numerical simulation

results. The production curves resemble those of the Hubbert model except for the

symmetry about the peak. The model predicts that a higher peak is followed by a
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steeper decline in production.

The model, as presented in this thesis, is very sensitive to the chosen parameters.

Hence, more work is needed in this area. Kemfert’s [18] data was the most relevant

and complete data set available. However, the results were certainly skewed by the

fact that German chemical industry is less energy intensive (GDP/Joule) than the

overall global average, yet it consumes more energy that the global average economy.

The biggest area in which the model could be improved is the assumption that 100

percent of the energy comes from oil. This leads to high oil prices as seen Figure 2.7

and Figure 2.9. More advanced models are required to add other energy sources such

as nuclear and hydro-electric. The price for oil, pE, is also monotonically increasing

in the model. With the addition of other sources of energy, care should be taken to

allow the price for energy to decrease.

Based on the sensitivity of the model, it seems reasonable to believe that with the

proper choice of parameters and some change in the model for the assumptions men-

tioned above, it could match closely with historical production data.

4.2 Traffic Modeling

The steady-state simulation method was a computational success if its sole purpose

is to determine the final steady solution. Table 3.1 showed a dramatic decrease in

the number of function evaluations for the steady-state method versus the transient

simulation methods. Moreover, steady-state solutions in the linearly unstable regime

were derived that cannot be found with an initial value solver.
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Transient simulations do provide more information than simply the final solution so

methods should still be improved to reduce the simulation time. The mesh size is

one area that could be improved. The moving mesh method did reduce the size but

mesh points only moved slightly as seen in Figure 3.7. Another method to move the

mesh would be to consider the arc length of ρ along the road of length L and then to

position the grid points so that the arc length of each of the segments is equal. This

would still have more mesh nodes than necessary in the plateau regions. Adding an

attraction term so the nodes move towards areas were the ρx and ρxx are non-zero

would certainly help to pull mesh points into the desired regions.

Heavy, medium and light traffic each exhibited different behaviours for the linearly

unstable cases. Steady-state simulations showed that there is very little difference

for heavy traffic. Medium traffic showed large spikes in density that grew as λ was

lowered. Light traffic in fact never reached the plateau values for small λ. Regardless

of the density, the transient simulations were not able to converge to the steady-state

solution in reasonable time. That shows the numerical stability of the steady-state

method, which in essence was an error minimization code.

Another method for determining the linear unstable steady-state would be to decrease

λ over time. This would work for both the transient simulation and the steady

simulation methods. This idea is inspired by the result in Figure 3.14 which shows

steady-state solutions for heavy traffic. Starting with λ = 3, the code could wait for

convergence, and then decrease λ to 0.86 and then to 0.733 and so on (or any other

values). This change in λ over time has no real physical significance but would aide in

computational efficiency, since the more unstable the model is, the smaller the steps

that are taken and the longer the time until convergence.
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In terms of the traffic models themselves, the following ideas could be investigated in

future studies. Instead of scaling the optimal velocity function Vop in the bottle neck

by the reduction factor rB, a clip on the velocity could be imposed. The new optimal

velocity function would look like

Vop(h, x) =











min(rB(1 + tanh(2)), tanh(h − 2) + tanh(2)), 0 ≤ x < L̂L,

(tanh(h − 2) + tanh(2)), L̂L ≤ x < L.

(4.2.1)

In this case, vehicles would have the same acceleration profile when traveling at speeds

lower than the imposed speed limit. This would maintain the drivers aggressiveness,

model the observation that most drivers do not change their behaviour in traffic

congestion. Numerically, this would add a slight challenge since the optimal velocity

function would no longer be smooth.

Another topic for investigation would be to simulate traffic flow where each vehicle

has its own value of λ, λi. This would be easiest to model using the microscopic

model. Different distributions for λ would cause different flow behaviour. A bimodal

or trimodal distribution would allow for groups of drivers such as aggressive drivers,

normal drivers and slow or large vehicles. Of course, this model would be most

interesting for multi-lane traffic, since on a single lane without passing, eventually all

the vehicles would catch up to the pace car vehicle with the smallest λ.
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