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Abstract 

Recent years have seen considerable progress towards the goal of autonomous and 

unmanned ground vehicles which became essential for conducting military operations. 

These autonomous vehicles have the capability to operate and react to their environments 

without external control. Autonomous multi-wheeled combat vehicles are crucial for 

military applications which offer numerous leverages on modern battlefields. Applying 

autonomy features to such vehicles significantly increases its combat capabilities and 

expands its applications to work-day and night for risky missions compared with traditional 

manned ground vehicles. However, it is associated with some challenges because of their 

large dimension, heavy weight, and complex geometry. Therefore, the development of 

autonomous combat vehicles has become a cutting-edge research topic in robotics and 

automotive engineering. 

This thesis focuses on the control issues related to applying autonomous features for the 

multi-wheeled combat vehicles due to their significant influence especially when 

navigating in the presence of obstacles. The primary concern of path planning is to compute 

collision-free paths. Another equally important issue is to compute a realizable path and, if 

possible, achieving an optimal path bringing the vehicle to the final position. For these 

purposes, the developed methodology considers the combination between the optimal 

control theory using Pontryagin's Minimum Principle (PMP) and Artificial Potential Filed 

(APF). In addition, a four-axle bicycle model of the actual multi-wheeled combat vehicle 

considering the vehicle body lateral and yaw dynamics is developed.  

To generate the vehicle optimal path in real time, an Artificial Neural Network (ANN) 

model is proposed. The introduced ANN model allows the vehicle to carry out an 

autonomous navigation in real time with maintaining the path optimality by considering 

the vehicle parameters in terms of yaw rate, lateral velocity, heading angle and steering 

angle. Subsequently, a comparative study and performance analysis of the developed 

optimal path algorithm using PMP with Dynamic Programming (DP) method was carried 

out in order to guarantee the global optimum solution.  
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Determining the accurate vehicle position offers sufficient capabilities which increase the 

autonomy and safety features, especially in case of off-road locomotion. In this regard, a 

hybrid framework for positioning technique based on the integration of GPS/INS for 

combat vehicles is developed. The developed algorithm is able to provide an accurate and 

reliable vehicle positioning information, even if the number of visible satellites is less than 

four, due to the harsh vehicle operation environments. 

In this work, a scaled multi-wheeled combat vehicle model was developed using system 

identification methodology. Different system identification methods are considered and 

applied to solve and identify this problem. An advanced control system in terms of fuzzy 

logic, robust, and PID control systems are designed. In addition, the Processor-In-the-Loop 

co-simulation (PIL) is considered, which permits and achieves a more realistic situation 

where the developed control algorithms running on a dedicated processor. The 

performance and effectiveness of the developed controllers are evaluated for vehicle 

heading angle tracking using different predefined heading angles. Furthermore, a 

comparative evaluation to assess the feasibility of the developed control algorithms is 

discussed. Finally, it should be stated that this work offers the first attempt in the open 

literature to control the scaled multi-wheeled combat vehicle using different advanced 

control techniques such as, fuzzy logic, 𝐻∞. 
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CHAPTER 1                                                                 

Introduction 

1.1 Research Overview 

Autonomous multi-wheeled combat vehicles have many potential applications, especially 

in the military area, due to their capability to operate, react, and navigate without human 

intervention. The knowledge of autonomous vehicle behaviors under control commands 

plays an important role in improving their autonomy. The vehicles offer advantages over 

more traditional battle tanks and four-wheeled vehicles. They are able to maneuver at 

relatively high speeds in road and off-road applications. Unlike traditional four-wheeled 

armoured vehicles, additional wheels allow for a uniform distribution of vehicle weight 

across the entire wheelbase offering mobility advantages in softer soils. 

Nowadays, many researchers are interested in applying advanced control strategies for 

control and improve the performance of the autonomous vehicle. On the other hand, a 

multi-wheeled combat vehicle is considered as one of the most difficult types of vehicles 

in applying autonomy due to their large dimensions, heavy weight, complex geometry and 

dynamics. Combat vehicles are mainly essential for military applications. Therefore, 

building autonomous multi-wheeled combat vehicles has drawn dramatic attention as the 

autonomous vehicles are one of the boosting research topics in both robotics and 

automotive engineering. The expected outcomes of the autonomous multi-wheeled combat 

vehicles are set to increase the combat capability and protect soldiers in a full spectrum of 

battlefield scenarios. 

Path planning is one of the challenges in building an autonomous multi-wheeled combat 

vehicle. It is often necessary to deal with unknown workspaces such as road conditions, 

uncertainty in the vehicle states, and limited knowledge of the surrounding environment. 

However, the main challenge is to provide accurate and reliable vehicle positioning 

information due to the harsh vehicle operation environments. Consequently, the integration 
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of the navigation sensors, such as Global Positioning System (GPS) and Inertial Navigation 

System (INS), attempts to solve this problem and increases the positioning accuracy. 

1.2 Scope and Objectives 

1.2.1 Scope 

This thesis is focused on studying the benefits of advanced control systems for developing 

and enhancing both the multi-wheeled combat vehicle and the scaled vehicle, which is 

electrically driven with eight independently controlled wheel drive motors. The effects of 

the imposed obstacles on the vehicle path planning and its maneuverability between two 

points are to be investigated. The mathematical model of the scaled vehicle was identified 

using system identification techniques, where various control algorithms are applied to 

control the vehicle heading angle. In addition, developing an accurate positioning 

technique is based on fusing the data of the GPS and INS using the Kalman filter (KF). 

1.2.2 Objectives 

The aim of the current research is to provide insight into an autonomous multi-wheeled 

combat vehicle path planning and heading angle control. Subsequently, the benefits of 

applying these control systems to an electrically driven 8 x 8 scaled combat vehicle have 

been investigated. In addition, a sensor fusion technique is applied to improve the 

navigation solution of the vehicle. Various simulations are conducted with a validated 

multi-wheeled combat vehicle TruckSim model and MATLAB/Simulink to check the 

effectiveness and the feasibility of the developed algorithms. A set of well-defined 

objectives has been accomplished and is outlined as follows: 

- Developing a multi-wheeled combat vehicle dynamic model based on real combat 

vehicle characteristics in terms of dimensions, and weights for introducing an 

optimal path planning algorithm to generate an optimal path for the vehicle to 

navigate between two points while avoiding the imposed obstacles. The algorithm 

is based on the combination of optimal control theory and artificial potential field.  
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- Proposing a real time path planning algorithm for the autonomous multi-wheeled 

combat vehicles navigation using Artificial Neural Network model (ANN). The 

ANN is trained offline using a back-propagation supervised learning algorithm. The 

training data are multiple optimal paths collected using the path planning algorithm 

in MATLAB using optimal control theory. 

- Conducting a comparative study and performance analysis of the generated optimal 

paths using Dynamic Programming (DP) and Pontryagin's Minimum Principle 

(PMP). PMP and DP are two major branches of the optimal control theory. Up to 

now, there is a research gap in comparing the performance effectiveness of the 

mentioned techniques in the applications of navigating autonomous vehicles. 

- Developing a hybrid positioning technique based on the integration of GPS/INS for 

autonomous navigation. This framework combined both loosely and tightly 

coupled Kalman filter algorithms in order to provide an accurate and reliable 

vehicle positioning information, even if the number of visible satellites is less than 

four, due to the harsh vehicle operation environments. 

- Development and modeling of the remotely operated scaled multi-wheeled combat 

vehicle using system identification methodology for vehicle heading angle 

tracking. For this purpose, an experimental test will be carried out to record and 

analyze the vehicle input/output signals during a maneuver. 

- Developing different control systems based on fuzzy logic, classical, and robust 

controllers in MATLAB/Simulink to enhance the scaled vehicle heading angle tracking 

performance. Afterwards, introducing a processor-in-the-loop co-simulation to 

permit and achieve a more realistic situation, where the control algorithms running 

on a dedicated processor. 

- Investigating and Evaluating the heading angle tracking controllers of the scaled multi-

wheeled combat vehicle in the presence of noise and disturbance, as well as for tracking 

different predefined heading angles.  
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CHAPTER 2                             

Literature Survey 

2.1 Introduction 

In recent years, Unmanned Ground Vehicles (UGVs) have drawn dramatic attention.  The 

applications of UGVs range from using UGVs in collecting soil samples on Mars to being 

deployed in military missions. They are primarily either teleoperated by an operator or 

autonomous. In the case of teleoperated vehicles, an operator and high-bandwidth remote 

video are required to control and ensure that the vehicle is performing its task fittingly 

[1].  On the other hand, autonomous vehicle is not limited by these requirements. It is 

equipped with various sensors, hardware, and software systems to perform missions and 

navigate without human intervention. Consequently, reliability and robustness are two 

major demands for such vehicle in particular for the field of combat operations. 

Accordingly, the challenge is to develop an advanced control system to handle and control 

the vehicle subsystems at different conditions. In addition, motion planning needs to 

improve so that the vehicle can navigate autonomously by generating its own path and 

achieve the desired maneuver. Generally, UGV consist of the following components: 

Sensors: UGVs are fitted with sensors in order to observe their surrounding environment. 

Consequently, they permit controlled movements especially in highly unpredictable 

environments, such as the battlefield.  

Control: The robustness of autonomy and intelligence of the UGV mainly depends on the 

developed control systems algorithms. It has the range from classical control to more 

advanced and intelligent control methods such as robust control, adaptive control, and 

neural networks.  

Communication: Communication is an essential part of Remote Operated Vehicle (ROV) 

used in military operations. The communications occur between humans and such vehicles 

and involve a human in the decision-making cycle during the vehicle operation.  
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System integration: The choice of system level formation, configuration, sensors and 

other components provides momentous interaction within a robotic system. Well-designed 

UGV systems are self-reliant and adaptable, which increasing the autonomy level. 

In this chapter, the following sections critically analyze the most appropriate reported work 

as follows. Section 2.2 provides a survey of the recent work on advanced control techniques 

applied to UGVs, electric vehicles, and mobile robots. Section 2.3 introduces a survey of 

the recent work on path planning using different techniques both in static and in a dynamic 

environment. Section 2.4 summarizes state of the art of sensor fusion methods and present 

the most relevant studies Section 2.5 provides a survey of system identification methods 

and applications. 

2.2 Advanced Control Techniques for UGV 

This section discusses the related research on developing and improving the advanced 

control techniques for UGVs. There are a significant number of variations in the control 

technologies to approximate vehicle behaviors in response to control actions in relevant 

operating conditions. Some of these are listed below: 

PEEIE et al. [1] enhanced the stability of Electric Vehicle (EV) with two in-wheel motors 

during turning and braking using direct yaw moment control (DYC). For this purpose, a 

linearized model has been used as a reference for yaw angular velocity and side slip angle. 

The system input is the steering angle, while the outputs are the yaw angular velocity and 

side slip angle. There are more conditions required in order to improve the vehicle stability. 

First, the vehicle velocity must be constant. Second, the rate of change of the lateral 

velocity must be small. Consequently, the stability of the EV is increased by satisfying 

these constraints. 

Gasbaoui & Nasri [2] presented an intelligent adaptive fuzzy PI controller for improving 

the stability of a 4WD EV under different road condition. The vehicle’s wheels are 

individually controlled by a direct torque control. The torque is not fixed due to the 

nonlinearity of the vehicle. For this purpose, a fuzzy logic controller is combined with the 
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PI controller in order to adjust their gains in response to the nonlinearity as shown in Figure 

2-1. Consequently, the vehicle stability during different road conditions can be improved. 

 

Figure 2-1 PI gains online tuning by fuzzy logic controller [2] 

Z. Sun et al. [3] introduced a good path tracking control algorithm for UGV in the presence 

of uncertain dynamics. This algorithm using an adaptive control method based on a virtual 

current vector algorithm. The proposed controller has a simple structure and does not 

require high computational time. Furthermore, it can directly control the left and right 

driving motors. The computer simulation results showed that the proposed algorithm is 

sensitive and can maintain good path tracking. 

Lei Yuan et al. [4] designed a slip controller for 5 Degree of Freedom (DOF) EV using a 

nonlinear model predictive controller (NMPC). The developed control algorithm has the 

capability to prevent the wheels from lock up during braking and spin-out or when 

accelerating on a low-friction coefficient road. It has been noticed that, the controller 

parameters are easy to be tuned based on the situation of braking or spinning, which has 

the capability to deal with nonlinearities. Figure 2-2 shows NMPC slip control block 

diagram. The controller was evaluated using an AMESim model connected to Simulink, 

which is tested under acceleration and braking maneuvers. The obtained results show that 

the algorithm can efficiently prevent the wheel from spinning during accelerating or 

locking. 
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Figure 2-2 Block diagram of the NMPC slip control system [4] 

Zhang et al. [5] developed a trajectory tracking controller for a 6x6 multi-wheel unmanned 

ground vehicle with 12-DOF that developed by Kanayama [6]. The vehicle dynamic 

constraints are considered in this work in order to ensure the smooth motion of the vehicle. 

The proposed controller comprised of two PD controllers in order to improve the velocity 

and yaw rate of the vehicle. Additionally, the tire model in the driving system is designed 

by using a Pacejka tire model (Magic formula). The proposed tracking algorithm is shown 

in Figure 2-3. The simulation results showed that the vehicle is able to track the desired 

path.  

 

Figure 2-3 Trajectory tracking control algorithm [5] 

Noor et al. [7] developed a teleoperated omnidirectional small UGV. The vehicle 

development is concerns in the movement of multidirectional UGV by using Mecanum 
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wheels and brushless DC electric motors. The block diagram of the proposed UGV is 

shown in Figure 2-4. 

 

Figure 2-4 Block Diagram of UGV's Electronic System [7] 

In addition, the movements of UGV are configured as shown in Figure 2-5, according to 

the following table: 

Table 2-1 Movements configuration of UGV  

 Motion Direction Action 

Forward All four wheels move forward at the same speed 

Backward All four wheels move backward at the same speed 

Left slide Front-right wheel and back-left wheel are moving backward 

Backward Front-left wheel and back-right wheel are moving forward 

Right slide Front-right wheel and back-left wheel are moving forward, 

front-left wheel and wheel back-right are move backward 

Clockwise All right wheels are moving forward, all left wheels are 

moving backward. 

Counter-Clockwise All right wheels are moving backward, all left wheels are 

moving forward 
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Figure 2-5 Movements of UGV [7] 

J. Kim, et al. [8] designed a yaw rate controller for an independent in-wheel motor vehicle. 

The yaw rate control algorithm generates the desired direct yaw moment by adjusting the 

traction torque at each wheel, which is obtained from the sliding mode control. A CarSim 

model was employed for simulating the vehicle. Furthermore, a PID controller was 

developed in order to control the lateral acceleration error to not exceed the desired value. 

The yaw rate controller block diagram is shown in Figure 2-6. The controller performance 

was evaluated by the slalom test, which generates the desired direct yaw moment by 

adjusting the traction torque of each wheel. 
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Figure 2-6 Yaw rate controller [8] 

Matsumura S et al. [9] developed a driving system for EVs, where a test system using 

motors was considered in order to simulate the driving performance of the EV. In addition, 

a PID controller was developed to control the rotating speed of the motors. The parameters 

of the PID controller was adjusted and tuned using a neural network model. In this way, 

the performance of the speed controller was improved. The experimental results show that 

the neural network was able to reduce the error effectively, while the PI controller 

parameters are being tuned online. 

Yin G et al. [10] developed an autonomous driving system for an EV of 7-DOF. The 

introduced system consists of two components: a simplified motion planning algorithm and 

a model predictive-control system. The motion planning algorithm computes the path 

according to the target position within a specified time. On the other hand, the model 

predictive controller was developed to control the front steering wheel individually in order 

to follow the desired path and satisfy the actuator physical constraints. Figure 2-7 shows 
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the control scheme of the autonomous vehicle. Simulation results using CarSim show that 

the proposed controllers achieved the requirements for the autonomous vehicle. 

 

Figure 2-7 The control scheme for autonomous vehicle [10] 

Sakai et al. [11] developed a motion controller for an EV with four independent in-wheel 

motors using DYC. The vehicle’s lateral motion was controlled using a robust dynamic 

yaw-moment controller. This controller generates the yaw motion of torque differences 

between the right and left wheels. On the other hand, the problem of instability due to the 

slippery and low friction coefficient road still exists. For this purpose, a skid detection 

method was developed to increase the vehicle stability in different conditions. The 

proposed algorithm is shown in Figure 2-8. The experimental tests showed that the new 

skid detection system has the capability to detect the skidding wheel without any 

information on the chassis velocity. 

 

Figure 2-8 Schematic diagram of control system [11] 
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Yin G et al. [12] developed a µ-synthesis robust controller for a four-wheel independently 

actuated EV using a full-vehicle model in CarSim. This controller aims to maintain the 

vehicle stability and increase vehicle handling performance. The proposed controller has 

the capability to deal with unmodeled dynamics and uncertainties. The vehicle yaw and 

lateral motions were generated by using torque differences between the left and right 

wheels. The proposed controller was validated using CarSim, which has verified that it can 

achieve the required performance under various driving scenarios. 

Elshazly et al. [13] introduced an LQR controller augmented with feedforward part in order 

to control a skid steering mobile robot. The main objective of this work was to design one 

controller for augmented dynamic drive model in a reduced order form, then enable the 

direct control of the motors. The proposed LQR controller has the advantage of simplicity 

in design and easy implementation compared with nonlinear controllers. Consequently, it 

can improve the mobile robot movement and increase the trajectory tracking accuracy 

using skid steering.  

Lucet E et al. [14] developed a robust sliding mode controller for a four-wheel skid steering 

ground robot based on the dynamic model. This controller increases the robustness of the 

robot maneuver when moving over slippery road by controlling the mobile robot yaw angle 

and longitudinal velocity. It has the capability to handle the nonlinearity variable of the 

system while tracking the predefined path at a comparatively high speed. The evaluation 

of the designed controller is accomplished with real-life conditions using a four-wheel skid-

steering robot, which proves to be effective on the slippery road. 

A skid steer based autonomous driving controller for UGV was carried out by Kang, et al. 

[15]. The proposed algorithm consists of four parts as follows: the first is a speed controller, 

which maintains the desired driving speed. The second controller is devoted to maintaining 

the vehicle direction and follow the desired generated tracking path. The third is a 

longitudinal tire force distribution algorithm, and the last control algorithm is a wheel 

torque controller, which maintains the slip ratio under the limit by obtaining the torque 

command at each wheel. The control algorithm has shown good path tracking results. 
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A robust fuzzy logic controller for a four-wheel skid steer vehicle was introduced by Aslam 

et al. [16]. It has been noticed that the controller takes its action under high-speed cornering 

motion. In addition, it has the capability to balance the consequence of forces generated 

between the wheel and soil interaction. In addition, it eliminates the chattering phenomena 

(the phenomenon of oscillations with finite frequency and amplitude) encountered in the 

practical applications of sliding mode control. 

An adaptive tracking algorithm for EV was developed by Kececi et al. [17]. This controller 

was developed to work when the road condition information is unavailable. Two adaptive 

control algorithms were developed to improve the stability of the vehicle, which controls 

the vehicle wheels’ slippage without braking. In addition, it controls the vehicle when the 

type of road surface is unavailable. They have the capability to maintain the desired speed 

of the vehicle by applying more power to the drive wheel.  Furthermore, they control the 

vehicle direction by changing the steering angle of the vehicle`s front wheels. 

Al-Mayyahi et al. [18] introduced an Adaptive Neuro-Fuzzy Inference System (ANFIS) 

control algorithm for autonomous ground vehicles. This controller improved the 

autonomous navigation of the vehicle using four ANFIS algorithms. Two algorithms are 

presented in the paper to control the left and right angular velocities of the autonomous 

vehicle in order to maintain the planning path to the target. The data was collected from 

three distance sensors in terms of front, right, and left distance sensors. The other two 

algorithms are used to keep the vehicle on the optimal heading angle in order to avoid 

obstacles. They are taking the difference between the vehicle heading angle and the angle 

to the target point. The introduced controllers are evaluated using MATLAB, which shows 

that they are able to improve the vehicle`s navigation. 

A robust adaptive torque control algorithm for skid steer wheel mobile robot was carried 

out by Mohammad pour et al. [19]. This algorithm improves the robot stability on the 

slippery road and in the situation of turning at high speed. Moreover, a fuzzy logic control 

algorithm was developed to maintain the stability of the internal dynamics of the system. 

The performance evaluation of the proposed control algorithm was carried out by modeling 

the vehicle on ADAMS, which shows the effectiveness of the algorithm. 

http://www.mdpi.com/search?authors=Auday%20Al-Mayyahi&orcid=
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A four-wheel drive control algorithm based on inverse longitudinal dynamics in straight 

line motion for UGV are introduced by Salama et al. [20]. It is indirectly provided the 

required torque for each wheel to overcome wheel load torque produced from the stochastic 

terrain. The proposed algorithm has the capability to provides a wheel with both the 

specified/required angular velocity and rolling radius. The developed algorithm is 

evaluated with the disturbance and the changes in stochastic terrain properties. The results 

show the robustness of the proposed algorithm. 

A motion and stability control algorithm for a four-wheel drive skid steer robot was 

developed by Tu et al. [21]. For this purpose, a ratio control algorithm was introduced in 

order to keep the ratio of the vehicle lateral and angular velocities constant. Additionally, 

a high order deferential feedback controller conjoining with the ratio controller in order to 

enhance the vehicle motion. The evaluation has been performed under different scenarios 

using different levels of road friction, where the results showed that the system was robust.  

An obstacle avoidance system using a laser scanner for perception was introduced by 

Jiménez et al. [22]. The proposed algorithm consists of two systems; first, a sensor system 

which used in order to discover the surrounding environment. Second, a control action 

system which used in order to control the steering and the speed of the vehicle based on 

the detected information. This system was developed using a fuzzy logic controller. Based 

on the obtained information from the sensor, there are two control actions, which are 

moving or braking the vehicle. In order to decide the safer action for the vehicle, it should 

take into account the required time for collision and avoidance by comparing them.  

A robust motion control of a four-wheel drive skid steer vehicles was proposed by Arslan 

et al. [23]. The proposed methodology consists of two controllers; first, kinematic path-

tracking controller, which is based on the vector field orientation technique. Second, a 

dynamic velocity control algorithm, this is based on sliding mode approach. In addition, a 

PID controller was developed in order to overcome the performance limitation. The 

evaluation has been done using Simulink/ADAMS, which showed the robustness and the 

stability of the developed motion control algorithm.  
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Sahoo et al. [24] designed and implemented a heading angle tracking algorithm for a UGV. 

The proposed tracking algorithm has been implemented using a two-degree-of freedom 

vehicle model. The closed-loop control for the steering motors and the heading angle are 

combined in order to achieve more tracking accuracy. Consequently, the inner loop is a 

proportional controller to minimize the error signal of current rotation of the steering motor 

according to the steering angle input. The outer loop is a PD controller, which works mainly 

to reduce the error of the vehicle heading angle. The main contribution in this work is to 

incorporate the dynamics of the actuator as the response time in order to steer the front 

wheel in the same order as that of the heading angle dynamics of the vehicle. 

Yasuno et al. [25] designed an autonomous navigation system for UGV (RV-SCOT2) in 

order to control its motion and avoid the obstacles in an outdoor environment. The 

proposed algorithm consists of three control modules. The first module is a self-tuning 

fuzzy path tracking control, which estimates a steering angle for reference path tracking. 

The second one is an obstacle avoidance controller, which estimates the steering angle in 

order to obtain the effective avoidance action. The last one is a two-degree-of-freedom 

speed control module. Consequently, the autonomous navigation performance can be 

obtained by solving the trade-off relationship between each module using the collision 

danger-degree.  

Ullah et al. [26] introduced an automatic distance control algorithm to control and keep a 

constant distance between the wheeled mobile robot and the objects in order to avoid 

collision with them. The developed control algorithm was implemented in a wheeled robot 

to track a moving object, while maintaining the distance constant. The perception of the 

surrounding environment is obtained using range sensors. These sensors are fitted to the 

front side of the robot to provide the controller with the required data in order to take the 

right decision on moving forward or backward. Figure 2-9 shows the system block 

diagram, which is divided into three parts; perception sensors, controllers, and actuators 

(motors). 
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The proposed algorithm was verified by carrying out indoor/outdoor experiments using 

different objects. The experimental result shows that the robot was able to track and 

maintain a constant distance from the object at the same time. 

 

Figure 2-9 Tracking object block diagram [26] 

Prayudhi et al. [27] designed a wall following control algorithm based on a differential 

wheel drive robot car using the Lyapunov method. The proposed controller enables the 

robot to maintain its orientation the same as the wall during navigation with a predefined 

distance from the wall. For this purpose, encoder sensors are fitted to the robot in order to 

control the speed of each wheel, which reflects the steering angle. In addition, a laser range 

finder was considered in order to detect the obstacles and their distances from the robot. 

The system states are the distance error of the robot position to the preferred distance from 

the wall and the orientation error between the robot and wall. 

2.3 Motion Planning 

This section discusses the work related to path generation and obstacle avoidance of the 

UGV. Path planning for such vehicles is considered an enormous challenge which aims to 

find the shortest or the optimal path for a given start and goal points. The problem becomes 

more complicated if it is required to generate the path across several obstacles, which is 

requiring to be combined with an obstacle avoidance controller in order to avoid the 
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obstacles. Generally, motion planning algorithms should satisfy the obstacle avoidance and 

other navigation requirements, such as smooth motion and shorter traveling time.  

Autonomous vehicle motion planning can be divided into two main types, local and global 

path planning. In the case of global path planning, all required data about the environment 

is known in advance including locations of the obstacles. Therefore, the path planning 

algorithm is able to compute and generate the vehicle path from its current location to the 

target location before the vehicle starts navigation Thomaz et al. [28]. In the case of local 

path planning, the environment is completely unknown to the vehicle as investigated in A. 

Chakravarthy and D. Ghose [29]. In this case, it is necessary for the vehicle to collect the 

required data about the environment in real time in order to reach the goal point safely.  

Mashadi B et al. [30] developed an optimal path planning algorithm for the autonomous 

vehicle using the linear bicycle model. The proposed algorithm generates the optimal path 

for a double lane change maneuver using the optimal control theory. It is able to generate 

the appropriate control law for steering an autonomous vehicle between two points. Figure 

2-10 shows the generated optimal path after detecting the obstacle and then makes the lane 

change manoeuver. The proposed algorithm was validated in CarSim and MATLAB/ 

Simulink.  

 

Figure 2-10  Schematic diagram of the lane-change maneuver [30] 

Benamati et al. [31] solved the path planning problem for UGV in the static world using 

the flat potential field technique. This technique combines the efficiency of the potential 
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field approach with the simplicity of exact cell decomposition. The hierarchy of flat 

potential field algorithm is shown in Figure 2-11. The developed methodology has the 

capability to pass different situations while generating the optimal path. In addition, the 

potential field method does not introduce any local minima problems so that it is suitable 

for real time applications.  

 

 

Figure 2-11 Hierarchy of Flat Potential Field algorithm [31] 

Luh et al. [32] proposed dynamic robot motion planning using Potential Field Immune 

Network (PFIN). The proposed algorithm has the capability to deal with moving obstacles 

in addition to the fixed or moving target. The velocity obstacle method was utilized in order 

to determine the imminent collision obstacle. Subsequently, the PFIN was implemented to 

guide robots to avoid collision objects at any instant. 

A new motion planning algorithm for a 6x6 wheel rover of 10-DOF over rough terrain was 

proposed by Conkur et al. [33]. A gradient function was derived to include both the 

tangential and gradient forces in order to ensure the safety of the generated path. 

Furthermore, the cost function was introduced and optimized using genetic algorithms to 

find the optimal path of the rover. The objective function was evaluated by considering the 

energy consumed, wheel slip, and traction, as well as the length of the path. 
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A motion planning algorithm using the potential field method for a mobile robot moving 

in a dynamic environment was introduced by S. GE et al. [34]. The proposed algorithm has 

the capability to deal with both moving obstacles and targets, where the problem of local 

minima was considered. The evaluation of the designed algorithm was performed using 

extensive computer simulations, which have validated the effectiveness of the algorithm. 

An obstacle avoidance and navigation motion planning methodology for a mobile robot 

using fuzzy logic approach was carried out by Panagiotis et al. [35]. The authors combined 

fuzzy-rules of the proposed controller with the repulsive and attractive influences of the 

obstacle, as well as the goal using potential field method. Two fuzzy logic controllers were 

designed for velocity and steering control respectively. The performance of the proposed 

controllers was evaluated using MATLAB environment. 

Jaradat et al. [36] proposed a fuzzy potential field path planning technique for an 

autonomous vehicle that dealing with the dynamic environment. Two fuzzy logic 

controllers with the Mamdani and Sugeno models were developed in order to deal with the 

attractive and repulsive forces of the target and obstacle respectively. In addition, an 

adaptive neuro fuzzy inference system was considered in order to implement the Sugeno 

model and improve functionality via the knowledge learning. The system was verified 

using different scenarios, which showed its effectiveness. 

Tarokh [37] introduced a motion planning hybrid intelligent algorithm for an articulated 

wheeled robot moving in rough terrain. This algorithm combines both the global and the 

local path planning algorithms to generate the path between the rough terrains and fetch 

the data from the sensors fitted to the robot. The proposed methodology consists of a fuzzy 

logic-based algorithm and a two-stage genetic algorithm. The algorithm has the capability 

to produce a new path in response to environmental changes. The main contribution of this 

work is the fuzzy logic adaptation algorithm, which enables the adjustment of the 

probabilities of the genetic operators based on the terrain changes. 

Sezer et al. [38] introduced a new velocity planning method used for autonomous vehicle 

navigation and obstacle avoidance as shown in Figure 2-12. A fuzzy logic algorithm was 

proposed for online speed planning which consists of two cascades connected Mamdani 
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approaches. In addition, an artificial potential field approach was introduced for obstacle 

avoidance. The developed system has the feature of work with any obstacle avoidance 

system. 

 

Figure 2-12  Desired Speed Determination in a UGV [38] 

Lu Yin and Yixin Yin [39] developed a new artificial potential field methodology for 

autonomous mobile robot motion planning in dynamic environments. The main idea of this 

algorithm is to define the attractive potential field function according to the position, 

velocity, and acceleration of the mobile robot and the goal point. A similar function is 

defined for a repulsive potential field based on the distance between the robot and the 

obstacles. This algorithm can improve the robot capability to move on the right path, avoid 

obstacles, and maintain a suitable velocity according to the generated forces.  

2.4 Sensor Fusion  

Data fusion is the process of integrating multiple data from various sensors and related 

information in order to enhance the accuracy of the obtained data that cannot be achieved 

using a single sensor. Data fusion first appeared in the 1960s, as mathematical models for 

data manipulation, then it was implemented in the 1970s in the fields of robotics and 

defense. This section will summarize the state of art of sensor fusion methods and present 

the most relevant studies. Most of the state estimation methods are based on control theory 

and employ the laws of probability to compute a vector state from a vector measurement 
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or a stream of vector measurements. The estimation methods considered in this literature 

are as follows 1) maximum likelihood, 2) Kalman filter methods, and 3) particle filter 

method. 

2.4.1 Maximum Likelihood method 

The Maximum Likelihood (ML) technique is an estimation method based on the 

probabilistic theory. ML is applicable when the state variable follows unknown probability 

distribution Brown et al. [40]. The main disadvantage of this method in practice is that it 

requires an analytical or empirical sensor model to provide the prior distribution and 

compute the likelihood function. In addition, it can systematically underestimate the 

variance of the distribution, which leads to bias problem. However, the bias of the ML 

solution becomes less significant as the number of data points 𝑁 increases and is equal to 

the true variance of the distribution that generated the data at the limit 𝑁 → ∞. 

Okello et al. [41] developed a maximum likelihood registration algorithm for spatial 

alignment of multiple dissimilar sensors in order to improve the fusion performance. Based 

on the collected data by distributed sensors, the algorithm is able to estimate and display 

the states of the objects. The developed algorithm has the capability to overcome the 

following two limitations;first, estimates the sensor biases only for a pair of sensors, 

second, if the sensors have to be commensurate or alike. This is in addition to the capability 

to handle any number of dissimilar sensors. 

Chen et al. [42] introduced the maximum likelihood approach for joint image registration 

and fusion, where the expectation maximization algorithm is employed to solve this joint 

optimization problem. experiments tests were carried out for performance evaluation. 

Several types of sensory images such as visual images, IR thermal images, and 

hyperspectral images are considered. The algorithm has the capability to automatically tune 

the registration parameters. Consequently, the optimal fusion performance can be achieved. 

On the other hand, Kok [43] developed the same approach for magnetometers and inertial 

sensors to estimate 3D orientation and obtain the calibration parameters. 

 



22 

 

2.4.2 The Kalman filter  

Kalman filters (KF) are widely used in integrated navigation systems, which combines the 

collected data from the navigation sensors such as GPS and INS for accurate and useful 

information, which is better than using individual sensor. KF algorithm is considered a 

powerful mathematical tool for analyzing and solving localization estimation problems. It 

was originally proposed by Kalman [44] and has been widely studied and applied since 

then. Kalman filter estimates the state 𝑋  of a discrete time process governed by the 

following space-time model Equation 2-1. 

𝑋𝑘 = 𝜑𝑘,𝑘−1  𝑋𝑘−1  +   𝐺𝑘−1𝑊𝑘−1 2-1 

where  𝑋𝑘 is the state vector,   𝜑𝑘,𝑘−1 is the state transition matrix, 𝐺𝑘−1 is the noise 

distribution matrix, 𝑊𝑘−1   is the process noise vector, and 𝑘 is the measurement epoch. 

KF is mainly employed to fuse low-level data, which is used to measure the statistical 

properties of the model in order to determine the optimal fusion and data estimation. If the 

system can be described as a linear model and the error could be modeled as the Gaussian 

noise, then the recursive KF obtains optimal statistical estimations [45]. However, other 

methods are required to address nonlinear dynamic models and nonlinear measurements. 

The modified KF known as the Extended Kalman Filter (EKF) is considered an optimal 

approach for implementing nonlinear recursive filters [46]. The EKF is one of the most 

often employed methods for fusing data in robotic applications. However, it has some 

disadvantages due to the computations of the Jacobians which are extremely extensive. 

Some attempts have been made to reduce the computational cost, such as linearization, but 

these attempts introduce errors in the filter and make it unstable. 

Caron et al. [47] developed a GPS/IMU sensor fusion algorithm using the Kalman filter 

estimation methods based on fuzzy subsets for UGV. The contextual variables are 

introduced to define fuzzy validity domains of each sensor. The fused data comes from 

GPS and IMU fitted to a real vehicle test. It has been noticed that due to the lack of 

credibility of GPS signal in some cases and the drift of the INS, KF is directly fed with the 

acceleration provided by the IMU. The author claims that the multi-sensor filter has the 



23 

 

capability to integrate a high number of sensors without changing their structure and the 

algorithm. 

Li et al. [48] introduced a hybrid intelligent multi-sensor positioning methodology for 

reliable vehicle navigation based on KF. The proposed hybrid positioning technique is 

fusing the data from low-cost sensors such as GPS, MEMS-based strapdown inertial 

navigation system (SINS), and electronic compass, which enhances the performance of the 

integration scheme of these sensors. The improved KF with sequential measurement-

update processing was developed to realize the filtering fusion. 

Ryu et al. [49] proposed extended and unscented Kalman filters in order to integrate the 

GPS with INS for autonomous navigation purposes. The developed algorithm aims to 

reduce the error of the low-cost sensor and estimate an accurate heading and position data 

for vehicle navigation. For the validation purpose, a GPS, electronic compass, and inertial 

measurement unit were considered. The obtained result shows that the extended KF able 

to provide accurate data compared with unscented KF. 

Xian et al. [50] integrated the stereo camera and GPS in order to provide the exact motion 

estimation for an autonomous vehicles navigation. For this purpose, an Iterative Extended 

Kalman Filter (IEKF) was developed. Figure 2-13 shows the relationship between the 

world (W), stereo camera (CL) (CR) left and right respectively, and IMU reference frames, 

where the stereo camera and the MIMU are rigidly attached. In addition, Figure 2-14 shows 

the integration flowchart between the camera and IMU.  

 

Figure 2-13 Fusing stereo camera and IMU for mobile vehicle navigation [50] 

https://www.researchgate.net/publication/257093772_MEMS-based_rotary_strapdown_inertial_navigation_system
https://www.researchgate.net/publication/257093772_MEMS-based_rotary_strapdown_inertial_navigation_system
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Figure 2-14 The flowchart of the tight integration system of the stereo camera and the 

MIMU [50] 

Wang et al. [51] introduced a navigation system which integrating GPS-INS-Vision for 

Unmanned Aerial Vehicle (UAV). Subsequently, a CCD camera and laser range finder 

based on vision system are combined with inertial sensors. The system has the capabilities 

to provide accurate information on the vertical and horizontal movements of the UAV 

relative to the ground. In addition, two KF are developed to operate separately and provide 

a reliable check on the navigation solutions, where the GPS are used to update the KF error 

states. The integrated GPS-INS-vision navigation system flow chart is shown in Figure 

2-15 with two KFs. 

  

Figure 2-15 Integrated GPS/INS/vision system flowchart [51] 

2.4.3 Particle filter.  

Particle filters (PF) are iterative implementations of the sequential Monte Carlo methods 

[52] to solve the filtering problem. This method builds the density function using several 
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random samples called particles. These particles are increased over the time by the 

integration of sampling and resampling steps. The sampling step is employed to discard 

some particles and increasing the relevance of regions with a higher posterior probability. 

On the other hand, for the filtering process, the particles that have the same state variable 

are employed and each particle has an associated weight that indicates the quality of the 

particle. Therefore, the estimation is the result of a weighted sum of all the particles. 

The standard particle filter algorithm has two phases: (1) the predicting phase, (2) the 

updating phase. In the predicting phase, each particle is modified according to the existing 

model and accounts for the sum of the random noise to simulate the noise effect. 

Subsequently, in the updating phase, the weight of each particle is re-evaluated using the 

last available sensor observation, and particles with lower weights are removed.  

Kurashiki [53] developed a self-localization algorithm including a two-dimensional laser 

range finder based on the particle filter for mobile robot navigation. A robust controller and 

path generation algorithm were developed, then integrated with the localization method in 

order to improve the vehicle stability under disturbance on rough terrain. The author claims 

that the particle filter was applied instead of the EKF in order to handle the sensing 

uncertainties due to unexpected objects. 

Rigatos et al. [54] discussed the problem of dynamic ship positioning by developing a 

sensor fusion algorithm based on Kalman and Particle filters. The combination of these 

two filters is used to estimate the ship state vector, which fuses the ship position and 

heading measurements data. These data were received from onboard sensors together with 

distance measurements data coming from sensors located at the coast. The estimated state 

vector is used to regulate the horizontal position and the heading direction of the ship. 

Figure 2-16 show the integrated navigation and dynamic positioning system. 
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Figure 2-16 Integrated navigation and dynamic positioning system                                        

with EKF and Particle Filtering [54] 

Hiremath et al. [55] developed an autonomous navigation system using a particle filter 

based on navigation algorithm for a mobile robot equipped with a LIDAR moving in a 

maze filed. The developed PF algorithm has the capability to estimate the robot 

environment state of the system such as robot heading and lateral deviation. These 

estimated values are used to steer the robot in the right direction. The obtained results 

showed that the Root Mean Squared Error of the robot heading and lateral deviation were 

equal to 2.4 degrees and 0.04 m, respectively.     

2.5 System Identification Control 

This section provides a survey of system identification techniques and its applications. 

System identification is the methodology of determining a mathematical model of a 

dynamic system by analyzing the measured input and output signals of the underlying 

system. The process of system identification uses much of the same theory as in optimal 

estimation [56] and control [57]. However, instead of estimating the states of a system or 

observing the states to drive a controller, system identification uses the inputs and output 
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to develop the model. This model describes the relationship between the input signals to 

the system and the system output or response.  

 

Figure 2-17 Overview of the system identification process 

The process of system identification is summarized in Figure 2-17, which clarify how the 

identified model and parameters are estimated. System identification has five main 

elements as follows: (1) experiment design, (2) data collection, (3) parameter estimation 

algorithm and system identification model selection, (4) model validation (5) model 

implementation. System Identification flowchart is shown in Figure 2-18 , which starts by 

selecting a model structure followed by the computation of an appropriate model in the 

structure. The selected model will be evaluated afterward.  

Identified model and parameter 

System identified 

Model Validation 

System response Input 

ya
w

 

Time (sec) 
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Figure 2-18 System identification procedure flowchart  

Nourizadeh et al. [58] developed a discrete time model using system identification 

techniques in order to describe the motion of a wheeled mobile robot. Two system 

identification models were considered in this study: 1) Auto Regression Moving Average 

Exogenous Input (ARMAX), 2) Nonlinear ARMAX (NARMAX) models. The authors 

claim that the proposed controller based on the ARMAX model is applicable to nonlinear 

dynamics of the wheeled mobile robot in a wide range of variations. Additionally, there 

are more advantages of using this method such as that the model does not depend on the 

platform of the wheeled mobile robot and the model parameters can be estimated using 

recursive algorithms. The obtained results show that the ARMAX model has the capability 

to achieve the same performance as the NARMAX model. However, the ARMAX is 

simpler and less computational time than the NARMAX model, in addition to the capability 

to adapt itself according to any changes that may arise to the mobile robot. 

Aras et al. [59] developed and modelled a low cost underwater Remotely Operated Vehicle 

(ROV) for depth control using system identification technique. The ROV was developed 

by Underwater Technology Research Group (UTeRG). First, the system input/output 
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signals were collected and recorded, then the system identification toolbox in MATLAB 

was applied to generate the model of the ROV. Subsequently, the identified ROV model 

was used to design the PID controller for depth control. Consequently, the ROV was able 

to remain stationary at the desired depth using the pressure sensor data as feedback. 

A system identification based on the prediction error method for a large-scale unmanned 

helicopter was carried out by Hashimoto et al. [60]. The helicopter was compensated by 

the attitude control that permitted the experiments during the flight. Based on the measured 

input/output data, the system identification method was applied to the helicopter as a 

single-input-single-output (SISO) system. Afterwards, it is applied as a multi-input-multi-

output (MIMO) system to derive the mathematical model of the helicopter. The block 

diagram of the helicopter for system identification is shown in Figure 2-19. 

 

Figure 2-19 Construction for system identification experiments on the helicopter [60] 

Karras et al. [61] developed an online identification system for autonomous underwater 

vehicles, which estimates their dynamic parameters based on a global derivative-free 

optimization algorithm. The introduced identification method consists of three modules as 

follows.  

1- System excitation module: this module sends excitation inputs to the autonomous 

vehicle. 
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2- Optimization algorithm module: this module calculates a candidate parameter 

vector, which feds to the third module (metric calculator module). 

3- Metric calculator module: this module evaluates the received candidate parameter 

vector from the optimization algorithm module, using a metric based on the residual 

of the actual and the predicted commands. 

The authors claim that the developed algorithm is a global, unlike Unscented Kalman Filter 

(UKF) and Extended Kalman Filter (EKF). It does not depend on the initialization and does 

not require the designer to know a good starting point. Figure 2-20 shows the On-line 

identification scheme. 

 

Figure 2-20 On-line identification scheme [61] 

Eng [62] developed an on-line system identification method for autonomous underwater 

vehicle dynamics via in-field experiments. The introduced identification process has two 

stages: the training stage and the validation stage. The unknown parameters are estimated 

using a state variable filter and recursive least square (SVF-RLS) estimator in the training 

stage. However, in the validation stage, the prediction capability of the developed model is 

examined using a new data set. The validation results show that the identified model 

satisfies 78% to 92% of the output variation. The comparison between the SVF-RLS 

estimator and conventional identification method shows that the SVF-RLS estimator is 

better in terms of prediction accuracy, computational cost, and training time.  
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Samal et al. [63] introduced an off-line and on-line neural network identification algorithm 

for modeling the dynamics of an autonomous miniature Eagle helicopter. Both coupled and 

decoupled dynamics of the helicopter is identified using the flight test data. The artificial 

neural network based black-box method is used to model the UAV dynamics. The 

interaction between the inputs and outputs of the (MIMO) system is considered. Figure 

2-21 shows the series-parallel model for neural network identification.  The predicted 

responses from these neural network models and the actual responses of the Eagle 

helicopter were compared. The obtained results show that the off-line model performs 

better compared to the online model. The authors claim that the additional training time 

and bigger batch size available for off-line training increases the system performance. 

 

Figure 2-21 Series-Parallel Model for NN Identification [63] 

XU Jian’an et al. [64] developed a kinematic model identification algorithm for an 

autonomous mobile robot using the dynamical recurrent neural network. Based on the 

structure analysis and training algorithm of the dynamical recurrent neural networks, 

the kinematic forward model identification of the autonomous mobile robot is realized. 

The experiments on the AS-R mobile robot show that the dynamical recurrent neural 

network has the capability to identify the robot’s kinematic model accurately. The 

block diagram of mobile robot kinematic model identification is shown in Figure 2-22 
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Figure 2-22 Block diagram of kinematic model identification [64] 

2.6 Outline of Thesis 

Chapter 3 of this thesis introduces the development of an optimal control path planning 

algorithm for the multi-wheeled combat vehicle. The proposed path planning algorithm is 

based on the combination of optimal control theory and artificial potential field function. 

This algorithm is developed using Pontryagin's minimum principle, where, the vehicle 

states are validated using the TruckSim vehicle model. Chapter 4 describes the 

methodology of developing an artificial neural network model for real time optimal path 

planning for the multi-wheeled combat vehicle. Chapter 5 illustrates the comparative study 

of the dynamic programming and Pontryagin’s minimum principle for autonomous vehicle 

path planning. Chapter 6 discusses the development of a navigation system for the multi-

wheeled combat vehicle using a hybrid positioning technique. Chapter 7 introduces the 

development and modeling of the remotely operated scaled multi-wheeled combat vehicle 

using system identification methodology. Chapter 8 concerns in developing an intelligent 

control algorithm for heading angle tracking using the identified vehicle model, then 

validates it using the processor in the loop co-simulation. Chapter 9 discusses the developed 

robust 𝐻∞  controller for heading angle tracking. Chapter 10 offers conclusions and 

considers future work.  

2.7 Chapter Summary 

This chapter provides a critical review of a state of the art of the published work in 

advanced control, motion planning techniques, sensor fusion, and system identification 

techniques for unmanned ground vehicles (UGVs). Practical issues and technical 

challenges associated with the development of UGVs are also outlined. 
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UGVs have many potential applications and the demand for them is ever increasing, in 

addition, it has drawn interest from many researchers and organizations, especially military 

applications. In fact, UGVs have been used in some military operations such as inspection, 

surveillance, and rescue operations. 

Based on the literature review, it is challenging to develop an intelligent controller for a 

UGV due to the urgent need to maintain the UGV stability performance while navigating 

the vehicle autonomously. Consequently, uncertain dynamics due to various disturbances 

coming from the external load, ground contact, and unmolded dynamics must be 

considered while developing the controller. The challenges for UGVs is to develop a 

control system that has the capability to handle all the nonlinearities caused by the vehicle 

subsystems and the harsh environmental conditions.  

Furthermore, motion planning for UGVs has gained substantial attention since several 

challenges are encountered such as road conditions, and limited knowledge about the 

working environment. It has been noted that most of the published work focuses on the 

mathematical formulation and the numerical simulation without shedding the light on the 

practical aspects of the typical implementation in UGVs.  

On the other hand, the selection of the sensor fusion estimation technique depends on the 

type of the problem and the established assumptions of each technique. Most of the state 

estimation methods that are used for sensor fusion are based on control theory and the laws 

of probability. Many autonomous systems use KF to integrate GPS/INS seniors as a 

navigation system to increase the navigation solution accuracy. Computer vision 

techniques have been applied to almost all environments and all kind of mobile robots for 

example; ground, air, and underwater robots. 

On the other hand, increasing the number of the sensor will lead to some faults due to 

hardware or software malfunction. These faults are difficult to predict accurately in time in 

order to prevent them. Therefore, fault tolerance control is used to achieve a more reliable 

performance in such autonomous systems. Fault tolerance control aims to prevent the 

simple faults, that can be developed into serious failure, in this way fault tolerance increases 

plant reliability and reduce the risk of hazards. in addition, from the system identification 
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research literature, system identification is a valuable method for determining system 

dynamics. Safer and more reliable autonomous vehicles can be designed with a better 

understanding of system dynamics based on system identification methods. With safer and 

more reliable autonomous vehicles, scientists can have a broader range of tools for 

collecting scientific data. 
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CHAPTER 3                                                                              

Optimal Collision-Free Path Planning for Autonomous 

Multi-Wheeled Combat Vehicle                                                                            

3.1 Introduction 

In recent years, many researchers investigated and developed autonomous vehicles, which 

have become increasingly important assets in various civilian and military operations. 

Multi-wheeled combat vehicles are one of the difficult types of the vehicles in applying 

autonomy due to their large dimensions, heavy weight, and complex geometry. However, 

combat vehicles are mainly essential for military applications [65,66]. The expected 

outcomes of the autonomous multi-wheeled combat vehicles are set to increase combat 

capability while protecting soldiers in a full spectrum of battlefield scenarios. Motion 

planning or path planning is one of the challenges in autonomous vehicles control, which 

is required to have the ability to deal with unknown workspaces such as road conditions, 

uncertainty in the vehicle states, and limited knowledge about the surrounding 

environments. 

Motion planning and obstacle avoidance are widely used to find the collision-free path for 

autonomous vehicles to move amidst a set of obstacles [67,68]. There is much path 

planning research done using probabilistic roadmaps [69], Rapidly-exploring Random Tree 

RRT [70], and Artificial Potential Field (APF) [71]. The APF approach is commonly used 

in path planning due to its simple algorithm and mathematical description. It is also 

convenient for real time control [72-75]. For example, Adeli [76] solved the path planning 

problem of a mobile robot using a potential function considering the distances from 

obstacles, the goal point, and start point. Although this algorithm was able to avoid 

obstacles, the generated path was not optimal because it was still based on the classic 

potential field method. Consequently, to solve this problem and generate the vehicle 

optimal path, the optimal control theory is introduced in this chapter. 

Using optimal control theory, the vehicle path planning can be formulated as an optimal 

control problem. It is used as a set of differential equations describing the paths of the 
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control variables that minimize the cost function to satisfy the initial/final conditions. The 

Pontryagin's principle [77] is introduced to solve the optimal control problem for 

generating the optimal path. The proposed method is able to provide the optimal solutions 

for the vehicle path planning problems while satisfying the initial and final constraints. 

This chapter describes the methodology of generating the optimal collision-free path 

planning algorithm for an autonomous multi-wheeled combat vehicle. The developed 

algorithm is based on the combination between optimal control theory and Artificial 

Potential Field function (APF). The optimal path planning algorithms are developed using 

Pontryagin's Minimum Principle (PMP), which is one of the major branches of the optimal 

control theory. The cost function of the path planning is solved together with vehicle 

dynamic equations to satisfy the boundary conditions. For this purpose, a simplified four-

axle bicycle model of the actual vehicle considering the vehicle body lateral and yaw 

dynamics while neglecting roll dynamics is considered. The obstacle avoidance technique 

is mathematically modeled based on the proposed artificial potential field method using 

the Gaussian function. This potential function is assigned to each obstacle as a repulsive 

potential field. The inclusion of these potential fields results in a new APF which controls 

the vehicle to reach the goal point safely. The proposed algorithm is validated using a full 

nonlinear vehicle model in TruckSim software, where the time history of the vehicle states 

in terms of lateral acceleration, yaw rate and curvature at different speeds are compared. 

Several simulations are carried out to check the fidelity of the proposed technique. The 

obtained results demonstrate that the generated path for the vehicle is able to avoid collision 

with the obstacles, while it satisfies the boundary conditions. In addition, it is successfully 

validated with TruckSim vehicle model. 

3.2 Vehicle Dynamics and Modeling 

A simplified two DOF vehicle is used to develop the differential equations of the multi-

wheeled combat vehicle. This linearized plant is used to generate the optimal path and 

represent the vehicle motion during the maneuver. The actual vehicle configuration and a 

simulation model of the vehicle in TruckSim are shown in Figure 3-1. The vehicle is 

equipped with four axles, where the front two axles are steered. The vehicle model consists 
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of 22 degrees of freedom, namely pitch, yaw, and roll of the vehicle sprung mass, and spin 

and vertical motions of each of the eight wheels. 

 

                         (a)                                                                        (b) 

Figure 3-1 (a) Actual vehicle configuration [78] and (b) the simulation model 

The simplified version of the actual vehicle model describes the lateral and yaw motion of 

vehicle while neglecting roll dynamics. Figure 3-2 represents the free body diagram of the 

simplified vehicle model. The left and right sides of the vehicle have been combined into 

one single track. The center of gravity is represented by a golden circle and it is located 

between the second and third axles. The vehicle forward speed (U), the lateral speed (𝑉), 

and the yaw rate (𝑟) are shown acting on the center of gravity. The positive x-axis points 

to the right of the page, the positive y-axis points down the page, the positive z-axis is 

directed into the page and yaw moments are clockwise positive as shown in the legend at 

the top right of Figure 3-2. Tire slip angles and wheel steer angles are shown in blue and 

red respectively. Axle distances (a1, a2, a3, a4) are measured from the center of gravity to 

the center of each axle. 
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Figure 3-2 Two-degree-of-freedom Bicycle Vehicle Model 

The forward velocity is assumed constant and 𝛿1and 𝛿2 represents the average first and 

second axle’s wheel steering angles respectively, which assumed small angles (Cos 𝛿1=1 

and Cos 𝛿2=1). The governing equations of motion for the vehicle body lateral and yaw 

dynamics are given in Equations 3-1, 3-2 respectively: 

∑𝑚(�̇� + 𝑟𝑈) = 𝐹𝑦1 + 𝐹𝑦2 + 𝐹𝑦3 + 𝐹𝑦4 
 

3-1 

∑𝐼𝑧𝑧�̇� = 𝑎1𝐹𝑦1 + 𝑎2𝐹𝑦2 − 𝑎3𝐹𝑦3 − 𝑎4𝐹𝑦4 3-2 

where 𝑈 and 𝑉 stand for the longitudinal and lateral velocities of vehicle center of gravity 

(CG) respectively, m is the vehicle mass, 𝐼𝑧𝑧 is the yaw moment of inertia. 

Tire slip angle (𝛼) equations and cornering forces (𝐹𝑦) are calculated for each axle where 

[𝑖 = 1: 4]  

𝛼1 = 𝛿1 − (
𝑉+𝑎1𝑟

𝑈
)   , 𝛼2 = 𝛿2 − (

𝑉+𝑎2𝑟

𝑈
) 

3-3 

 

𝛼3 = − (
𝑉−𝑎3𝑟

𝑈
)     ,  𝛼4 = −(

𝑉−𝑎4𝑟

𝑈
) 

3-4 
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𝐹𝑦𝑖 = 𝛼𝑖𝐶𝛼𝑖   3-5 

where 𝐶𝛼𝑖 represents the axle cornering stiffness. 

Lateral Motion Equation 

Substituting Equations 3-3, 3-4,   3-5 into Equation 3-1 yields: 

𝑚(�̇� + 𝑟𝑈) = 𝐶𝛼1 [𝛿1 − (
𝑉 + 𝑎1𝑟

𝑈
)] + 𝐶𝛼2 [𝛿2 − (

𝑉 + 𝑎2𝑟

𝑈
)] [− (

𝑉 − 𝑎3𝑟

𝑈
)]

+ 𝐶𝛼4 [− (
𝑉 − 𝑎4𝑟

𝑈
)] 

3-6 

�̇� = −(
(𝐶𝛼1 + 𝐶𝛼2 + 𝐶𝛼3 + 𝐶𝛼4)

𝑚𝑈
)𝑉

+ (
(−𝑎1𝐶𝛼1 − 𝑎2𝐶𝛼2 + 𝑎3𝐶𝛼3 + 𝑎4𝐶𝛼4)

𝑚𝑈
− 𝑈)𝑟

+ (
𝐶𝛼1𝛿1 + 𝐶𝛼2𝛿2

𝑚
) 
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Yaw Motion Equation 

Substituting Equations 3-3, 3-4,  3-5 into Equation 3-2 yields: 

�̇� =
1

𝐼𝑧𝑧
{𝑎1𝐶𝛼1 [𝛿1 − (

𝑉 + 𝑎1𝑟

𝑈
)] + 𝑎2𝐶𝛼2 [𝛿2 − (

𝑉 + 𝑎2𝑟

𝑈
)]

− 𝑎3𝐶𝛼3 [− (
𝑉 − 𝑎3𝑟

𝑈
)] − 𝑎4𝐶𝛼4 [− (

𝑉 − 𝑎4𝑟

𝑈
)]} 
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Rearranging, 

�̇� =
1

𝐼𝑧𝑧
{𝑎1𝐶𝛼1𝛿1 + 𝑎2𝐶𝛼2𝛿2 − 𝑎1𝐶𝛼1

𝑉

𝑈
− 𝑎2𝐶𝛼2

𝑉

𝑈
+ 𝑎3𝐶𝛼3

𝑉

𝑈
+ 𝑎4𝐶𝛼4

𝑉

𝑈

−
𝑎1

2𝐶𝛼1𝑟

𝑈
−

𝑎2
2𝐶𝛼2𝑟

𝑈
−

𝑎3
2𝐶𝛼3𝑟

𝑈
−

𝑎4
2𝐶𝛼4𝑟

𝑈
} 

3-9 
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�̇� = (
(−𝑎1𝐶𝛼1 − 𝑎2𝐶𝛼2 + 𝑎3𝐶𝛼3 + 𝑎4𝐶𝛼4)

𝐼𝑧𝑧𝑈
)𝑉

+ (
(−𝑎1

2𝐶𝛼1 − 𝑎2
2𝐶𝛼2 + 𝑎3

2𝐶𝛼3 + 𝑎4
2𝐶𝛼4)

𝐼𝑧𝑧𝑈
)𝑟

+ (
𝑎1𝐶𝛼1𝛿1 + 𝑎2𝐶𝛼2𝛿2

𝐼𝑧𝑧
) 

3-10 

 

Now the differential Equations 3-7, 3-10 fully describe the motion of the linear bicycle 

model. The final states of the vehicle model can be derived and written according to the 

following matrix form: 

[
𝑉
�̇�
�̇�

̇

] = [
−𝑎11 𝑎12 0
𝑎21 𝑎22 0
0 1 0

] [
𝑉
𝑟
𝛹

] + [
𝑏11

𝑏21

0

] 𝛿1 
3-11 

 

where  

𝑎11 = (
(𝐶𝛼1 + 𝐶𝛼2 + 𝐶𝛼3 + 𝐶𝛼4)

𝑚𝑈
) 

𝑎12 = (
(−𝑎1𝐶𝛼1 − 𝑎2𝐶𝛼2 + 𝑎3𝐶𝛼3 + 𝑎4𝐶𝛼4)

𝑚𝑈
− 𝑈) 

𝑎21 = (
(−𝑎1𝐶𝛼1 − 𝑎2𝐶𝛼2 + 𝑎3𝐶𝛼3 + 𝑎4𝐶𝛼4)

𝐼𝑧𝑧𝑈
) 

𝑎21 = (
(−𝑎1

2𝐶𝛼1 − 𝑎2
2𝐶𝛼2 + 𝑎3

2𝐶𝛼3 + 𝑎4
2𝐶𝛼4)

𝐼𝑧𝑧𝑈
) 

𝑏11 = (
𝐶𝛼1 + 𝐶𝛼2𝐾𝑠

𝑚
) 

𝑏21 = (
𝑎1𝐶𝛼1 + 𝑎2𝐶𝛼2𝐾𝑠

𝐼𝑧𝑧
) 

where 

 𝑟 and Ψ are the vehicle yaw rate and yaw angle respectively, and 𝛿2 = 𝐾𝑠 𝛿1, 
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 𝐶𝛼1, 𝐶𝛼2, 𝐶𝛼3 𝑎𝑛𝑑 𝐶𝛼4 denote the cornering stiffness’s of tires. 

The coordinates of the vehicle body motion(𝑥, 𝑦) in global coordinates can be derived as 

follows: 

[
𝑥
�̇�
̇
] =  [

         𝑈                    − (𝑉 + 𝑎1. 𝑟)

(𝑉 + 𝑎1. 𝑟)                      𝑈
] [

𝑐𝑜𝑠 𝛹
𝑠𝑖𝑛 𝛹

] 3-12 

Setting the state vector as 𝑿 = [𝑉  𝑟  𝛹  𝑥  𝑦  𝛿1 ]
𝑇, then from Equations 3-11 and 3-12, the 

state space equations for the bicycle model can be written as follows: 

�̇� = 𝑓(𝑋) + 𝐵𝑢 3-13 

where 

𝑓(𝑋) =

[
 
 
 
 
 

−𝑎11𝑉 + 𝑎12𝑉 + 𝑏11𝛿1 
𝑎21𝑉 + 𝑎22𝑟 + 𝑏21 𝛿1

𝑟
𝑈𝑐𝑜𝑠𝛹 − (𝑉 + 𝑎1 𝑟) 𝑠𝑖𝑛 𝛹

𝑈 𝑠𝑖𝑛 𝛹  + (𝑉 + 𝑎1 𝑟) 𝑐𝑜𝑠 𝛹
0 ]

 
 
 
 
 

    ,   𝐵 =

[
 
 
 
 
 
0
0
0
0
0
1]
 
 
 
 
 

       ,          𝑢 = �̇�1 

3.3 Obstacle Modeling based Artificial Potential Field (APF) 

In this section, the obstacles and goal locations are modeled based on the artificial potential 

field approach. The principle of this approach is specified in using imaginary forces acting 

on the vehicle direction during the maneuver. The obstacles have a repulsive field 

approximately them and the goal has an attractive field. The synthesis of all the fields 

determines the motion direction of the vehicle in the workspace [79]. The developed APF 

is based on two-dimensional Gaussian attractor (𝑓𝐴(𝑥, 𝑦)) and repulsor 

(𝑓𝑅(𝑥, 𝑦))  functions that can be described as follows: 

𝑓𝐴(𝑥, 𝑦) = 1 − 𝑒
−((𝑥−𝑎𝑥)2+(𝑦−𝑎𝑦)2)

2𝜎2  
3-14 

 

𝑓𝑅(𝑥, 𝑦) = 𝑒
−0.5(

(𝑥−𝑟𝑥)2+(𝑦−𝑟𝑦)2

𝜎2 )

𝑐

 

3-15 

 

where 
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(𝑎𝑥, 𝑎𝑦) The position center of the attractor, 

(𝑟𝑥, 𝑟𝑦) The position center of the repulsor, 

(σ) Used to change the size of the obstacle, 

(𝑐) Determines the effect range of the given obstacle.  

The implementation of the given potential field in the vehicle model requires the 

calculation of the coordinates of the vehicle body, surrounding obstacles, and target 

location. Figure 3-3 shows 3D Gaussian functions for the repulsor and attractor potential 

fields. The represented obstacles at points 𝑃1(𝑥1, 𝑦1), 𝑃2(𝑥2, 𝑦2) where 𝑥𝑖 , 𝑦𝑖 represent the 

coordinates of the obstacle. These obstacles are considered static with predefined 

coordinates.  

 

Figure 3-3 Visualization of the obstacles using APF. 

3.4 Optimal Path Planning Algorithm 

The proposed path planning algorithm is based on the optimal control theory to generate 

the vehicle optimal collision-free path. This algorithm permits the vehicle to move between 

two points along a predefined coordinate of the obstacles as well as initial and final 

locations. The control action is performed by applying the output control signal directly to 

the front wheel of the vehicle. For obtaining the optimal collision-free path for the vehicle, 

the cost function is defined in Equation 3-16. This cost function should be solved together 

Obstacles Target 
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with vehicle dynamics Equation 3-13 to satisfy the vehicle dynamics and the initial and 

final conditions. 

min
𝑢(𝑡)

𝐽 =  ∫ 𝐿(𝑋(𝑡)  , 𝑢(𝑡)  , 𝑡 ) 𝑑𝑡

𝑡𝑓

𝑡𝑜

 3-16 

where 𝑋(𝑡) is the states vector = [𝑉  𝑟  𝛹  𝑥  𝑦  𝛿𝑓 ]
𝑇
and 𝑢(𝑡) represent the control action 

for front wheel steering angle. By setting-up the Lagrangian  𝐿(𝑋, 𝑢) for the cost 

minimization problem considering the obstacle location will be as follows: 

𝐿(𝑋, 𝑢) = 𝐿1(𝑋, 𝑢) + 𝑊𝑝𝑜 ∑𝑃𝑜𝑖(𝑋𝑐)

𝑖

 3-17 

where 𝑋𝑐 = (𝑥𝑐, 𝑦𝑐) , 𝑃𝑜𝑖(𝑋𝑐) = 𝑓𝑅(𝑥𝑐, y𝑐) is the repulsor potential field based on 

Gaussian function as defined in Equation 3-15,  𝑊𝑝𝑜 is the weigh. 

 𝐿1(𝑋, 𝑢) is introduced to define the states vector and control signal as follows: 

𝐿1(𝑋, 𝑢) = 𝑋𝑇𝑄𝑋 + 𝑢𝑇𝑅𝑢 3-18 

where 𝑋, 𝑋𝑇  are the state vector and its transpose respectively, 𝑢 is the control input and 

(𝑄, 𝑅) are positive weighting matrices.  

From Equations 3-16, 3-17, and 3-18 the cost function that needs to be minimized in 

Equation 3-16 can be rewritten as follows:  

min
𝑢(𝑡)

𝐽 = ∫ 𝑋𝑇𝑄𝑋 + 𝑢𝑇𝑅𝑢 + 𝑊𝑝𝑜 ∑𝑃𝑜𝑖(𝑋𝑐)

𝑖

𝑡𝑓

𝑡𝑜

 3-19 

In order to solve this problem, the Pontryagin’s Minimum Principle (PMP) is employed as 

an optimal control solution. For this purpose, the Hamiltonian function is considered as 

shown in Equation 3-20. 

𝐻(𝑋(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) ≜ 𝐿(𝑋(𝑡), 𝑢(𝑡), 𝑡) + 𝜆𝑇𝑓(𝑋(𝑡), 𝑢(𝑡), 𝑡) 3-20 
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where 𝜆𝑇 is the Lagrange multiplier vector for the vehicle dynamics constraint. The co-

state equation (�̇�) can be presented in the following form: 

�̇� =  −
𝜕𝐻

𝜕𝑥
(𝑋∗(𝑡𝑓

∗), 𝑢∗(𝑡𝑓
∗), 𝜆(𝑡𝑓

∗), 𝑡𝑓
∗) 3-21 

The control input can be obtained from the first derivative of a Hamiltonian function with 

respect to the control signal as follows: 

𝜕𝐻

𝜕𝑢
(𝑋, 𝜆, 𝑢) = 0  𝑖. 𝑒.  

𝜕𝐿

𝜕𝑢
+ ∑𝜆𝑖  

𝜕𝑓𝑖
𝜕𝑢

= 0 3-22 

Both the initial and final conditions of the Hamiltonian function given in Equation 3-23 are 

defined as follows: 

𝑋(𝑡𝑓) = [0   0   𝛹0    𝑑𝑥𝑜  𝑑𝑦𝑜   0]

𝑋(𝑡𝑜) = [0   0   𝛹𝑓    𝑑𝑥𝑓  𝑑𝑦𝑓   0]
         } 3-23 

where ( 𝑑𝑥𝑜 , 𝑑𝑦𝑜), (𝑑𝑥𝑓 , 𝑑𝑦𝑓) are the initial vehicle positions in longitudinal and lateral 

directions respectively. In addition, (𝛹0, 𝛹𝑓) are the initial and final heading angles of the 

vehicle. The Hamiltonian function is solved for the following states and co-states vectors 

which are given as follows: 

In order to solve the boundary value problem Equations 3-19, 3-21, 3-22, and 3-23 a 

MATLAB built-in boundary value problem function (bvp4c) is used to solve the state 

variables and solve them and generate the optimal path within the time interval from 

(𝑡𝑜) to (𝑡𝑓). 

3.5 Simulation and Results 

The numerical simulation is carried out in MATLAB environment in order to evaluate the 

robustness of the proposed collision-free path planning algorithm including different 

scenarios. Subsequently, the generated optimal path is applied to the TruckSim full vehicle 

�̇� = [�̇�     𝑟 ̇     𝛹 ̇     𝑥  ̇     �̇�      �̇�]
𝑇

𝑃 = [�̇�1   �̇�2    �̇�3    �̇�4    �̇�5   �̇�6]
𝑇         } 3-24 
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model to validate and compare the lateral acceleration, yaw rate, and the vehicle curvature 

with the linearized model at two different constant speeds of 9km/h and 28km/h. TruckSim 

is a mechanical simulation software used to calculate the vehicle’s kinematics and 

dynamics, which represent the actual full vehicle model. The parameters characteristics for 

a typical combat vehicle is used for path planning such as actual vehicle dimension, 

cornering stiffness for the four axles and the yaw moment of inertia and total weight.  

The proposed algorithm is experienced through the following two scenarios. The first 

scenario shows the vehicle optimal path between two points considering the target border 

as obstacles. The second scenario shows the vehicle optimal collision-free path between 

two points with different obstacles imposed in the path of the vehicle.  

3.5.1 Optimal path between two points 

The objective of this scenario is to check the capability of the proposed methodology to 

generate an optimal path for the vehicle from a given starting and ending points performing 

the maneuver safely without hitting the destination borders. For this purpose, the 

destination borders are simulated using repulsor potential field which is represented in red 

lines as shown in Figure 3-4, considering the initial and target locations at (0, 0), (50, 50) 

respectively. In addition, the initial and final heading angles are zero and 90 degrees 

respectively. Figure 3-4 (a-d) show the trace of the obtained trajectory which is close to 

what a real driver would do in this scenario. 
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Figure 3-4 (a-d) Generated optimal Path between Two Points 

The validation of the MATLAB vehicle model with TrackSim model for performing the 

maneuver between two points at a constant speed of 9 km/h is shown in Figure 3-5 (a-d). 

These figures compare the vehicle yaw rate, lateral acceleration, curvature and longitudinal 

velocity of both models. The simulation result demonstrates that the vehicle parameters 

using both models when performing the same maneuver at a speed of 9 km/h agree with 

each other. 

 

(a) 
 

(b) 
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(c) 

 

(d) 

Figure 3-5 Comparison between the bicycle model and TruckSim vehicle model at speed 

of 9 km/h: a) Yaw Rate (deg/s), b) lateral acceleration (g), c) longitudinal velocity (km/h), 

d) Curvature (m). 

On the other hand, at speed of 28 km/h, the comparison of the vehicle states is shown in 

Figure 3-6 (a-d). It has been noticed that, as the longitudinal speed increased, the lateral 

acceleration, curvature, and yaw rate started to make a small deviation. This deviation is 

due to the assumption of a linear tire model characteristic in the derived model in 

MATLAB. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3-6 Comparison between the bicycle model and TruckSim vehicle model at speed 

of 28 km/h longitudinal velocity: a) Yaw Rate (deg/s), b) lateral acceleration (g), c) 

longitudinal velocity (km/h), d) Curvature (m). 

3.5.2 Optimal path between two points with obstacles 

This scenario is aimed to check the generated optimal path in case that the obstacles are 

imposed at different locations in the way of the vehicle during the maneuver between two 

points. For this purpose, the simulation is carried by imposed an obstacle in the previously 

generated path in section 3.5.1. Furthermore, another obstacle is imposed in the new 

generated path. 

3.5.2.1  Imposed one obstacle 

In this scenario, the obstacle is imposed at (20, 1.6) on the previously generated path as 

mentioned above. The generated optimal collision-free path during the vehicle maneuver 

is shown in Figure 3-7. The simulation results show that the vehicle reaches the goal 

location safely while avoiding the imposed obstacle in the path and at the destination 

location. In addition, the generated path is similar to the human driver response in case of 

avoiding an obstacle. 
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Figure 3-7 (a-d) Generated optimal path between two points and imposed 1st obstacle 

3.5.2.2 Imposed two obstacles 

In this scenario, two obstacles are imposed at (20, 1.6) and (50, 20) during the vehicle 

maneuver as shown in Figure 3-8. The simulation results show that the vehicle is able to 

reach the goal location safely while avoiding collision with the obstacles, generating its 

own optimal path.  
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Figure 3-8 (a-d) Generated optimal path between two points and imposed 2nd obstacle 

3.6 Chapter Summary 

In this chapter, an optimal collision-free path planning for an autonomous multi-wheeled 

combat vehicle navigating through a cluttered environment has been presented. The 

developed algorithm is based on the integration between optimal control theory using PMP 

and an artificial potential field approach. The optimal control theory is successfully 

employed for generating the optimal path of the vehicle during the maneuver for a given 

starting and goal points, considering obstacles in the way. The proposed algorithm is 

applied to a simplified four-axle bicycle model of the actual vehicle considering the vehicle 

body lateral and yaw dynamics. This algorithm mainly controls the vehicle steering angle 

for generating the optimal path. Furthermore, an obstacle avoidance technique is 

Obstacles  



51 

 

mathematically modeled based on APF for representing different obstacles using the 

Gaussian function which is used to simulate and represent the obstacles as repulsive 

potential filed.  

Additionally, the obtained optimal path and the vehicle states were validated with a full 

nonlinear vehicle model in TruckSim software in terms of lateral acceleration, yaw rate, 

and curvature at two different longitudinal speed. Various numerical simulations are 

carried out using different locations of the obstacles. The simulation results show that the 

algorithm discussed in this chapter successfully generates the vehicle optimal collision-

free path for the vehicle and is able to avoid the imposed obstacles at different locations.  
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CHAPTER 4                                                                                     

Real Time Path Planning and Navigation of a Multi-

Wheeled Combat Vehicle Based Artificial Neural Networks  

 

4.1 Introduction 

This chapter presents a real time path planning algorithm for autonomous multi-wheeled 

combat vehicles based on ANN. The proposed architecture enables the vehicle to navigate 

autonomously from the initial location to the destination location in real time, while 

avoiding destination borders. The proposed ANN algorithm is based on the optimal control 

theory and artificial potential fields method, which are developed for path planning in 

Chapter 3. All possible optimal paths that cover every part of the workspace are generated 

using different starting points. Subsequently, these paths are used as training data for the 

proposed ANN considering the vehicle parameters in terms of yaw rate, lateral velocity, 

heading angle, and steering angle. The network is trained in offline mode using a 

backpropagation learning algorithm. The trained ANN model has the capability to control 

the movement of the combat vehicle in real time from any starting point to the desired goal 

location within the area of interest. The APF is introduced to prevent the vehicle from 

colliding with obstacles that are represented at the border of the destination. The 

effectiveness and efficiency of the proposed approach are demonstrated. The simulation 

results show that the proposed ANN model is capable of generating the optimal paths of 

the multi-wheeled combat vehicle. 

Real time path planning for autonomous vehicle using ANN has many distinct advantages, 

which have been applied in autonomous driving [80-82]. For example, Ni [83] used 

bioinspired neural network to perform real time path planning for an autonomous 

underwater vehicle in a three-dimensional unknown environment. Rehder [84] developed 

a convolutional neural network to learn planning from imitation for path planning in 

complex traffic situations from both simulated and real-world data. In [85], the author 

introduced a neural network model via integer linear program formulation for obtaining 
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the optimal shortest path. [86-89] proposed the algorithm for solving shortest path 

problems. 

4.2  Artificial Neural Networks (ANNs)   

Artificial Neural Networks are very influential brain-inspired computational models, which 

have been employed in various areas such as computing, engineering, and many others. 

ANNs are composed of a certain number of simple computational elements called neurons. 

The neurons are organized into a structured graph topology made out of several consecutive 

layers and immensely interconnected through a series of links called synaptic weights. 

Synaptic weights are often associated with variable numerical values that can be adapted 

as to allow the ANN to change its behavior based on the problem being addressed [90]. 

Training an ANN is usually done by feeding the network’s input with patterns to learn. The 

network then transmits the pattern through its weights and neurons until it generates a final 

output value. 

Accordingly, the training or the learning algorithm compares the produced output value to 

the expected output. If the error range is high, the algorithm marginally alerts the network’s 

weights so that if the same pattern were fed again to the network, the output error would 

be smaller than the previous iteration. This process will be repeated for many cycles called 

epochs, using a different set of input patterns until the network produces acceptable outputs 

for all inputs [91]. This learning progression allows the network to identify many patterns 

and further generalize to new and unseen patterns. Such a type of training is called 

supervised learning, which uses classified pattern information to train the network in 

offline mode.  

4.3 Proposed Neural Network Model 

The proposed ANN consists of three layers, an input layer, a hidden layer, and an output 

layer. The input layer has five input source nodes, which are physically fed by the multi-

wheeled combat vehicle parameters in terms of position in X, Y, vehicle heading angle, 

vehicle yaw rate, and lateral velocity. The hidden layer has twenty neurons, which receive 

the data from the input layer. Subsequently, multiply it by the weights denoted by Wij and 
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bias, then forward the result values to the output layer. The output layer has one neuron 

that directly represents the front wheel steering angle that controls the vehicle’s motion. 

The weights Wij represents the interconnection between the different neurons of the 

network.  

The proposed neural network shown in 

 

Figure 4-1 Architecture of the proposed ANN. can be defined as follows:  

NN = {I, O, T, W}, where I represents the set of input nodes, O represents the output node, 

T represents the topology of the network including the number of layers and the number of 

their neurons, and W represents the set of weights values. 

I = {v, r, θ, x, y}  

T = {Lin-5, Lh0-20, Lout-1} 
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Figure 4-1 Architecture of the proposed ANN. 

Before the ANN model can be trained, the generated optimal paths from chapter 3 should 

be collected. This is performed using different starting points in the workspace for the 

vehicle. After the paths data collection step is completed, the ANN is used to generate a 

learning model from the captured datasets through offline training.  

4.3.1 Backpropagation algorithm 

Optimal steering angle  

Input layer                       Hidden layer                        Output layer 
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The proposed neural network model shown in 

 

Figure 4-1 is trained through a supervised learning approach using the backpropagation 

algorithm [92]. The main purpose of using backpropagation algorithm is to optimize the 

weights so that the neural network can learn how to correctly map arbitrary inputs to 

outputs. 

Backpropagation algorithm contains two passes in terms of the forward pass and backward 

pass. The forward pass propagates the input data in the forward direction from the input to 

output layers of the ANN, which ends by providing an output value. Afterword, it computes 

the error by subtracting the desired output from the actual output. If the error is within an 

acceptable range, the network is trained with a new set of input data; otherwise, the 

backward pass is executed. The backward pass propagates the error signal backward 

through the network layers in order to update the synaptic weights of the network.  

Additionally, the developed ANN model is an iterative type as follows; first, it is initialized 

using the initial input data of the vehicle states. Subsequently, the corresponding steering 

wheel angle is calculated. The obtained steering wheel angle is used to update the vehicle 

states. The updated states are used to update the ANN model in each iteration to estimate 
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the new steering wheel angle of the moving vehicle for the next navigation step. The 

developed motion planning algorithm can be summarized as follows: 

1. Specify the initial configurations of the vehicle states in terms of 𝑉𝑖, 𝑟𝑖, Ψ𝑖 ,  𝑥𝑖 , 𝑦𝑖. 

2. Initialize the ANN model using the initial input data in order to calculate the 

corresponding front steering wheel angle. 

3. The obtained steering wheel angle from the ANN model is used to update the 

vehicle parameters, then inputs the updated parameter to the ANN model to return 

the new front steering wheel angle for the next vehicle movement. 

4. Generate the optimal path for the multi-wheeled combat vehicle by repeating step 

3 until the vehicle reaches its target position. 

 

4.4 Simulation and Result 

The proposed artificial neural network model is implemented using OpenNN. It is an open 

source class library written in C++ programming language, which implements neural 

networks models. The main advantage of this open source library is the high performance, 

which is developed in C++ for better memory management and higher processing speed. 

The ANN is compiled under the MS Visual Studio. It incorporates a training engine that 

can be fed with various static and dynamic parameters including initial weights, input data, 

learning rate, and the number of epochs to execute. 

The developed ANN is tested and validated to generate the vehicle optimal path through 

the following three scenarios. The first scenario shows the obtained vehicle optimal path 

between two points compared with the training paths for testing. Afterwards, it is validated 

by choosing a different starting point in-between the training data. The second scenario 

examines the vehicle’s optimal path from different starting points. The third scenario shows 

the effects of the vehicle longitudinal speed on the obtained paths. 

4.4.1 First scenario 
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The main objective of this scenario is to check the capability of the proposed ANN model 

in terms of providing the optimal path for the vehicle from a given starting point to the goal 

point safely without hitting the destination border. Figure 4-2 shows the obtained optimal 

path using the ANN model represented in a dashed red line compared with the training data 

represented in blue for a starting point (0,14). The obtained result shows that the proposed 

ANN model has the capability to generate the optimal path in real time for the vehicle to 

reach its goal location through the safe and correct trajectory compared with the original 

optimal path without hitting the border.  

Additionally, the time history of the vehicle parameter in terms of lateral velocity, heading 

and steering angles and yaw rate during this maneuver are shown in Figure 4-3 compared 

with the optimal path planning model.  

 

Figure 4-2 Obtained path for both NN model and optimal control                                      

for the same starting point 
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(a) 

 

(b) 

 

(c) 

  

(d) 

Figure 4-3 Comparison between time-history of the vehicle parameters obtained from NN 

model and Optimal control (trained data) for vehicle model: a) Yaw Rate (deg/s), b) 

lateral velocity (m/s), c) Heading angle (deg), d) Steering angle (deg). 

The ANN is validated by the training data by generating multiple optimal paths in-between 

the training paths as shown in Figure 4-4. It has been noticed that the introduced ANN 

model has the capability to generate the vehicle optimal paths that behave the same as the 

training paths even choosing different starting points. 



60 

 

 

Figure 4-4 Optimal path between two points using NN and optimal control 

4.4.2 Second scenario  

In this scenario, the capability of the proposed ANN model is examined in terms of 

navigating the vehicle using various starting points in the workspace as shown in Figure 

4-5. The obtained result shows that the vehicle is able to autonomously navigate from any 

point in the workspace to reach the goal point following the optimal path in red compared 

with optimal control theory result (training data) in blue. 
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Figure 4-5 Generating optimal path from different starting point in the space using ANN 

and optimal control 

4.4.3 Third scenario 

This scenario aims to show the effect of the vehicle longitudinal speed on the obtained 

paths. For this purpose, the vehicle optimal path is generated at speeds 2,4,8 and,10 m/s 

using the MATLAB model discussed in Chapter 3. Afterword, it compared to the obtained 

results with the ANN path at speed 2 m/s as shown in Figure 4-6. The obtained result shows 

that the effect of increasing the longitudinal speed is very small within this range. 

Consequently, the obtained path using the ANN model is approximately satisfying the 

obtained paths at different speeds.  
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Figure 4-6 Generating optimal path at different longitudinal speed NN                                  

and optimal control 

4.5 Chapter Summary 

This chapter presented a motion planning algorithm for the multi-wheeled combat vehicle 

in real time based on an ANN , optimal control theory, and APF. The proposed ANN is a 

multilayer network, which is trained in offline mode using backpropagation learning 

algorithm. The training data is acquired based on optimal control theory discussed in the 

CHAPTER 3. The introduced ANN model is a significant improvement in the field of 

autonomous combat vehicle navigation and control, due to its capability to provide the 

vehicle optimal path in real time for this application. 

The effectiveness of the ANN algorithm is validated through various numerical simulations 

considering different starting points in the workspace. The simulation results demonstrate 

that the proposed ANN model has the capability to optimally generate the vehicle path in 

real time to reach the goal location safely, while keeping the vehicle parameters including 

lateral velocity, heading and steering angles, and yaw rate identical to the training data.  
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CHAPTER 5                                                                       

Comparative Study of Dynamic Programming and 

Pontryagin’s Minimum Principle for Vehicle Path Planning 

5.1 Introduction 

This chapter presents a comparative study of two path planning algorithms based on the 

optimal control theory for the autonomous multi-wheeled combat vehicle. The developed 

optimal path planning algorithms use Pontryagin's Minimum Principle (PMP), which is 

discussed in Chapter 4 and the Dynamic Programming (DP) approach. PMP and DP are 

two major branches of the optimal control theory. Up to now, little work has been done to 

compare their performance in the application of navigating autonomous vehicles.  

The simplified two DOF vehicle model is used to develop the differential equations of the 

multi-wheeled combat vehicle. The cost function associated with the path planning is 

minimized with the vehicle dynamics equations to satisfy vehicle dynamics and boundary 

conditions. The performance analysis of the obtained optimal paths is carried out 

considering various scenarios. The simulation results show that the obtained optimal 

solution using PMP is very close to the DP solution, which is the guaranteed global 

optimum. In addition, the initial and final condition parameters and the vehicle dynamics 

are satisfied. However, the computation time of the PMP is significantly less than that of 

the DP.  

According to the review, there are two optimization approaches that seem best suited to 

autonomous vehicles path planning. The local and the global optimal path planning 

approaches include the Pontryagin’s minimum principle and dynamic programming, 

respectively. Additionally, other approaches have been explored for obtaining the optimal 

path including methods such as Genetic Algorithms (GA) [93,94]. 

The Pontryagin’s minimum principle was introduced in Chapter 3 as an optimal control 

solution [95-98], where the Hamiltonian is used as the mathematical function for 

generating the optimal collision-free path planning for the multi-wheeled combat vehicle. 
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The main advantage of using PMP is that the computation time is less when compared to 

other methods. On the other hand, DP algorithm is considered the most powerful numerical 

method for solving optimal control problems, which has been investigated in numerous 

research studies [99-103]. The main advantage of the DP approach compared with other 

methods is that the global optimality of the obtained outcome is guaranteed, regardless of 

the problem type. However, the computational effort increases exponentially with the 

number of state variables used as the required inputs associated with the underlying 

dynamic system. Furthermore, dealing with systems that have continuous state variable 

requires discretization of the time state space [104]. PMP and DP are two major branches 

of the optimal control theory. Little work has been done to compare their performance in 

the application of autonomous vehicles.  

In this chapter, a DP algorithm is applied to generate the optimal paths for the multi-

wheeled combat vehicle to autonomously navigate from its current location to the goal 

location. The simplified two DOF vehicle model was used to develop the differential 

equations of the vehicle. The cost function associated with the path planning problem is 

minimized to satisfy the initial, final conditions, and vehicle dynamics. A comparative 

study of the developed DP algorithm and PMP is carried out. The obtained path using the 

DP algorithm is the global optimum, which can be used as a reference or standard for other 

methods. The experiment is set up to autonomously navigate the multi-wheeled combat 

vehicle from the starting point to the goal point following the optimal path. The obtained 

results show that the generated path using the PMP algorithm is very close to the obtained 

path from  DP. However, the computation time of the PMP method is significantly less 

than that of the DP method.  

5.2 Global Optimal Path Planning Algorithm using DP Technique 

Dynamic programming technique is a numerical optimization method that has the 

capability to solve the optimal control problem and provide the optimal solution based on 

the Bellman’s principle of optimality [105]. Consequently, it guarantees the global 

optimum through an extensive search of all control and state grids [106-108]. This 

technique is based on the principle of optimality, which states the following: let u(k) be the 
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optimal control trajectory for the entire time range ∀∈  [𝑡0, 𝑡𝑓] , and 𝑘 ∈ [k0,  k𝑛] such that 

the truncated control path  𝑢(𝑘), 𝑘 ∈ [k1,  k2]  , for  𝑘0 ≤  k1 ≤ k2 < k3 ≤  k𝑛 , is then 

the optimal control for this suboptimal problem [105]. Dynamic programming achieves 

this principle via three steps. First, dividing the optimal control problem into simpler 

discrete subproblems. Second, each suboptimal problem is locally optimized, finally 

obtaining the global optimal control path.  

5.2.1 Dynamic programming algorithm 

In the dynamic programming algorithm, the optimal path for a multistage decision can be 

defined [109]. Suppose that the first position is 𝑎 and the next position is 𝑏. The results are 

in segment 𝑎 − 𝑏 with cost 𝐽𝑎𝑏 and that the remaining position yields segment 𝑏 − 𝑧 at a 

cost of 𝐽𝑏𝑧 . The minimum cost 𝐽𝑎𝑧
∗  from a to z is defined. 

𝐽𝑎𝑧
∗ = 𝐽𝑎𝑏 + 𝐽𝑏𝑧 5-1 

An nth-order time-invariant system described by the state equation will be as follows: 

�̇�(𝑡) = 𝑎(𝑥(𝑡), 𝑢(𝑡)) 5-2 

Subsequently, it is desired to determine the control law which minimizes the performance 

measure 

𝐽 = ℎ (𝑥(𝑡𝑓)) + ∫ 𝑔(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡
𝑡𝑓

0

 
5-3 

where 𝑡𝑓 is the final time, 𝑥(𝑡𝑓) is the final state, h and g are scalare functions. The system 

is accomplished by considering 𝑁  equally spaced time increments in the interval                

0 ≤ 𝑡 ≤ 𝑡𝑓  and ∆𝑡 =
𝑡𝑓

𝑁
, 𝑡 = 𝑘 ∆𝑡 which become for small ∆𝑡 , and we shall denote by 

𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡)

∆𝑡
≈ 𝑎(𝑥(𝑡), 𝑢(𝑡)) 

5-4 

𝑥(𝑡 + ∆𝑡) = 𝑥(𝑥) + ∆𝑡 𝑎(𝑥(𝑡), 𝑢(𝑡)) = 𝑎𝐷(𝑥(𝑡), 𝑢(𝑡)) 5-5 
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Then,  

𝑥(𝑘 + 1) = 𝑥(𝑘) + ∆𝑡 𝑎(𝑥(𝑘), 𝑢(𝑘)) = 𝑎𝐷(𝑥(𝑘), 𝑢(𝑘)) 
5-6 

Operating on the performance measure in a similar manner, we obtain 

𝐽 = ℎ(𝑥(𝑁 ∆𝑡)) + ∫ 𝑔𝑑𝑡
∆𝑡

0

+ ∫ 𝑔𝑑𝑡 +
2∆𝑡

∆𝑡

… .+∫ 𝑔𝑑𝑡 
𝑁∆𝑡

(𝑁−1)∆𝑡

 
5-7 

For small ∆𝑡 it becomes as follows: 

𝐽 ≈ ℎ(𝑥(𝑁)) + ∆𝑡 ∑ 𝑔(𝑥(𝑘), 𝑢(𝑘))

𝑁−1

𝑘=0

 

5-8 

Subsequently, denote by 

𝐽 ≈ ℎ(𝑥(𝑁)) + ∑ 𝑔𝐷(𝑥(𝑘), 𝑢(𝑘))

𝑁−1

𝑘=0

 

5-9 

Define 𝐽𝑁𝑁 is the cost of reaching the final state value 𝑥(𝑁), and 

𝐽𝑁𝑁 = ℎ(𝑥(𝑁)) 
 

5-10 

Then, 

𝐽𝑁−1,𝑁(𝑥(𝑁 − 1), 𝑢(𝑁 − 1)) = 𝑔𝐷(𝑥(𝑁 − 1), 𝑢(𝑁 − 1)) + 𝐽𝑁,𝑁 (𝑥(𝑁)) 5-11 

Consequently, the optimal cost of operation during the interval (𝑁 − 1)∆𝑡 ≤ 𝑡 ≤ 𝑁∆𝑡 

𝐽𝑁−1,𝑁
∗ (𝑥(𝑁 − 1))

= min
𝑢(𝑁−1)

{ 𝑔𝐷(𝑥(𝑁 − 1), 𝑢(𝑁 − 1))

+ 𝐽𝑁,𝑁 (𝑎𝐷(𝑥(𝑁 − 1), 𝑢(𝑁 − 1))} 

5-12 

Continuing backward in the same manner, the result for a k-stage process can be obtained 

as follows: 
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𝐽𝑁−𝑘,𝑁
∗ (𝑥(𝑁 − 𝑘))

= min
𝑢(𝑁−𝑘)

{ 𝑔𝐷(𝑥(𝑁 − k), 𝑢(𝑁 − 𝑘))

+ 𝐽𝑁−(𝑘−1),𝑁
∗ (𝑎𝐷(𝑥(𝑁 − 𝑘), 𝑢(𝑁 − 𝑘))} 

5-13 

The underlying system was earlier described by the dynamic Equations 3-13 with the 

following state constraints included: 

𝛹(𝑡) ∈  [0, π ]                          ∀∈  [0, 𝑡𝑓] 

𝑥(𝑡) ∈  [0,100 ]                      ∀ ∈  [0, 𝑡𝑓] 

𝑦(𝑡) ∈  [0,100 ]                      ∀ ∈  [0, 𝑡𝑓] 

𝛿(𝑡) ∈  [0,1 ]                            ∀ ∈  [0, 𝑡𝑓] 

 

 

              5-14 

Consider the same initial and final conditions used in Pontryagin’s minimum principle 

technique in order to generate the path under the same situations.  

Consequently, from Equation 5-13 the recurrence relation can be obtained for the multiple 

optimal trajectories. The DP algorithm was implemented in MATLAB and applied in order 

to attain the optimal control solution. 

5.2.2 Comparative analysis for the results from the DP and PMP techniques 

5.2.2.1 First scenario 

The generated optimal paths using both techniques are shown in Figure 5-1. The vehicle 

starts to navigate from (0,0) to reach the goal location at (50,50), and the final heading 

angle is 90 degrees. It can be noticed that the obtained two optimal paths using both 

techniques are very close to each other. 
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Figure 5-1 Generated optimal path between two points using DP and PMP 

 
 

A comparative analysis of the time history of the vehicle states in terms of longitudinal and 

lateral displacements, and heading and average front wheels steering angle during this 

maneuver is shown in Figure 5-2. The longitudinal and lateral displacement time history 

for the two algorithms are close to each other as shown in Figure 5-2 a, b. In addition, the 

time history of the heading angle for the two algorithms is close to each other as shown in 

Figure 5-2 c. However, the minor difference determined was that the generated control 

effort using PMP was lower than DP, which makes the steering angle to be smoother as 

shown in Figure 5-2 d. 

 

Start point 

Target location 
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Figure 5-2 Vehicle parameter using DP and PMP starting at (0,0): a) longitudinal 

displacement (m), b) lateral displacement (m), c) heading angle (deg),                             

d) steering angle (deg). 

5.2.2.2 Second scenario 

In this scenario, the vehicle starting location is (10,0). The obtained optimal paths using 

both techniques are shown in Figure 5-3. It can be noticed the generated path using PMP 

is still close to that in the DP at this maneuver. In addition, the time history of the vehicle 

states is shown in Figure 5-4. 

(a) (b) 

(c) (d) 
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Figure 5-3 Generated optimal path between two points using DP and PMP 

Comparing the time history of the vehicle states demonstrated that the longitudinal and 

lateral displacements using PMP and DP agree with each other as shown in Figure 5-4 a, 

b. Nonetheless, it was determined that the control effort generated by PMP approach is 

smaller than that of the DP. An illustration of the control effort differences can be shown 

in the steering angle in Figure 5-4 d. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5-4  Vehicle parameter using DP and PMP starting at (0,10): a) longitudinal 

displacement (m), b) lateral displacement (m), c) heading angle (deg), d) steering angle 

(deg). 

5.3 Chapter Summary  

In this chapter, the problem of obtaining the optimal path for the multi-wheeled combat 

vehicle moving between two points is formulated and then dynamic programming 

approach is applied to solve this problem. The simulation results of the generated paths 

using both algorithms are compared, which demonstrates that the generated paths using 

PMP is close to the DP, while DP consumes more calculation time. In addition, the PMP 

is demonstrated to be effective in generating near-optimal results, close to those of DP that 

guarantee the global optimal solution, which is considered the major contribution in this 

chapter. Furthermore, the PMP can save up to 70% of the time of DP, including the iteration 

to approximate the co-states, while successfully satisfying the initial and final condition 

parameters.   
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CHAPTER 6                                                               

Hybrid Positioning Technique-Based Integration of 

GPS/INS for an Autonomous Vehicle Navigation 

6.1 Introduction 

This chapter presents a hybrid framework for the positioning technique combining both 

loosely and tightly coupled Kalman Filter (KF) algorithms. This framework fuses 

information from a Global Positioning System (GPS) and an Inertial Navigation System 

(INS) sensors and creates a navigation system for an autonomous multi-wheeled combat 

vehicle. The developed algorithm is able to provide accurate and reliable vehicle 

positioning information even if the number of visible satellites is less than four, due to the 

harsh vehicle operation environments. Therefore, two coupled algorithm modes were 

considered and combined as a hybrid framework; the first mode is loosely coupled and the 

second is tightly coupled. If the number of visible satellites degrades to be less than four, 

the first mode will not be able to provide a reliable measurement update to correct the drift 

of the INS raw data. Consequently, the developed hybrid framework will switch to the 

second mode, where the aiding of the INS with the raw GPS measurements is still possible. 

The proposed hybrid algorithm increases the reliability and the robustness of the position 

information by providing the GPS with KF aiding, particularly, when the effective number 

of satellites falls below the minimum number. The modelling strategies and the data fusion 

process for these GPS/INS integration scenarios are discussed with numerical analysis 

results, demonstrating the potential performance of the proposed integration. A simulation 

of the proposed hybrid positioning algorithm is performed, first using a Satellite Navigation 

(SatNav) toolbox in MATLAB and second using collected data from sensors mounted on 

a ground vehicle tracking a pre-defined route. The information from the GPS and INS data 

were fused. The experimental results validated the feasibility and effectiveness of the 

proposed algorithm. 

The development of navigation systems is one of the challenges in autonomous vehicle 

design, where the GPS and INS are the most widely used navigation sensors. These sensors 
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can be used individually or integrated [111-113]. The main advantage of using an INS in 

autonomous ground vehicles is that the acceleration, angular rotation, and attitude data are 

provided at high update rates. Consequently, the vehicle velocity and position can be 

estimated easily. On the other hand, the GPS receiver is an absolute low frequency sensor 

which can provide the state information at low update rates [114]. The combination of these 

two sensors will increase the reliability of the position information for the autonomous 

vehicle. 

Generally, the integration between data from several sensors is known as data fusion or 

sensor fusion. This integration improves the accuracy, which is not achievable when 

utilizing each sensor separately. Data fusion techniques have been widely applied to 

multisensory environments including cameras, GPS, and IMU. The goal of using data 

fusion is to reduce the possibility of detectable errors and to obtain a higher rate of 

reliability by using data from multiple distributed sources. 

KFs are widely used in integrated navigation systems to combine the obtained data from 

the navigation sensors. Consequently, KF is considered a powerful mathematical tool for 

analyzing and solving localization estimation problems [115-119]. It was originally 

proposed by Kalman [44] and has been widely studied and applied since then. It is mainly 

employed to fuse low-level data.  

6.2 GPS/INS Hybrid Positioning Technique 

In this section, the methodology of the proposed hybrid positioning technique is described. 

In order to achieve an accurate and robust positioning estimation for the autonomous multi-

wheeled combat vehicle, a hybrid positioning technique based on a KF method is proposed. 

The developed technique fuses the data from the low-cost GPS and INS sensors. It has two 

modes of operation, which can provide an accurate navigation solution during the vehicle 

maneuver by updating the mode selection according to the GPS signal and the available 

number of the satellites as follows. 

If the GPS signal is available, and the number of visible satellites is sufficient, the 

developed framework will be operated in the first mode based on loosely coupled KF 
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GPS/INS integration as shown in Figure 6-1 (a). In this case, the GPS and INS will operate 

independently to provide two independent navigation solutions for position, velocity, and 

attitude. In order to get the third solution, which is the best of both, the obtained data from 

the GPS and INS will be fed to KF (fused together). By taking the difference between the 

collected data and based on the error models, the INS errors can be estimated. Based on 

the estimated errors, the INS solution will be corrected and consequently will provide the 

integrated navigation solution. The main feature of using loosely coupled GPS/INS 

integration is using two separate KF, i.e. the GPS and the integration filter, which used in 

cascaded integration. 

On the other hand, if the GPS signal lacks credibility and the effective number of satellites 

is less than four, the developed framework will switch to the second mode, which is based 

on tightly coupled KF, as shown in Figure 6-1 (b). Both GPS and INS work as a basic 

sensor providing their raw outputs of pseudorange and pseudorange rate measurements. 

The difference between the pseudorange and pseudorange rate measurements from the GPS 

and the INS are processed directly in the navigation KF to estimate the INS errors. 

Consequently, according to the estimated errors, the INS output can be corrected, and the 

integrated navigation solution can be obtained. In this way, aiding the INS with the raw 

GPS measurement is possible even if the number of visible satellites is below the minimum 

[120]. Consequently, using the proposed hybrid algorithm has the benefit for the combat 

vehicle navigation system when the satellite signals are difficult to receive. 
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(b) 

Figure 6-1 Proposed hybrid positioning methodology. (a) The first, mode loosely    

coupled KF; (b) the second, mode tightly coupled KF mode 

6.3 Construction of Kalman Filtering Algorithm 

In this section, the construction of KF for the proposed hybrid framework is described.  

6.3.1 Enhance GPS using Kalman filter 

KF is proposed to improve and enhance the GPS data before fusing it with INS data. The 

continuous-time system state equation of KF can be expressed as follows: 

�̇�(𝑡) = 𝐹(𝑡)𝑋(𝑡) + 𝐺(𝑡)𝑊(𝑡) 6-1 

where 

 𝐹(𝑡) is called the dynamic matrix, which propagates the errors over time, 

𝑋(𝑡) is the state vector.  

𝐺(𝑡) is the noise distribution matrix, 

𝑊(𝑡) is the random forcing functions. 

Consequently, based on the discretizing method in [121], the discrete time linear system 

equation can be expressed as follows: 
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𝑋𝑘 = 𝜑𝑘,𝑘−1  𝑋𝑘−1  +   𝐺𝑘−1𝑊𝑘−1 6-2 

where 

 𝑋𝑘  is the state vector, 

 𝜑𝑘,𝑘−1 is the state transition matrix, 

𝐺𝑘−1 is the noise distribution matrix, 

𝑊𝑘−1   is the process noise vector, 𝑘 is the measurement epoch. 

Then, the state vector 𝑿 will be defined as follows: 

𝑿 = [𝛿𝑁  𝛿𝐸   𝛿𝑈   𝛿𝑉𝑁   𝛿𝑉𝐸    𝛿𝑉𝑈  𝛿𝑂𝑓𝑓𝑠𝑒𝑡   𝛿𝑑𝑟𝑖𝑓𝑡 ]
𝑇 

where 

 [𝛿𝑁𝛿𝐸𝛿𝑈] is denote the north, east and up positions respectively, 

 [𝛿𝑉𝑁  𝛿𝑉𝐸   𝛿𝑉𝑈] is denote the north, east and up velocities respectively, 

 [𝛿𝑂𝑓𝑓𝑠𝑒𝑡   𝛿𝑑𝑟𝑖𝑓𝑡] are the receiver clock offset and drift. 

The initial state vector prediction is �̂�0=[0 0 0 0 0 0 0 0 0 ]𝑇, and the initial prediction 

error covariance matrix 𝑃0= [
10 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 10

] 

Considering Equation 6-1, the dynamic matrix will be considered as follows:   

𝐹 =

[
 
 
 
 
 
 
 
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

 , then, the overall system will be represented as follows: 
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[
 
 
 
 
 
 
 
 
 

�̇�𝑁

�̇�𝐸

𝛿�̇�

�̇�𝑉𝑁

�̇�𝑉𝐸

�̇�𝑉𝑈

�̇�𝑂𝑓𝑓𝑠𝑒𝑡

�̇�𝑑𝑟𝑖𝑓𝑡 ]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝛿𝑁

𝛿𝐸

𝛿𝑈

𝛿𝑉𝑁

𝛿𝑉𝐸

𝛿𝑉𝑈

𝛿𝑂𝑓𝑓𝑠𝑒𝑡

𝛿𝑑𝑟𝑖𝑓𝑡 ]
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 01 0 0 1 0 0
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝑊𝑁

𝑊𝐸

𝑊𝑈

𝑊𝑉𝑁

𝑊𝑉𝐸

𝑊𝑉𝑈

𝑊𝑂𝑓𝑓𝑠𝑒𝑡

𝑊𝑑𝑟𝑖𝑓𝑡 ]
 
 
 
 
 
 
 
 

 

 

 

6-3 

The state transition matrix in Equation 6-4 represents the known dynamic behavior of the 

system, which relates the state vector from epoch 𝑘 − 1 to epoch 𝑘. 

𝜑 = 𝑒𝐹.∆𝑡 ≅ I + 𝐹 ∆𝑡 6-4 

where 

 I is the identity matrix. 

 ∆𝑡 is the sampling interval 

The discrete-time of the power spectral density can be expressed as follows: 

𝑄𝑘 = ∫ 𝜑 𝐺   𝑄 𝐺𝑇𝜑𝑇 𝑑𝑡 
∆𝑡

0

 
6-5 

Subsequently, the discrete time linear measurement equation of the system is as follows: 

𝑍𝑘 =  𝐻𝑘 𝑋𝑘 + 𝜉𝑘,                   6-6 

where 𝑍𝑘  is the measurement vector of the sensor output, ξ𝑘   is the white gaussian 

observation noise for the sensor with zero mean with the obtained covariance matrix     

𝑅𝑘 = 𝐸[𝜉𝑘 𝜉𝑘
𝑇] , 𝐻𝑘is the measurement design matrix associated with the sensor.  

From the model described in Equations 6-2, 6-5, and 6-6, the KF can be computed as a 

prediction stage and update stage [122-124] as follows. 
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• The Prediction Stage. 

In this stage the initial state �̂�𝑘  is estimated from the epoch 𝑘 –  1 to 𝑘, then the covariance 

of the prediction state 𝑃𝑘  is calculated. The prediction stage is defined by Equations 6-7 

and 6-8. 

�̂�𝑘 = 𝜑𝒌,𝒌−𝟏�̂�𝒌−𝟏   6-7 

𝑃𝑘 = 𝜑𝒌,𝒌−𝟏𝑃𝑘−1𝜑𝒌,𝒌−𝟏
𝑻+𝑄𝒌−𝟏   6-8 

• The Update Stage 

In this stage, the first step is to compute the Kalman gain 𝐾𝑘. This is depending on the a 

priori covariance 𝑃𝑘 , the measurement noise covariance 𝑅𝑘, and the measurement design 

matrix 𝐻𝑘. If 𝑃𝑘 is higher than 𝑅𝑘 then the gain is higher. However, if 𝑅𝑘 is higher, then 

the gain is lower, and vice versa. The second step is to correct the estimated state �̂�𝑘, 

whenever a measurement is received. This is based on the difference of the predicted 

measurements and the actual measurements as follows: 

�̂�𝑘 = �̂�𝑘−1 + 𝐾𝑘[𝑧𝑘 − 𝐻𝑘 �̂�𝑘−1] 6-9 

where the Kalman gain for the data associated to the sensor is expressed as follows: 

𝐾𝑘 = 𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝑅𝑘)
−1  6-10 

and the corrected covariance matrix  𝑃𝑘 = [𝐼 − 𝐾𝑘𝐻𝑘]𝑃𝑘−1. 

6.3.2 GPS/INS integration 

Considering the loosely coupled GPS/INS integration KF, the state vector consists of 

fifteen states in terms of three position states (𝛿𝜑𝛿𝜆𝛿ℎ), three velocity states (𝛿𝑉𝐸𝛿𝑉𝑁𝛿𝑉𝑈), 

three attitude states (𝛿𝑝𝛿𝑟𝛿𝐴) in east, north and up directions, three accelerometer biases 

(𝛿𝑓𝑥𝛿𝑓𝑦𝛿𝑓𝑧 
), and three gyro drifts (𝛿𝜔𝑥

𝛿𝜔𝑦
𝛿𝜔𝑧

) as follows: 

𝑋 =  [𝛿𝜑𝛿𝜆𝛿ℎ𝛿𝑉𝐸𝛿𝑉𝑁𝛿𝑉𝑈𝛿𝑝𝛿𝑟𝛿𝐴𝛿𝑓𝑥𝛿𝑓𝑦𝛿𝑓𝑧 
𝛿𝜔𝑥

𝛿𝜔𝑦
𝛿𝜔𝑧

]
𝑇

 
6-11 
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The INS accuracy is affected by several sources, which can include errors during the initial 

alignment, sensor errors, and the processing algorithm. These errors affect the navigational 

solution in terms of position, velocity, and attitude as follows: 

• Position Error for Local Level Frame  

The position error 𝛿𝑟
𝑙 for the Local Level Frame (LLF) in simple form is can be obtained as 

follows: 

�̇�𝑟
𝑙 =  𝐷−1𝛿𝑣

𝑙  (applying the orientation of LLF w.r.t earth),  

where  𝐷−1 transforms the velocity vector from rectangular coordinates into curvilinear 

coordinates in the Earth-Centered Earth-Fixed Frame (ECEF). 

Consequently, the generalized form of the position error is as follows:  

�̇�𝑟
𝑙 = [

𝛿�̇�

𝛿�̇�

𝛿ℎ̇

]  =  [

0
1

𝑅𝑀+ℎ
0

1

(𝑅𝑁+ℎ)Cos (𝜑)
0 0

0 0 1

] [

𝛿𝑣𝑛

𝛿𝑣𝑒

𝛿𝑣𝑢

]   

6-12 

where 𝑣𝑛, 𝑣𝑒 , 𝑣𝑢 are the velocity component, 𝜑, 𝜆, ℎ are the velocity component 𝑅𝑁 is the 

normal radius of curvature for the east-west direction, and 𝑅𝑀 is the meridian radius of 

curvature for the north-south direction. 

• The Velocity Error for Local Level Frame  

The velocity error for Local Level Frame (LLF) can be obtained as follows: 

�̇̂�𝑙 = 𝑅𝑏
𝑙 𝑓𝑏 − (2𝛺𝑖𝑒

𝑙 + 𝛺𝑒𝑙
𝑙 )�̂�𝑙 + 𝑔𝑙  6-13 

where 

 �̂�𝑙 is the velocity vector in the local level frame, 

𝑅𝑏
𝑙  is the transformation matrix from the body-frame to the inertial-frame, 

𝑓𝑏 is the specific force measured by the accelerometers in the body-frame, 𝛺𝑖𝑒
𝑙  and 𝛺𝑒𝑙

𝑙  are 

the skew-symmetric matrices corresponding to the rotation of the Earth about its spin axis 

and the change of orientation of the local-level frame with respect to the Earth respectively. 
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Taking into account the error 𝛿 in the measurements, where �̇̂�𝑙 = �̇�𝑙 − 𝛿�̇�𝑙. 

𝛿�̇�𝑙 = 𝑅𝑏
𝑙 (𝑓𝑏 + 𝛿𝑓𝑏) − [2(𝛺𝑖𝑒

𝑙 +  𝛿𝛺𝑖𝑒
𝑙 ) + (𝛺𝑒𝑙

𝑙 +  𝛿𝛺𝑒𝑙
𝑙 )](𝑉𝑙 + 𝛿𝑉𝑙) + (𝑔𝑙 + 𝛿𝑔𝑙) 6-14 

After algebraic manipulation of Equation 6-14, the velocity error for Local Level Frame 

(LLF) is as follows in Equation 6-15: 

𝛿�̇�𝑙 = −𝑭𝑙ԑ𝑙 + 𝑅𝑏
𝑙 𝛿𝑓𝑏 − 2(𝛺𝑖𝑒

𝑙 + 𝛺𝑒𝑙
𝑙 )𝛿𝑉𝑙 + 𝑽𝑙(2𝛿𝜔𝑖𝑒

𝑙 + 𝛿𝜔𝑒𝑙
𝑙 ) + 𝛿𝑔𝑙  6-15 

where 𝑭𝑙 is the skew-symmetric matrix corresponding to specific force, 𝜔𝑖𝑒
𝑙  is the angular 

velocity vector in the LLF obtained from the rotation of the earth about its spin axes. 

[𝜔𝑒 = 15 𝑑𝑒𝑔/ℎ] , then  𝜔𝑖𝑒
𝑙 = [

0
𝜔𝑒 . cos(𝜑)

𝜔𝑒 . sin(𝜑)
] . 𝛺𝑖𝑒

𝑙  is the skew-symmetric matrix 

corresponding to 𝜔𝑖𝑒
𝑙 . 𝛿𝜔𝑖𝑒

𝑙 is the error in the rotation rate of the Earth. 𝛺𝑒𝑙
𝑙  is the skew-

symmetric matrix corresponding to 𝜔𝑒𝑙
𝑙 = [

−�̇�

�̇�. cos(𝜑)

�̇�. sin(𝜑)

]  where �̇� =
𝑣𝑒

(𝑅𝑁+ℎ) cos (𝜑)
. 𝛿𝜔𝑒𝑙

𝑙  is 

vector of the error in the angular velocity vector 𝜔𝑒𝑙
𝑙 .  𝑽𝑙 is the skew-symmetric matrix of 

the corresponding velocity vector �̂�𝑙. 

The generalized form of each term of Equation 6-15 can be obtained as follows: 

• First term 𝐹𝑙ԑ𝑙 

𝑭𝑙ԑ𝑙 = [

0      −𝑓𝑢    𝑓𝑛
𝑓𝑢      0     −𝑓𝑒
−𝑓𝑛      𝑓𝑒       0

] [

𝛿𝑝

𝛿𝑟

𝛿𝑎

]  

6-16 

where, 𝑓𝑒 , 𝑓𝑛, 𝑓𝑢  are the body acceleration in east, north and up directions.  

• Second term (𝑅𝑏
𝑙 𝛿𝑓𝑏) 

The accelerometer biases 𝛿𝑓𝑏 are transformed from the body frame to the LLF using the 

𝑅𝑏
𝑙  matrix as follows: 
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𝑅𝑏
𝑙 𝛿𝑓𝑏 = [

𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

] [

𝛿𝑓𝑥

𝛿𝑓𝑦

𝛿𝑓𝑧

]  

6-17 

• Third term (−2(𝛺𝑖𝑒
𝑙 + 𝛺𝑖𝑒

𝑙 )𝛿𝑣
𝑙)  

−2(𝛺𝑖𝑒
𝑙 + 𝛺𝑖𝑒

𝑙 )𝛿𝑉𝑙 = −2{[

0 −𝜔𝑒 sin(𝜑) 𝜔𝑒 cos(𝜑)
𝜔𝑒 sin(𝜑) 0 0

−𝜔𝑒 cos(𝜑) 0 0
] +

[

0 −�̇� sin(𝜑) �̇� cos(𝜑)

�̇� sin(𝜑) 0 �̇�

−�̇� cos(𝜑) −�̇� 0

]} [

𝛿𝑣𝑒

𝛿𝑣𝑛

𝛿𝑣𝑢

]  

6-18 

Rearranging, 

−2(𝛺𝑖𝑒
𝑙 + 𝛺𝑖𝑒

𝑙 )𝛿𝑉𝑙

= [

0             (2𝜔𝑒 + �̇�)sin(𝜑) −(2𝜔𝑒 + �̇�) cos( 𝜑)

−(2𝜔𝑒 + �̇�) sin(𝜑) 0 �̇�

(2𝜔𝑒 + �̇�) cos(𝜑) �̇� 0

] [

𝛿𝑣𝑒

𝛿𝑣𝑛

𝛿𝑣𝑢

] 

6-19 

• Fourth term  (2𝛿𝜔𝑖𝑒
𝑙 +  𝛿𝜔𝑒𝑙

𝑙 )𝑽𝑙 

From the definitions of 𝜔𝑖𝑒
𝑙 , 𝜔𝑒𝑙

𝑙  in Equation 6-15, the 𝛿𝜔𝑖𝑒
𝑙 + 𝛿𝜔𝑒𝑙

𝑙
 can be obtained as 

follows: 

𝛿𝜔𝑖𝑒
𝑙 = [

0
−𝜔𝑒 𝛿𝜑 sin(𝜑)

𝜔𝑒 𝛿𝜑 cos(𝜑)
]  𝛿𝜔𝑒𝑙

𝑙 = [−

−𝛿�̇�

�̇� 𝛿𝜑 sin(𝜑) +𝛿�̇� cos(𝜑)

�̇� 𝛿𝜑 cos(𝜑) +𝛿�̇� sin(𝜑)

] 

6-20 

Subsequently, the fourth term can be obtained by applying algebraic manipulation to be 

as follows: 



82 

 

(2𝛿𝜔𝑖𝑒
𝑙 +  𝛿𝜔𝑒𝑙

𝑙 )𝑽𝑙 =

[
 
 
 
 2𝜔𝑒(𝑣𝑢𝑠𝑖𝑛(𝜑) + 𝑣𝑛𝑐𝑜𝑠( 𝜑)) +

�̇�𝑣𝑢

𝑐𝑜𝑠(𝜑)
0 0

−2𝜔𝑒𝑣𝑒 𝑐𝑜𝑠(𝜑) −
�̇�𝑣𝑒

𝑐𝑜𝑠(𝜑)
0 0

−2𝜔𝑒𝑣𝑒 𝑠𝑖𝑛(𝜑) 0 0]
 
 
 
 

[

𝛿𝜑

𝛿𝜆

𝛿ℎ

] +

[
 
 
 
 

−𝑣𝑛

𝑅𝑁+ℎ
+

𝑣𝑛 𝑡𝑎𝑛(𝜑)

𝑅𝑁+ℎ
0 0

−𝑣𝑒 𝑡𝑎𝑛(𝜑)

𝑅𝑁+ℎ

−𝑣𝑛

𝑅𝑀+ℎ
0

𝑣𝑒

𝑅𝑁+ℎ

𝑣𝑛

𝑅𝑀+ℎ
 0]

 
 
 
 

[

𝛿𝑣𝑒

𝛿𝑣𝑛

𝛿𝑣𝑢

]   

6-21 

• Fifth term 

The term  𝛿𝑔𝑙 is the error in normal gravity due primarily to the error in the altitude 

𝛿𝑔𝑙 = [

−𝑔/𝑟
−𝑔/𝑟

2𝑔/(r + ℎ)
] [

𝛿𝜑

𝛿𝜆

𝛿ℎ

]  

6-22 

where 𝑔 represents the normal component of gravity, 𝑟 is the mean radius of the Earth and 

ℎ is the height. 

Finally, the third and the fourth terms can be neglected due to the multiplication of the 

velocities by the earth rotation rate and/or divided the velocities by the earth radius and 

Equation 6-15 can be rewritten as follows: 

[

𝛿�̇�𝑒

𝛿�̇�𝑛

𝛿�̇�𝑢

] = − [

0      −𝑓𝑢    𝑓𝑛
𝑓𝑢      0     −𝑓𝑒
−𝑓𝑛      𝑓𝑒        0

] [

𝛿𝑝

𝛿𝑟

𝛿𝑎

] + [
𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

] [

𝛿𝑓𝑥

𝛿𝑓𝑦

𝛿𝑓𝑧

]  

6-23 

• The Attitude Error for Local Level Frame  

The attitude error for Local Level Frame (LLF) can be obtained 

where the vector 휀𝑙 is the attitude errors [𝛿𝑝, 𝛿𝑟, 𝛿𝐴]𝑇.  𝜔𝑖𝑙
𝑙  is the angular velocity of the 

LLF w.r.t the inertial frame. 𝜔𝑖𝑏
𝑏  is the angular velocity of the body frame to the LLF.  𝛺𝑖𝑙

𝑙  

휀̇𝑙 = −𝛺𝑖𝑙
𝑙 휀𝑙 − 𝛿𝜔𝑖𝑙

𝑙 + 𝑅𝑏
𝑙 𝛿𝜔𝑖𝑏

𝑏  
6-24 
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is the skew-symmetric matrix corresponding to the vector 𝜔𝑖𝑙
𝑙 .  𝑅𝑏

𝑙  is the transformation 

matrix from the body frame and the LLF. 

After algebraic manipulation and neglect some terms due to divided by earth radius the 

simplified time rate of change of the attitude errors can be written as follows: 

휀̇𝑙 = [
�̇�𝑝

�̇�𝑟
�̇�𝐴

] =

[
 
 
 
 
 
 0

1

𝑅𝑀 + ℎ
0

−1

𝑅𝑀 + ℎ
0 0

− 𝑡𝑎𝑛(𝜑)

𝑅𝑀 + ℎ
0 0

]
 
 
 
 
 
 

[

𝛿𝑣𝑒

𝛿𝑣𝑛

𝛿𝑣𝑢

] + [
𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

] [

𝛿𝜔𝑥

𝛿𝜔𝑦

𝛿𝜔𝑧

] 

 

6-25 

• Accelerometer bias error  

For the accelerometer, the time rate of change of the accelerometer bias errors can be 

expressed as follows: 

[

�̇�𝑓𝑥

�̇�𝑓𝑦

�̇�𝑓𝑧

] = [

−𝛽𝑓𝑥 0 0

0 −𝛽𝑓𝑦 0

0 0 −𝛽𝑓𝑧

] [

𝛿𝑓𝑥

𝛿𝑓𝑦

𝛿𝑓𝑧

] +

[
 
 
 
 
 
 √2𝛽𝑓𝑥𝜎𝑓𝑥

2

√2𝛽𝑓𝑦𝜎𝑓𝑦
2

√2𝛽𝑓𝑧𝜎𝑓𝑧
2

]
 
 
 
 
 
 

𝑤(t) 

 

 

6-26 

where,  

𝛽𝑓𝑥 , 𝛽𝑓𝑦, 𝛽𝑓𝑧 are the reciprocals of the correlation times associated with the autocorrelation 

sequence of  𝛿𝑓𝑥, 𝛿𝑓𝑦, 𝛿𝑓𝑧, 

𝜎𝑓𝑥
2 , 𝜎𝑓𝑦

2 , 𝜎𝑓𝑧
2   are the variances associated with the accelerometer errors, 

𝑤(t)  is white Gaussian noise. 

• Gyro bias error 

For gyroscope, the time rate of change of the bias errors can be can be expressed as follows: 
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[

�̇�𝜔𝑥

�̇�𝜔𝑦

�̇�𝜔𝑧

] = [

−𝛽𝑤𝑥 0 0
0 −𝛽𝑤𝑦 0

0 0 −𝛽𝑤𝑧

] [

𝛿𝜔𝑥

𝛿𝜔𝑦

𝛿𝜔𝑧

] +

[
 
 
 
 √2𝛽𝜔𝑥𝜎𝜔𝑥

2

√2𝛽𝜔𝑦𝜎𝜔𝑦
2

√2𝛽𝜔𝑧𝜎𝜔𝑧
2 ]

 
 
 
 

𝑤(𝑡)  

6-27 

where 

𝛽𝜔𝑥 , 𝛽𝜔𝑦, 𝛽𝜔𝑧 are the reciprocals of the correlation times associated with the 

autocorrelation sequence of 𝛿𝜔𝑥, 𝛿𝜔𝑦, 𝛿𝜔𝑧. 

𝜎𝜔𝑥
2 , 𝜎𝜔𝑦

2 , 𝜎𝜔𝑧
2   are the variances associated with the gyroscope errors. 

Based on the above equations, consequently, the state equation in Equation 6-1 can be 

written as follows: 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛿�̇�

𝛿�̇�

𝛿ℎ̇

�̇�𝑣𝑒

�̇�𝑣𝑛

�̇�𝑣𝑢

�̇�𝑝

�̇�𝑟

�̇�𝐴

�̇�𝑓𝑥

�̇�𝑓𝑦

�̇�𝑓𝑧 

�̇�𝜔𝑥

�̇�𝜔𝑦

�̇�𝜔𝑧 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
𝐴11   𝐴12    𝐴13   𝐴14   𝐴15
𝐴21   𝐴22    𝐴23   𝐴24    𝐴25
𝐴31    𝐴32    𝐴33   𝐴34    𝐴35
𝐴41    𝐴42    𝐴43   𝐴44    𝐴45
𝐴51    𝐴52    𝐴53   𝐴54    𝐴55]

 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛿𝜑

𝛿𝜆

𝛿ℎ

𝛿𝑣𝑒

𝛿𝑣𝑛

𝛿𝑣𝑢

𝛿𝑝

𝛿𝑟

𝛿𝐴

𝛿𝑓𝑥

𝛿𝑓𝑦

𝛿𝑓𝑧 

𝛿𝜔𝑥

𝛿𝜔𝑦

𝛿𝜔𝑧 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ [0 0 0 0 0 0 0 0 0 √2𝛽𝑓𝑥𝜎𝑓𝑥
2 √2𝛽𝑓𝑦𝜎𝑓𝑦

2 √2𝛽𝑓𝑧𝜎𝑓𝑧
2 √2𝛽𝜔𝑥𝜎𝜔𝑥

2 √2𝛽𝜔𝑦𝜎𝜔𝑦
2 √2𝛽𝜔𝑧𝜎𝜔𝑧

2    ]

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑤𝜑

𝑤𝜆

𝑤ℎ

𝑤𝑣𝑒

𝑤𝑣𝑛

𝑤𝑣𝑢

𝑤𝑝

𝑤𝑟

𝑤𝐴

𝑤𝑓𝑥
𝑤𝑓𝑦
𝑤𝑓𝑧 

𝑤𝜔𝑥

𝑤𝜔𝑦

𝑤𝜔𝑧 ]
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where F(t) is 15 X 15 matrix where 𝐴11 to 𝐴55 are 3 X 3 matrices (details in Appendix 1). 

Subsequently, the measurement equation according to Equation 6-6 will be as follows: 

𝑍(𝑡) = [𝐻1 𝐻1 … .𝐻15 ] [𝛿𝜑𝛿𝜆𝛿ℎ𝛿𝑉𝐸𝛿𝑉𝑁𝛿𝑉𝑈𝛿𝑝𝛿𝑟𝛿𝐴𝛿𝑓𝑥𝛿𝑓𝑦𝛿𝑓𝑧 
𝛿𝜔𝑥

𝛿𝜔𝑦
𝛿𝜔𝑧

]
𝑇

+  𝜉 
6-29 

where 𝐻1…15 is the measurement matrix associated with the sensor and can be determined 

as follows: 

𝐻 = [(𝜑𝐼𝑁𝑆 − 𝜑𝐺𝑃𝑆)     (𝜆𝐼𝑁𝑆 − 𝜆𝐺𝑃𝑆)    (ℎ𝐼𝑁𝑆 − ℎ𝐺𝑃𝑆)   (𝑉𝐸𝐼𝑁𝑆 − 𝑉𝐸𝐺𝑃𝑆)  (𝑉𝑁𝐼𝑁𝑆

− 𝑉𝑁𝐺𝑃𝑆)  (𝑉𝑈𝐼𝑁𝑆 − 𝑉𝑈𝐺𝑃𝑆)  (𝑝𝐼𝑁𝑆 − 𝑝𝐺𝑃𝑆)  (𝑟𝐼𝑁𝑆 − 𝑟𝐺𝑃𝑆)  (𝐴𝐼𝑁𝑆

− 𝐴𝐺𝑃𝑆)  (𝑓𝑥𝐼𝑁𝑆 − 𝑓𝑥𝐺𝑃𝑆)  (𝑓𝑦𝐼𝑁𝑆 − 𝑓𝑦𝐺𝑃𝑆)  (𝑓𝑧𝐼𝑁𝑆

− 𝑓𝑧𝐺𝑃𝑆)  (𝜔𝑥𝐼𝑁𝑆 − 𝜔𝑥𝐺𝑃𝑆)  (𝜔𝑦𝐼𝑁𝑆 − 𝜔𝑦𝐺𝑃𝑆)  (𝜔𝑧𝐼𝑁𝑆 − 𝜔𝑧𝐺𝑃𝑆) ]
𝑇 

 

6-30 



85 

 

6.4 Tests and Results 

In this section, the numerical simulation and field test for the proposed technique are 

presented. The performance evaluation in the field test is conducted using real data from 

sensors fitted with a ground vehicle. This vehicle is equipped with 48 all-in-view tracking 

channels BU-353-S4 waterproof SiRFIV GPS receiver with 1Hz update rate. In addition, 

the attitude and heading reference system UM6 ultra-miniature orientation sensor is used, 

which has rate gyros, accelerometers, and magnetic sensors to compute sensor orientation 

at 500 times per second. 

6.4.1 Simulation test 

The simulation test is carried out using the SatNav toolbox in MATLAB. SatNav toolbox 

is mainly designed for the navigation purpose, which simulates the satellites and receivers 

in addition to the standalone positioning algorithms. In this work, the SatNav is used to 

simulate the obtained raw data from the GPS. First the route that will be used as a reference 

is prepared for the evaluation using SatNav, then the proposed technique is applied with 

and without KF. The trajectory of the obtained navigation solution without KF is shown in 

Figure 6-2 a, where the division from the true route is illustrated. On the other hand, Figure 

6-2 b shows the estimated path after adding the designed KF to the GPS, where the obtained 

result is almost identical to the true route.  

  (a) 
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(b) 

Figure 6-2  Comparing the reference route to the obtained trajectories: (a) GPS trajectory 

without KF, (b) GPS trajectory with KF 

In addition, the average error in position without KF is approximately 100 m as shown in 

Figure 6-3 a, which cause the large division from the true path. Moreover, the error in 

velocity is shown in Figure 6-3 b, where the average error in the velocity is approximately 

5 m/s.  

 

(a) 

 

(b) 

Figure 6-3 (a) GPS error in position [m], (b) GPS error in velocity [m/s] 

However, the average error in position using GPS with KF is approximately 1.5 m as shown 

in Figure 6-4a. In addition, the average error in the velocity is approximately 0.8 m/s as 

shown in Figure 6-4b. 
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(a) 

 

(b) 

Figure 6-4 GPS using KF (a) Error in position [m], (b) Error in velocity [m/s]  

Consequently, from the above results, it can be concluded that the developed KF for the 

GPS is able to provide more accurate positioning solution. Consequently, it will increase 

the accuracy ofter the integration with INS.  

6.4.2 Field test 

The proposed hybrid positioning technique is validated in a field test, which is carried out 

along a prescribed route as shown in Figure 6-5. This validation is done through two 

scenarios. The first scenario shows the obtained navigation solution for the field test in case 

of the number of visible satellites is sufficient. The second scenario shows the obtained 

navigation solution in case of an insufficient number of visible satellites. The obtained data 

from the sensors is recorded to be evaluated. 

 

Figure 6-5  The proposed route for the field test 
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It has been noticed that, if the number of visible satellites is more than four, the first mode 

has the capability to provide an accurate navigation solution. On the other hand, if the 

number of visible satellites is less than four, the algorithm is switched to the second mode, 

where aiding the INS with GPS raw data still possible for accurate position.  

  

Figure 6-6 Experimental integrated navigation system. 

The experimental setup for the integrated navigation system is shown in Figure 6-6. The 

system consists of a GPS receiver BU-353-S4, UM6 orientation sensor, power supply, and 

PC, which is used as a navigation computer in order to run the navigation algorithms and 

log the navigation sensor data for offline processing.  

6.4.2.1 First Scenario   

In this scenario, the outdoor experiment is performed to evaluate the performance of the 

proposed technique in case of a sufficient number of satellites. The obtained result of the 

vehicle route during the field test is shown in Figure 6-7. 
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Figure 6-7 Ground vehicle route during the field test 

The obtained results from fusing the GPS and INS are analyzed in terms of the horizontal 

position error as shown in Figure 6-8. The obtained result clarifies that the average value 

of the horizontal error is approximately 0.9 m within 14 min. In addition, the error in 

position is shown in Figure 6-9, where the error for aided latitude and longitude is almost 

zero compared with the unaided one. Furthermore, the overall accumulation of the error in 

the horizontal position is shown in Figure 6-10, where the error reaches 400 m within 14 

min.  

 

Figure 6-8 Horizontal position error using KF 



90 

 

  

Figure 6-9  Lat, Long error aided and unaided KF Figure 6-10 Aided and unaided horizontal 

position error 

In addition, the velocity errors in the north and east frame are shown in Figure 6-11, which 

shows the difference between the aided and the unaided INS outputs. Furthermore, the 

attitude angles errors are shown in Figure 6-12, where all errors converge to zeros 

 

Figure 6-11 The velocity error  

 

Figure 6-12 Attitude angles error 

Consequently, based on the obtained results, the navigation solution of the proposed 

algorithm provides better accuracy in terms of the RMS and the position error.  

6.4.2.2 Second Scenario  

In this scenario, the number of visible satellites is decreased over time as shown in Figure 

6-13, where the number of satellites starts at 8 satellites and after 5 min it decreased to 4 

satellites, then at 6 min it becomes 3 satellites. The estimated error in horizontal position 

is shown in Figure 6-14, which shows the effect of the decreases in the number of the 
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satellites on the horizontal error. The average value of the error is approximately 2 m, 

which reflects an accurate performance while the number of satellites is decreased. The 

velocity errors in north and east are shown in Figure 6-15, which shows the difference 

between the aided and unaided INS where the error is accumulated. In addition, the errors 

in the attitude angles for both aided and unaided are shown in Figure 6-16, where all errors 

converge to zeros.  

 
 

Figure 6-13 GPS satellites degradation 

over the time 
Figure 6-14 The horizontal position error for 

state KF 

  

Figure 6-15 The velocity error  Figure 6-16  Attitude angles error 

The position error is shown in Figure 6-17, which shows that the errors in aided lateral and 

longitudinal are almost zero compared with the unaided one. This scenario clearly shows 

that the proposed technique has the capability to provide an accurate positioning solution 

even if the number of satellites falls below the minimum. 

Switch second mode  
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Figure 6-17  Lat, Long error aided and unaided KF 

 

6.5 Chapter Summary 

In this chapter, a hybrid framework for a positioning technique based on the integration of 

GPS/INS has been successfully developed and has achieved a robust positioning 

performance for autonomous combat vehicles. The proposed algorithm has the capability 

to adapt itself for solving the problem when the number of visible satellites is less than four 

by switching between the introduced two modes. In addition, it is able to fuse the obtained 

data from low-cost sensors such as the GPS and the INS. For this purpose, two KFs are 

developed; the first to improve the GPS information, and the second to enhance the INS 

position, velocity and attitude with the aid of GPS position and velocity. The simulation 

and field test are conducted to evaluate the performance of the developed hybrid 

framework. The simulation was performed using a SatNav toolbox in MATLAB. The field 

test is carried out by collecting data from sensors mounted on a ground vehicle. The 

simulation and experimental results show that the proposed framework has the capability 

to improve the positioning accuracy by switching between the two modes, even if the 

available number of visible satellites falls below the minimum.  
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CHAPTER 7                                                                            

Modeling of Scaled Remotely Operated Multi-Wheeled 

Combat Vehicle Using System Identification Technique 

7.1 Introduction 

This chapter focuses on the modeling of a scaled Remotely Operated Multi-Wheeled 

Combat Vehicle (ROMWCV) using system identification methodology. The scaled vehicle 

was developed at the Vehicle Dynamics and Crash Research (VDCR) lab at University of 

Ontario Institute of Technology (UOIT) to analyze the characteristics of the full-size 

model. In this chapter, the vehicle input/output signals are recorded and analyzed in an 

open loop system through an experimental test, which is considered as Multiple-Input-

Single-Output (MISO) system. The experiment test shows that it is practically feasible to 

represent the dynamic characters of the vehicle using the system identification techniques. 

Subsequently, different system identification methods are considered to solve and identify 

the ROMWCV model. The identified model is validated using several statistical tests and 

the results are compared. The estimation and validation results demonstrated that the 

obtained identified model was able to explain 88.44% of the output. 

System identification methodology is introduced to study the performance of a developed 

dynamic system and estimate its mathematical model by observing input/output signals 

[125]. These signals contain the mathematical expression that precisely defines the system 

input and output relation. System identification has a long history in solving such 

significant problems in the field of autonomous systems and robotics. For example; system 

identification has been used in the following kinematic problems: modeling and calibration 

of robotic manipulators [126-131], parameter identification and nonlinear modeling [132-

134], adaptive control and neural network-based system identification [135-139], 

estimation of inertial parameters [140-142], and the prediction of the environment [143]. 
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7.2 Scaled Remotely Operated Multi-Wheeled Combat Vehicle.  

The complete scaled remotely operated multi-wheeled combat vehicle system is shown in 

Figure 7-1. This vehicle was developed at the Vehicle Dynamics and Crash Research 

(VDCR) lab at University of Ontario Institute of Technology (UOIT) [147]. The developed 

vehicle is a 1:6 scale model of an 8x8 electric combat vehicle that can perform multiple 

steering modes to meet situational needs. In addition, all eight wheels are powered 

individually. The vehicle is equipped with four axles, which can be operated in either 4WD 

or 2WD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The four front wheels R1, R2, L1, and L2 are individually controlled, which are responsible 

to navigate the vehicle in the desired direction. Consequently, the developed remotely 

operated scaled multi-wheeled combat vehicle can be navigated by generating four separate 

voltages responsible for controlling the direction of the four front wheels. 

7.2.1 Brief description of the MWCV 

The vehicle consists of three levels; the first level contains the eight DC motors and the 

Electronic Speed Controllers (ESCs) as shown in Figure 7-2a. The middle level is the 

steering layer as shown in Figure 7-2b. This level contains eight steering servos that are 

connected by a DB25 connector. At the top as shown in Figure 7-2c, there are 4 batteries 

 

Figure 7-1  Scaled remotely operated multi-wheeled combat vehicle [147] 

R1 L2 L1 R2 
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that are connected to the scalable power bus where all ESCs are connected. In addition, a 

microcontroller is used to connect the gateway board to the two harnesses from the servos 

and the ESCs. The Inertial Measurement Unit (IMU) is placed under the gateway board 

enclosure as it should to be as centered as possible. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 7-2 a) Chassis first level, b) Chassis middle level, c) Chassis top level [147] 

In addition, the designed hardware architecture for the electronic powertrains is shown in 

Figure 7-3. Tow microcontrollers are introduced in this design. The primary one is used to 

control the vehicle by receiving the driver’s request via the radio receiver, then calculate 

the corresponding outputs for the steering servo motors as well as the driving DC motors. 

The connection between the microcontroller and the motors is established using PWM 

channel. Each DC motor is individually controlled by an ESC that draws its power from 

the power system. The second microcontroller is used to connect the GPS and IMU with 

the primary controller and handles the logging and processing obtained data. 
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Figure 7-3 Hardware architecture [147] 

The complete MWCV system is represented as shown in 

Figure 7-4. This figure provides an overview of the vehicle control system, starting by 

sending the command signal from the remote control to the radio receiver ends by the 

corresponding vehicle action. It can be noticed that the microprocessor receives the 

command signal, then calculates the corresponding output for the four front wheels in order 

to control and navigate the vehicle in the desired direction. 



97 

 

 
 

Figure 7-4 ROMWCV’s system 

7.2.2 Vehicle features 

The features of the remotely operated scaled multi-wheeled combat vehicle are as follows 

[147]: 

• Capable of forward and backwards movement, where all eight wheels are powered 

individually. 

•  Alternate between 3 unique steering configurations. 

•  Capability to operates under extreme conditions.  

•  Sufficient ground clearance to overcome obstacles like large object. 

•  Ability to steer on multiple surfaces, such as sand, dirt, snow, mud, and pavement.  

•  High maneuverability to operate in confined areas where moving space is limited.  

• Able to climb over steep terrain and reach moderate speeds similar to that of the 

full model. 
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7.3 System Identification (SI)  

Generally, SI is the process of modelling systems dynamics based on the measured 

input/output signals via an experimental test. It has the capability to provide an accurate 

mathematical model of the system dynamics. SI approach goes through five steps [148] as 

shown in Figure 7-5; (1) experiment design, (2) data collection, (3) parameter estimation 

algorithm and system identification model selection, (4) model validation (5) model 

implementation. If the model validation is not good enough to represent the actual model 

of the system dynamics, the first three steps will be repeated again until the model 

validation becomes good enough to represent the actual model of the system dynamics.  

 

Figure 7-5 System identification procedure 

In this chapter, the ROMWCV can be considered a MISO system due to the four input 

signals sent to the four motors and the output is the vehicle heading angle. Consequently, 

the identification of the vehicle model was carried out using parametric identification 

techniques. 

SI using parametric identification techniques has a specific model structure. The 

parameters are estimated using the observation of the input/output data. In addition, it is 

providing a large variety and possibilities regarding different ways of describing the 

system, where the output of system 𝑌(𝑍) can be defined as follows. 
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𝑌(𝑧) = 𝐺(𝑧)𝑋(𝑧) + 𝑀(𝑧) 7-1 

Equation 7-1 can be rewritten as follows: 

𝑌(𝑧) = 𝐺(𝑧)𝑋(𝑧) + 𝐻(𝑧)𝐸(𝑧) =  
𝑁(𝑧)

𝐷(𝑧)
𝑋(𝑧) +

𝐴(𝑧)

𝐵(𝑧)
𝐸(𝑧) 

 

7-2 

where; 

 𝑌(𝑧) is the 𝑛𝑦 output; 

𝑋(𝑧) is the 𝑛𝑥 input; 

𝐸(𝑧) is the transform of a white noise, ∈ (𝑡); 

𝐺(𝑧) is the transfer function of the system;  

𝑯(𝒛) is the stochastic behavior of noise; 

𝐺(𝑧)  ,  𝐻(𝑧)  are rational functions whose numerator and denominator are parameter 

polynomials to be estimated. Consequently, the relationship between both functions 

defines several model structures of describing equation 7-2.  

The modeling of ROMWCV model will be considered by applying AutoRegressive 

eXogeneous (ARX), AutoRegressive Moving Average eXogeneous (ARMAX), and 

Transfer function (TF) models. The characteristics of each model were studied in [149]: 

The ARX model in Equation 7-3 is considered the simplest estimation model. The ARX 

model block diagram is shown in Figure 7-6.  The main weakness is the disturbance model 

(1/𝑁(𝑧)) that comes with the system’s poles. Consequently, an incorrect estimation of the 

system dynamics can be accrued due to the term A in Equation 7-2. Accordingly, this issue 

can be avoided by the requirement of higher orders coefficients of terms A, B in Equation 

7-2, where the signal to noise ratio is acceptable. 

𝐷(𝑧)𝑌(𝑧)  =  𝑁(𝑧)𝑋(𝑧)  +  𝐸(𝑧) 7-3 
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Figure 7-6 ARX model 

The ARMAX model in Equation 7-4 has the capability to handle the disturbance modeling 

compared with ARX model. For this purpose, ARMAX has become a standard tool in 

control for system description. Consequently, is considered the most popular model that 

can be used in many applications. The block diagram of the ARMAX model is shown in 

Figure 7-7. 

𝐷(𝑧)𝑌(𝑧)  =  𝑁(𝑧)𝑋(𝑧)  +  𝐴(𝑧)𝐸(𝑧) 7-4 

 

Figure 7-7 ARMAX model 

In a TF model, the output of the system Y(z) for an input X(z) can be obtained as shown 

in Equation 7-5, where the mathematical representation of the relation between the input 

and output of a system can be obtained. 

𝑌(𝑧) = 𝐺(𝑧)𝑋(𝑧) 7-5 

Consequently, the transfer function of a system can be defined as the ratio of the output 

and the input. This function is rational with numerator and denominator polynomials of the 

complex variable z: 
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𝐺(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
 =

𝑁(𝑧)

𝐷(𝑧)
=

𝑏0 + ⋯+ 𝑏𝑚𝑍−𝑚

𝑎0 + ⋯+ 𝑎𝑛𝑍−𝑛
 

7-6 

A useful format for the transfer function is to describe it in terms of 𝑍−1 because this is the 

unit delay operator. Roots of 𝑁(𝑧) are called zeros and roots of 𝐷(𝑧) are called poles of 

the system 

7.3.1 System identification algorithm 

System identification starts by selecting a model structure followed by the computation of 

an appropriate model in the structure. The selected model will be evaluated afterward. 

Figure 7-8 shows this process that is summarized as follows: 

Step1: Record the input/output signals from the vehicle.  

Step2: Examine the data and select useful portions of the original data.  

Step3: Select and define the appropriate identification model structure within which the 

model of the system can be obtained. 

Step4: Choose the best model structure corresponding to the input/output data and the 

given fit to estimation criterion.  

Step5: Examine the obtained model's properties (pole-zero configurations). 

Step6: If the selected model is good enough to represent the identified system, then stop; 

otherwise go back to the fourth step to try another model set. Possibly also try 

another estimation method in the fifth step or work further on the input-output data 

obtained in first and second steps. 
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Figure 7-8 System identification procedure flowchart 

7.4 Experimental Set-up 

In this section, the experimental setup for recording and analyzing the input/output signals 

is discussed. A tilt Compensated Magnetic Compass (CMPS11) is used to provide the 

vehicle Euler angles as shown in Figure 7-9. It has three magnetometers, three gyros, and 

three accelerometers. The main advantage of this sensor is the use of the KF. This KF is 

used to integrate the gyro and accelerometer in order to avoid the errors that may be accrued 

by PCB tilting.  
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Figure 7-9 Tilt Compensated Magnetic Compass (CMPS11) 

The CMPS11 will be interfaced with Arduino to save the obtained input/output data on an 

SD card during the test as shown in Figure 7-9. Figure 7-10 a, b showed the experimental 

setup while attached to the vehicle.  

  

                       (a) 

 
 

                         (b) 

Figure 7-10 Experiment test a) COMP11 and Arduino, b) Sensors attached to the vehicle 

The road test of the ROMWCV is shown in Figure 7-11, where the vehicle heading angle 

is controlled in an open loop test via the remote control. In order to obtain reliable data, the 

vehicle heading angle should be changed continuously during the maneuver. This test was 

repeated five times to make sure that the recorded input/output signals are accurate when 

applying a system identification technique.  

COMPS11 

ARDUINO 

POWER 

SOURCE 
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Figure 7-11 Road Test 

7.5 Simulation and Experimental Results 

In this section, the ROMWCV input/output data is recorded and analyzed to deduce a 

model as shown in Figure 7-12. The right and left wheels of the first axle are represented 

by R1 and L1, while the right and left wheels of the second axle are represented by R2 and 

L2. 

 

Figure 7-12 Experiment results for the recorded input and output signals  
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Subsequently, based on the measured input/output data the system identification toolbox 

using MATLAB software will be used to develop the vehicle model. First, the data is 

loaded on MATLAB command window, the recorded inputs and output data are set, then 

the command “ident “ opens the system identification toolbox interface as shown in Figure 

7-13. 

 

Figure 7-13 System identification toolbox 

The obtained step response of the ROMWCV is shown in Figure 7-14, which represents 

the inputs/output relation. 

 

Figure 7-14 Step responses for estimated dynamics for each channel 
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In order to estimate the appropriate model that can describe the ROMWCV system, the 

ARX, ARMAX, and TF identification models are applied as Single Input Single Output 

(SISO) for each wheel individually. Subsequently, each model will be evaluated to choose 

the best one that can provide the accurate vehicle model, then applied as MISO for the four 

wheels of the vehicle in order to provide the whole vehicle model. The obtained validation 

results with the unseen data for each wheel are shown in Figure 7-15 to Figure 7-18. 

 

Figure 7-15 Fit to estimation results for the SI models for R1 

 

 

Figure 7-16 Fit to estimation results for the SI models for R2 
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Figure 7-17 Fit to estimation results for the SI models for L1 

 

 

Figure 7-18 Fit to estimation results for the SI models for L2 

Based on the obtained validation result, a comparison between each model is proposed in 

Table 7-1 to 7-3. 

Table 7-1: ARX Model results 

ARX Model Validation data % 

R1 39.44% 

R2 35.3% 

L1 47.48% 

L2 43.17% 
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Table 7-2: ARMAX Model results 

ARMAX Model Validation data % 

R1 77.32% 

R2 13.18% 

L1 61.92% 

L2 51.59% 

 

Table 7-3: TF Model results 

TF Model Validation data % 

R1 75.4% 

R2 79.21% 

L1 77.42% 

L2 78.81% 

The above tables concluded that the TF model has the capability to achieve the best 

validation result for the unseen data compared with other models. Consequently, it will be 

applied to the vehicle system as MISO. By observing the pole-zero configuration, the TF 

model can be tuned. The obtained results demonstrate that the model has the capability to 

achieve 88.44% of the output data as shown in Figure 7-19, which is considered good 

enough to identify the vehicle model. 

 

Figure 7-19 Validation result for the TF model with the actual yaw angle 
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Consequently, the obtained model will be as follows: 

𝐺(𝑠)𝑇𝑜𝑡𝑎𝑙 = 𝐺𝑅1(𝑠) 𝑢𝑅1  +  𝐺𝑅2(𝑠) 𝑢𝑅2 + 𝐺𝐿1(𝑠) 𝑢𝐿1 + 𝐺𝐿2(𝑠) 𝑢𝐿2 

where  

𝐺𝑅1(𝑠) =
−3.453 𝑠 −  0.6946

𝑠2 +  0.1762 𝑠 +  0.1323
 𝐺𝑅2(𝑠) =  

−7.118 𝑠 +  1.158

𝑠2 +  0.388 𝑠 +  0.3099
 

𝐺𝐿1(𝑠) =  
 5.76 s +  0.1182

𝑠2  +  0.2714 s +  0.1083
 𝐺𝐿2(𝑠) =

7.382 𝑠 +  0.8258

𝑠2 +  0.5481 s +  0.2887
 

7.6 Chapter Summary 

This chapter discussed the development and modeling of the scaled remotely operated 

multi-wheeled combat vehicle using system identification techniques. The vehicle was 

developed to simulate and analyze the characteristics of the full-size model. It is an electric-

powered 1:6 scale model of an 8x8 combat vehicle model. It has eight wheels which are 

independently driven by electric motors. The vehicle has the capability to steer on multiple 

surfaces such as sand, dirt, snow, mud, and pavement. 

An experimental test was carried out on an open loop system for measuring the input/output 

signals using a tilt compensated unit CMPS11. The input/output signals are recorded and 

analyzed. Subsequently, several system identification models were applied in terms of 

ARMAX, ARX, and TF models to provide an accurate vehicle model. Several statistical 

analyses were applied, and the results are compared. The validation results revealed that 

the TF model provided an accurate ROMWCV model. The validation process was verified 

using real data which achieved 88.44% of the output data.   
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CHAPTER 8                                                                  

Processor-in-the-Loop Co-Simulations and Control Design 

for MWCV 

8.1 Introduction 

This chapter describes the design and the implementation of PID and fuzzy logic 

algorithms to track the desired heading angle for a scaled Autonomous Multi-Wheeled 

Combat Vehicle. The main challenge of designing such control systems is to individually 

regulate the steering of the four front wheels in the same order for obtaining the predefined 

heading angle of the vehicle. The performance of the developed controllers is validated in 

the presence of noise and disturbance in order to evaluate their robustness. Subsequently, 

a Processor-In-The-Loop (PIL) co-simulation is conducted to permit and achieve a more 

realistic situation where the developed control algorithms are evaluated while running on 

a dedicated processor. The obtained results from both simulation and PIL are compared, 

which demonstrate the performances of the developed controllers and their effectiveness in 

achieving the desired heading angle. 

Controller design and testing for autonomous combat vehicles have been widely studied 

by researchers around the world. Applying autonomy to such vehicles is a complicated 

process due to their large dimensions, heavy weight, and complex geometry. In the 

literature, many control algorithms were applied to autonomous vehicles and mobile 

robots, which have a long history in solving significant problems in this field. For example, 

these control algorithms can solve the following, autonomous path tracking [150-153], 

obstacle avoidance [154-156], control for mobile robots [157-159], and steering control 

[160-163]. 

Fuzzy logic (FL) is a powerful soft computing technique, which has the capability to 

control complex systems based on human expert knowledge. FL can be used to control 

autonomous systems in many engineering fields [164-167]. Furthermore, the main 

advantages of using FL are easy implementation, efficient computation, and better in 

performance [168]. On the other hand, a Proportional-Integral-Derivative (PID) controller 
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is the prevalent control loop feedback mechanism that is widely used in industrial control 

systems. This classical controller attempts to eliminate the error between the actual and the 

desired output by calculating the appropriate control signal. This control signal adjusts the 

process accordingly based on smoothing the output movement and minimizing the rise time 

and peak error.  

Processor-In-The-Loop co-simulation is introduced to test and validate controller 

performance [169-171].  PIL provides some hardware features that allow the achievement 

of more realistic situations where the control algorithm is running on a processor. 

Consequently, the performance of the control algorithm can be easily evaluated and 

compared with the simulation results.  

There has been some work done dealing with PIL, for example, a PIL and software-in-the-

loop (SIL) simulations for microsatellite Attitude Determination and Control Subsystem 

(ADCS) were carried out by Juang [172]. The ADCS algorithm was implemented using a 

PIC microcontroller, while the SIL simulation is developed in MATLAB environment. 

Chen [173] developed a local-loop based robot action control module using independent 

microprocessors. The action command is transmitted from the PC via serial port to the 

microprocessor, which permits the simultaneously and rapidly accomplishment of different 

actions of the mobile robot. Seelaender [174] introduced a co-simulation approach to 

control satellite dynamic model simulation using a Field Programmable Gate Array 

processor (FPGA). The aim of his work is to control the wheel reaction in the Simulink 

environment using the designed controller. The created code is implemented on the FPGA. 

8.2 Design of the Fuzzy Logic Controller (FLC) 

The developed fuzzy logic controller consists of three processes as shown in Figure 8-1. 

The first process in designing the FLC is fuzzification. In this step the inputs and outputs 

are transformed from real value into grades of membership. The second step is the fuzzy 

inference process. In this step the input data using fuzzification is mapped to conduct the 

fuzzy reasoning process. The third step is the defuzzification process, which transforms the 

membership degree of fuzzy sets into a crisp set that can be applied to the real system.  
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Figure 8-1 Block diagram of fuzzy logic controller 

The main challenge in designing the FLC is to obtain the appropriate fuzzy rules and 

membership functions due to the MWCV behavior to fulfill the objective of the heading 

angle control. For this purpose, four fuzzy controllers are designed to individually control 

the steering of the four front wheels of the vehicle. Each controller takes one input; the 

heading angle error, which is the difference between the desired and the actual vehicle 

heading angle. The output of the controller is the PWM for each wheel. In addition, the 

previously measured inputs/outputs data of the vehicle in Chapter 7, Figure 7-12 is very 

helpful for defining the appropriate rules in the designing process for the fuzzy controller. 

Subsequently, triangular and trapezoidal membership functions are defined for the input 

and output variables. The input/output variables for the first controller are defined by five 

membership functions NB, N, Z, P and PB as shown in Figure 8-2a. 

 
 (a) 

 
(b) 

Figure 8-2 Fuzzy 1 (a) Input membership function for the heading angle (b) Output 

membership function for PWM 
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Consequently, the input and output variables for the second, third and fourth fuzzy 

controllers are defined by three membership functions N, Z and P as shown in Figure 8-3-

Figure 8-5. 

 
 (a) 

 
(b) 

Figure 8-3 Fuzzy 2 (a) Input membership function for the heading angle (b) Output 

membership function for PWM 

 
 (a) 

 
(b) 

Figure 8-4  Fuzzy 3 (a) Input membership function for the heading angle (b) Output 

membership function for PWM 

 
 (a) 

 
(b) 

Figure 8-5  Fuzzy 4 (a) Input membership function for the heading angle (b) Output 

membership function for PWM 

The membership functions parameters have been tuned by successive iterations based on 

the obtained heading angle values. Figure 8-6 shows the developed block diagram control 



114 

 

loop in Simulink for MWCV using four fuzzy controllers to reach the desired heading 

angle.  

 
Figure 8-6 Fuzzy heading angle controller Simulink diagram for the R1, R2, L1, L2 

 

8.3 Design of the Proportional Integral and Derivative Controller (PID)     

PID controller is widely used in industrial control systems as shown in Figure 8-7. 

Development of PID controller according to the conventional strategies requires previous 

knowledge of the MWCV nature (input/output see Figure 7-12) to be controlled. 

𝑈(𝑠) = 𝐾𝑝 (1 +
1

𝐾𝑖𝑠
+ 𝐾𝑑𝑠) 𝐸(𝑠) 

8-1 

 

 

Figure 8-7 Block diagram of PID controller 

The proposed PID algorithm contains three separate parameters in terms of the 

Proportional 𝐾𝑝, the Integral 𝐾𝑖 and the Derivative 𝐾𝑑 as explained in Equation 8-1. The 

weighted sum 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 is used to control the MWCV heading angle, then by make a 

fine tuning for these parameters, the PID controller is capable to provide a much better 

result. Based on Ziegler/Nichols tuning method [175,176] the proposed PID controllers’ 
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parameters are tuned. The developed block diagram control loop in Simulink for MWCV 

using the developed four PID controllers to reach the desired heading angle is shown in 

Figure 8-8. 

 

Figure 8-8  PID heading angle controller configuration for the R1, R2, L1, L2 

It can be noticed that tuning the PID controller using Ziegler-Nichols rule is able to provide 

the best values for the three PID gain parameters as shown in Table 8-1. Consequently, the 

PID controller attempts to correct the error between a measured process variable and the 

desired set points by calculating and outputting a corrective action that can adjust the 

process accordingly. 

Table 8-1 Controller parameters 

 PID4 PID3 PID2 PID1 Parameter 

1.268 1.626 0.0801 -2.672 Kp 

1.129 1.488 0.016 -4.449 Ki 

-0.066 -0.031 -0.945 -0.0515 KD 

8.4  Processor-In-The-Loop Co-simulation (PIL) 

In this section, the PIL co-simulation of the proposed two control algorithms is discussed. 

The PIL permits and achieves a more realistic environment where the developed control 

algorithms will run on a processor and consequently, the performance can be compared 

and verified with simulation results. In addition, PIL allows debugging the controller and 

correct any error that may affect the system performance. For this purpose, a 

MATLAB/Simulink environment is used to implement and perform a PIL co-simulation. 
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The developed algorithms are implemented using Arduino board to perform PIL co-

simulation. 

8.4.1 PIL validation 

The validation of the proposed heading angle controllers is carried through the scheme of 

co-simulation, where the PC performs the vehicle model simulation using 

MATLAB/Simulink. On the other hand, the Arduino board processes the developed PID 

and fuzzy controllers. Afterwards, a comparison between the developed two algorithms for 

tracking the desired heading angle is considered under the same condition that assumed in 

the simulation section. 

The co-simulation scheme using MATLAB/Simulink is shown in Figure 8-9. The Simulink 

send the heading angle error signal to the processor via the serial port. Subsequently, the 

processor calculates the control signal and sends it to the vehicle model to take the action. 

    

 

 

 

 

 

 

 

 

(a) 

Processor 

Heading error Control signal 
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 (b) 

Figure 8-9 PIL Co-simulation Simulink block diagram 

It can be noticed that, when sending and receiving data through the serial port, these data 

must be unsigned integers. For this purpose, the heading error signal is biased with a certain 

value to be positive, then multiplied by a gain to make sure that all sent data to the processor 

are an integer as shown in Figure 8-9a. On the other hand, before the processor receives 

these data it should be biased and multiplied by opposite values to return it to their original 

values. The same will be done for the processor output (make sure all data are unsigned 

integers) before sending it back to PC via the serial port. 

 

Figure 8-10 PIL Block diagram in Simulink environment 
 

The developed PIL block diagram using MATLAB/Simulink environment is shown in 

Figure 8-10, which implemented on the processor using the generate and built code 

command. In this way, the communication with the processor can be easily established in 

order to send the heading angle error to the processor, then calculate the appropriate control 

signal that will be sent to the vehicle model in Simulink to take action. Consequently, based 

on the obtained results using the proposed two control algorithms in simulation and PIL, a 

comparative analysis is proposed in the next section. 
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8.5 Simulation and Experimental Results 

In this section, the PIL and the simulation results of the developed controllers for the 

heading angle control will be discussed.  

8.5.1 Fuzzy logic controller 

The closed-loop system step response performance using the developed fuzzy logic 

controller compared with the uncontrolled system is shown in Figure 8-11. It has been 

noticed that the steady state error for the closed loop performance of the uncontrolled 

system is high. On the other hand, after applying the developed fuzzy controller the steady 

state error reaches zero, while the settling time is 0.03 sec. 

 

Figure 8-11 Comparison of transient response of the heading angle for fuzzy controller 

and uncontrolled system 

8.5.2 PID controller 

The closed-loop system step response performance using PID controller compared with 

uncontrolled system is shown in Figure 8-12. Based on the obtained results, it can be 

noticed that the steady state error of the PID controller reaches zero, while the settling time 

is 0.1 sec compared with the uncontrolled system. As such, the steady state error of the 

uncontrolled system is high. 
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Figure 8-12 Comparison of transient response of the heading angle for PID controller 

and uncontrolled system 

8.5.3 Controllers evaluation 

The evaluation of the proposed controller algorithms for tracking the predefined heading 

angle is experienced through two scenarios. The first scenario shows the MWCV tracking 

the heading angle to reach 25 degrees as shown in Figure 8-13. The obtained result clarifies 

that both controllers have the capability to track and follow the desired heading angle. 

However, the error between the desired and the actual heading angle using the fuzzy 

controller is smaller compared with the PID controller, especially when the direction is 

changed. 
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Figure 8-13 Comparison of tracking heading angle using fuzzy and PID controllers to 

reach the desired 25 degree heading angle. 

In the second scenario, the reference heading angle is exported from TruckSim software 

for a circle maneuver. The comparison between the proposed two controllers is shown in 

Figure 8-14. It can be noticed that both controllers are able to track and follow the desired 

heading angle. However, the fuzzy controller is more accurate in tracking the desired 

heading angle compared with the PID controller.  

 

Figure 8-14 Comparison of tracking heading angle using fuzzy and PID controllers to 

reach the desired heading angle. 
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The animation for this scenario using TruckSim for this maneuver is shown in Figure 8-15, 

where the blue and yellow vehicles represent the fuzzy and PID controlled respectively, 

and the red one is the uncontrolled vehicle.  

 

 

Figure 8-15 TruckSim animation of tracking heading angle using fuzzy and PID 

controllers with uncontrolled one to reach the desired heading angle. 

8.6 Validation in Presence of Disturbance and Noise 

a) Disturbance rejection 

In this section, the performance evaluation of the developed controllers to show the 

capability to reject the disturbance during the maneuver is introduced. For this 

purpose, an impulse disturbance is applied to the system output and the obtained 

result is shown in Figure 8-16. It can be noticed that, the settling time of the fuzzy 

controller is very low compared with the PID controller. Consequently, the 

convergence using the fuzzy controller is better than the PID controller as it rejects 
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50% of the disturbance within 0.03 sec and rejects 95% of the disturbance within 

0.05 sec. On the other hand, the PID controller rejects 50% of the disturbance within 

0.06 sec and reject 95% of the disturbance within 0.1 sec. 

 

 

 

Figure 8-16  Comparison of disturbance rejection using PID and fuzzy logic controller 

b) Noise sensitivity  

In this section, the performance of the proposed algorithms is evaluated in the 

presence of noise. For this purpose, a white Gaussian noise is applied at the output 

of the system and the obtained step response is shown in Figure 8-17. Based on the 

obtained result, it can be found that the fuzzy logic controller is sensitive to additive 
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noise compared with the PID controller. Moreover, by comparing the control efforts 

generated from both controllers, the fuzzy logic controller is higher than the PID 

controller in control efforts with a ratio of 2:1, which explains its sensitivity to the 

applied noise. 

 

Figure 8-17  Comparison of noise sensitivity using PID, fuzzy logic controller 

8.7 Comparative Analysis of PIL and Simulation  

In this section, a comparative analysis of the obtained results using the developed control 

algorithms in the case of PIL (implemented controller on the processor) and the Simulation 

(simulation only using MATLAB/ Simulink environment). 

a) Fuzzy logic controller  

 

The obtained closed-loop responses for PIL and the simulation are shown in Figure 

8-18. It can be noticed that the PIL result is close to the simulation result, which 

means that the developed controller has the capability to achieve a proper 

implementation on the processor environment. 



124 

 

 

Figure 8-18 Comparison of transient response of the heading angle for fuzzy 

controller in simulation and PIL 

a) PID controller  

The obtained closed loop response for both PIL and the simulation is shown in 

Figure 8-19. It can be noticed that the obtained results using PIL are close to the 

simulation results and the controller is proper implementation in the processor 

environment. 

 

  Figure 8-19 Comparison of transient response of the heading angle for PID controller 

in simulation and PIL 
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8.8 Chapter Summary 

This chapter presented the design, tuning and implementation of heading angle tracking 

controllers for a scaled autonomous multi-wheeled combat vehicle. For this purpose, a 

fuzzy logic and PID controllers have been proposed. The developed control algorithms are 

implemented in a processor to be tested together with the vehicle model running on PC for 

heading control through the PIL. The PIL experimental results have been presented to 

validate the implementation in a processor with the simulation results. The study of all 

obtained simulation results and PIL co-simulation led one to believe that there is a trade-

off in any chosen control strategy. Consequently, based on the performance of the systems 

using both controllers, the fuzzy logic controller showed the best results, which can follow 

the desired heading angle with very low steady state error and settling time compared with 

the PID controller. In addition, it has the capability to reject the disturbance within a very 

short time. However, the fuzzy logic controller is less sensitive to applied noise compared 

with the PID controller. 
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CHAPTER 9                                                                        

Design and Performance Analysis of Robust 𝑯∞ Controller 

for Scaled Autonomous Multi-Wheeled Combat vehicle  

9.1 Introduction 

This chapter describes the design of a robust controller to track the desired heading angle 

for a scaled multi-wheeled combat vehicle considering the presence of uncertainties that 

are difficult to estimate such as noise and disturbance. For this purpose, a robust 

𝐻∞ heading angle control algorithm is developed for the vehicle to tracking the desired 

heading. The augmented plant is structured by adjusting the weighting functions taking 

into account the presence of noise and disturbance. The developed 𝐻∞ framework is well 

suited for controlling the steering of the vehicle’s four front wheels individually to obtain 

the correct heading angle. The vehicle simulations in the presence of disturbances and noise 

are carried out and the robustness of the proposed heading angle tracking algorithm is 

incorporated. Subsequently, a Processor-In-The-Loop co-simulation is conducted in order 

to evaluate the controller while running on a dedicated processor. The simulation and PIL 

results are compared, which shows the effectiveness of the 𝐻∞ controller and its capability 

to achieve the desired heading angle changes with better performances and efficiency. 

By increasing demands and progressing technologies, the development of autonomous 

ground combat vehicles become an emerging research focus. Applying advanced control 

techniques for an autonomous vehicle became challenging to handle and control. One of 

the important issues facing such vehicles is heading angle tracking, which is required to 

design the appropriate controller that has the capability to force and control the vehicle 

dynamics to reach and track the predefined directions precisely. Recent research starts to 

pay attention to applying autonomy to multi-wheeled combat vehicles due to the expected 

outcomes such as increasing combat capability and soldier safety in different battlefield 

scenarios [177-180]. 

Various control schemes and analysis have been proposed to control and improve 

autonomous vehicle performance, which includes Wildcat autonomous ground vehicle 
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construction and implementation [181], autonomous ground vehicle path tracking [182-

186], and navigation [187,188]. In addition, a heading angle tracking controller was 

developed and implemented by Sahoo [24] for unmanned ground vehicles considering a 

linearized dynamic bicycle model. The authors applied a Point-to-Point navigation 

algorithm in order to control both the steering and heading angles, while considering the 

limits on rotation of the steering wheel and steering motor rate. Dadras [189] developed a 

Fractional Order Extremum Seeking Controller (FO-ESC) in order to control an 

autonomous ground vehicle to track a predefined reference path. The authors claim that the 

robustness and higher performance fractional order operators lead ESC to perform better 

and more efficiently. Eski [190] developed a model based on an artificial neural network 

PID controller for trajectory control of the unmanned agricultural vehicle. The developed 

neural network model has the capability to learn the PID structure with a high level of 

performance. 

Robust control has been proven to be a powerful tool when applied to various control 

problems [191-193]. Consequently, robust 𝐻∞controller has played an important role in 

the study and analysis of control theory since its original formulation in an input–output 

setting [194,195]. It has the capability to provide the required system response in the 

presence of noise and disturbance. 

In this chapter, a heading angle tracking algorithm based on robust 𝐻∞ approach for a 

scaled autonomous multi-wheeled combat vehicle was developed. The introduced 

technique has the capability to track the desired heading angle by controlling the steering 

of the front four wheels of the vehicle individually. Several statistical analyses are applied 

to validate the performance and the robustness of the introduced controller in the presences 

of the disturbance and noise. The simulation results demonstrated that the 

proposed 𝐻∞ controller successfully tracked the desired heading angle in a reliable and 

smooth way, while it is robust against the disturbance and noise. 
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9.2 𝑯∞ Controller 

9.2.1 Feedback control 

The feedback control system must satisfy certain performance specifications as shown in 

Figure 9-1. It has three components: the plant, the sensors to measure the outputs, and the 

controller to provide the appropriate control signal. Generally, this system has three inputs 

in terms of 𝑟(𝑡), 𝑑(𝑡), 𝑛(𝑡) and three outputs in terms of 𝑦(𝑡), 𝑢(𝑡), 𝑒(𝑡) which are 

described by the following matrix in Equation 9-4. 

 

Figure 9-1. Feedback control 

In case of unity feedback system, the sensitivity function (𝑆), the complementary sensitivity 

function (𝑇) and the control sensitivity function (𝑅) are defined as follows: 

where, L represents the loop transfer function (𝐿 = 𝑃𝐶) and (𝑇 = 1 − 𝑆). 

 9-4 

where, 

𝑦(𝑡) is the actual output; 

𝑒(𝑡) is the tracking error; 

𝑢(𝑡) is the controller signal; 
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𝑟(𝑡) is the desired signal; 

𝑑(𝑡) is the disturbance input; 

𝑛(𝑡) is the measurement noise; 

𝑆 is the sensitivity function; 

𝑇 is the complementary sensitivity function;  

𝑅 is the control sensitivity function.  

9.2.2 Weighting function selection 

In order to facilitate the robust 𝐻∞ control problem, the vehicle model of an augmented 

plant P(s) is considered with the weighting functions 𝑊𝑝(𝑠),𝑊𝑢(𝑠), 𝑎𝑛𝑑  𝑊𝑡(𝑠), where 

represent the error signal, control signal, and output signal respectively as shown in Figure 

9-2.  

 

Figure 9-2. Augmented plant P(s)  

Consequently, the closed-loop transfer function matrix is the weighted mixed sensitivity 

Equation 9-5.  

 

9-5 

Before attempting the controller design, the control and error weighting functions must be 

selected in a way that reflects the frequency and time domain requirements. These weight 
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functions play an important role in providing a good feedback design for the system. The 

selection of the of these weights should satisfy the following constraints: (1) at low 

frequency the system should be insensitive to external disturbances, (2) at high frequency 

it should be able to filter unwanted noise signals.  

Consequently, the methodology of weight function selection is to compromise between 

sensitivity and complementary sensitivity over the whole pattern of frequencies. The 

following consideration based on Equations 9-1, 9-2, and 9-3 should be taken into account 

to satisfy this compromise as follows: 

• The sensitivity function 𝑆 should be small to reduce the external disturbance effect, 

which can be achieved by increasing the loop gain of 𝐿. Subsequently, as long as the 

sensitivity function is small, the tracking errors 𝑒(𝑡) will be small. 

• The complementary sensitivity function 𝑇 should be kept small to minimize the noise 

effect applied on the system output, which can be attained by reducing the loop gain 

of 𝐿. 

• The control sensitivity function 𝑅 must be limited in order to make sure that the acting 

control signal on the system will not exceed the system tolerances. 

Subsequently, it can be concluded that the disturbance rejection and errors 𝑒(𝑡) 

minimization necessitates a small sensitivity 𝑆. However, noise suppression requires small 

complementary sensitivity 𝑇. It has been noticed that it is not reasonable to decrease 𝑆 and 

𝑇  to zero simultaneously since the summation of both transfer functions is unity. 

Consequently, in order to solve this problem, the disturbance and command input are 

considered low frequency signals and the noise is considered a high frequency signal. 

Afterwards, by maintaining the sensitivity function as small in the low frequency range and 

the complementary sensitivity function as small in the high frequency range, this problem 

can be solved [196,197].  

9.2.3 H∞ controller design 

In this section, the developed 𝐻∞ controller for heading angle tracking is discussed. This 

algorithm has the capability to individually control the steering of four front wheels of the 
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vehicle in order to tracking the desired heading angle. For this purpose, four 𝐻∞ controllers 

are developed in the following four sections. 

9.2.3.1 R1 Robust controller 

The developed 𝐻∞ controller for R1 is designed by selecting the following weight 

functions:   

𝑊𝑝 =
𝑠 + 105

 1.5 𝑠 + 0.0105
,    𝑊𝑡 =

0.03 𝑠 + 1.2

 10 𝑠 + 2
 ,𝑊𝑡 = 1  9-6 

 

Consequently, the obtained 𝐻∞ controller will be as follows: 

𝐶𝑅1 =
−3.58𝑒04 𝑠2 − 6307 𝑠 − 4736

 𝑠3 + 8006 𝑠2 + 1664 𝑠 + 11.26
  

9-7 

The frequency response of the obtained weight sensitivities is shown in Figure 9-3. 

Subsequently, the closed loop response is shown in Figure 9-4a, which clarifies that the 

rise time is 0.5 sec and the settling time is 0.95 sec. On the other hand, the closed loop 

response for the uncontrolled system is shown in Figure 9-4b. 

 

Figure 9-3. Sensitivity and complementary sensitivity weighting functions 
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(a) 
 

(b) 

Figure 9-4. (a) Step response of robust closed loop system (b) Step response of 

uncontrolled closed loop system 

9.2.3.2 R2 Robust controller 

The developed 𝐻∞ controller for R2 is designed by selecting the following weight 

functions:   

𝑊𝑝 =
𝑠 + 7.5

 1.5 𝑠 + 0.00075
,𝑊𝑡 =

0.05 𝑠 + 1

 7 𝑠 + 2
,  𝑊𝑡 = 1 9-8 

Consequently, the obtained 𝐻∞ controller will be as follows: 

𝐶𝑅2 =
  6.986𝑒04 𝑠2+ 2.71𝑒04 𝑠 + 2.165𝑒04

 𝑠3 + 2195 𝑠2 + 5.189𝑒05 𝑠 + 259.5
  

9-9 

 

The frequency response of the obtained weight sensitivities is shown in Figure 9-5. The 

closed loop response is shown in Figure 9-6 a. These results clarify that the rise time is 

20 sec and the settling time is 60 sec. On the other hand, the closed loop response for the 

uncontrolled system is shown in Figure 9-6b. 
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Figure 9-5. Sensitivity and complementary sensitivity weighting functions 

 

 

 
(a) 

 
(b) 

Figure 9-6. (a) Step response of robust closed loop system (b) Step response of 

uncontrolled closed loop system 

 

9.2.3.3  L1 Robust controller 

The developed 𝐻∞ controller for L1 is designed by selecting the following weight 

functions:   

𝑊𝑝 =
𝑠 + 150

 1.5 𝑠 + 0.015
,𝑊𝑡 =

0.2 𝑠 + 3.25

 8.35 𝑠 + 2.5
 ,𝑊𝑡 = 1 

9-10 
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Consequently, the obtained 𝐻∞ controller will be as follows: 

𝐶𝑙1 =
  4.707𝑒04 𝑠2+ 1.277𝑒04 𝑠 + 5097

 𝑠3 + 1.138𝑒04 𝑠2 + 341.8 𝑠 + 2.279
  

9-11 

The frequency response of the obtained weight sensitivities is shown in Figure 9-7. The 

closed loop response is shown in Figure 9-8a. It can be noticed that the rise time is 0.33 sec 

and the settling time is 0.48 sec. On the other hand, the closed loop response for the 

uncontrolled system is shown in Figure 9-8b. 

 

Figure 9-7. Sensitivity and complementary sensitivity weighting functions 

 

 
(a) 

 
(b) 

Figure 9-8. (a) Step response of robust closed loop system (b) Step response of 

uncontrolled closed loop system 
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9.2.3.4 L2 Robust controller 

The developed 𝐻∞ controller for L2 is designed by selecting the following weight 

functions:   

𝑊𝑝 =
𝑠 + 1100

 11 𝑠 + 0.0011
,𝑊𝑡 =

𝑠 + 1.75

 10.21 𝑠 + 1
 ,  𝑊𝑡 = 1 

9-12 

Consequently, the obtained 𝐻∞ controller will be as follows: 

 𝐶𝑙2 =
   4.798𝑒04 𝑠2+2.63𝑒04 𝑠 + 1.385𝑒04

 𝑠3 + 1.305𝑒04 𝑠2 + 1455 𝑠 + 0.1453
  

9-13 

The frequency response of the obtained weighted sensitivities is shown in Figure 9-9, and 

the closed loop response is shown in Figure 9-10a. The obtained result clarifies that the rise 

time is 0.35 sec and the settling time is 0.5 sec. On the other hand, the closed loop response 

for the uncontrolled system is shown in Figure 9-10b. 

 

Figure 9-9. Sensitivity and complementary sensitivity weighting functions 
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(a) 

 
(b) 

Figure 9-10 (a) Step response of robust closed loop system (b) Step response of 

uncontrolled closed loop system 

9.3 Simulation and Results 

In this section, the simulation results of the developed 𝐻∞ controller are discussed. The 

closed loop step response performance of the system for the developed 𝐻∞ controller 

compared with the uncontrolled system is shown in Figure 9-11. It has been noticed that the 

steady state error of 𝐻∞controller reaches zero while the settling time is 0.12 sec compared 

with the uncontrolled system. As such, the steady state error of the uncontrolled system is 

high.  

 

Figure 9-11  Transient response of the heading angle for 𝑯∞ controller compared with 

uncontrolled system 
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Several scenarios are proposed considering prescribed heading angles to evaluate the 

performance of the developed heading angle tracking algorithm. 

The first scenario is developed to achieve the desired heading angle of 25 degrees as shown 

in Figure 9-12, where the desired angle is represented by the blue line and the actual 

response is red. The obtained result demonstrated that the proposed 𝐻∞ controller has the 

capability to track the desired heading angle with very low steady state error and steeling 

time. 

 

Figure 9-12. Comparison of robust controller and uncontrolled to achieve the desired 

heading angle of 25 degrees 

 

In the second scenario, a sinusoidal heading angle is considered as a reference, which varies 

between 35 to -35 degrees as shown in Figure 9-13. The tracking results show that the 

vehicle is able to track the desired heading angle even with such high angle variations.   
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Figure 9-13. Comparison of robust controller and uncontrolled to achieve a sinusoidal 

desired heading angle varying 35: -35 degrees 

The third scenario is more realistic due to the consideration of using a measured heading 

angle from a real test of the vehicle as a reference. This is the desired heading in this 

scenario as shown in Figure 9-14. The developed  𝐻∞ controller shows good tracking for 

the desired heading angle compared with the uncontrolled one. 

 
Figure 9-14. Comparison of robust controller and uncontrolled to achieve the desired angle 
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9.3.1 Validation in presence of disturbance and noise 

a) Disturbance rejection 

The performance evaluation of the proposed robust algorithms in the presence of 

disturbance is considered. For this purpose, an impulse disturbance is applied at the system 

output. The system step response in presence of the applied disturbance is shown in Figure 

9-15. It can be noticed that the system rejects 50% of the disturbance within 0.04 sec and 

rejects 95% of the disturbance within 0.076 sec in addition to the lowest control effort. 

Consequently, the developed algorithm has the capability to reject the applied disturbance 

within a short time.  

 

Figure 9-15. Disturbance rejection using 𝑯∞ controller 

b) Noise sensitivity  

The performance evaluation of the developed 𝐻∞ algorithms in the presence of noise is 

considered. For this purpose, a white Gaussian noise is applied at the output of the system. 

The control effort in the presence of noise is shown in Figure 9-16, which shows the 

capability of the 𝐻∞controller to track the desired heading in the presence of noise, which 

means that the system is less sensitive to additive noise. 
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Figure 9-16.  Control effort in the presence of noise 

9.4 Processor-In-The-Loop (PIL) Co-simulation 

In this section, the Processor-In-The-Loop (PIL) co-simulation of the proposed robust 𝐻∞  

controller is applied. The same procedures were used in Chapter 8 for the PIL experiment 

will be applied to the developed 𝐻∞ controller in this section. In this way, using the PIL 

can achieves a more realistic environment where the developed control algorithm will run 

on a processor. Therefore, the performance of the PIL and simulation results can be 

compared. 

The comparative analysis of the developed control algorithm using the simulation in 

MATLAB/ Simulink environment and the PIL is presented. The obtained closed-loop 

responses for PIL and the simulation are shown in Figure 9-17. It can be noticed that the 

PIL result is close to the simulation result, which means that the developed controller has 

the capability to achieve a good implementation on the processor environment. 
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Figure 9-17 Comparison of transient response of the heading angle for 𝐻∞controller in 

simulation and PIL 

9.5 Comparative Analysis of the Developed Control algorithms 

The developed heading angle tracking controllers in chapters 8 and 9 provide a very close 

tracking response, with minimum settling time, to the application of heading angle tracking. 

The PID controller is designed first, using the Ziegler–Nichols method and subsequently, a 

fine tuning through simulation for better results. In addition, the FL heading angle tracking 

controller is designed. Once more, triangular and trapezoidal membership functions with 

overlap are used. Finally, a robust 𝐻∞ algorithm is introduced, where the augmented plant 

is structured by adjusting the weighting functions. On the other hand, the PIL co-simulation 

for the three developed controllers shows good implementation on the processor 

environment. Consequently, a comparative study of the developed controllers is carried out 

to stop by the best controller that has the capability to track the desired heading, while it is 

less affected by the noise and disturbance.  

In this section a comparative evaluation to assess the feasibility of the developed control 

algorithms is discussed. It is appropriate at this stage to compare the performance of PID, 

FLC, and robust 𝐻∞ algorithms for tracking the desired heading to emphasize the merits 

and demerits of each controller. The performance of the three controllers is experienced 

through two scenarios, which were designed to regulate the steering of the four front wheels 

of the vehicle to follow the desired heading. In addition, the disturbance and noise are 

applied to the three controllers, so that any comparison is justifiable. 
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9.5.1 First scenario 

In this scenario, the performance evaluation of the proposed control algorithms for tracking 

and reaching the predefined heading angle is shown in Figure 9-18.  

 

 

Figure 9-18. Fi-rst scenario: Comparison of heading angle tracking using fuzzy and 

PID, robust 𝑯∞ controllers 

It has been noticed that the three controllers are able to track and follow the desired heading 

angle, where both FLC and robust 𝐻∞ controller have very close trajectories to the desired 

heading compared with the PID controller. However, the error between the desired and the 

obtained heading using a robust controller is the smallest, which means more accurate in 

tracking. 
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9.5.2 Second scenario 

 In this scenario, the desired heading angle is predefined while showing a continuous change 

over time in order to be more challenging for the controllers to track. The obtained tracks 

performance of the developed controllers is shown in Figure 9-19, which clarifies that the 

robust 𝐻∞ controller successfully tracking the desired heading angle accurately compared 

with the PID and FL. 

 

 

Figure 9-19. Second scenario: Comparison of heading angle tracking using fuzzy and 

PID, robust 𝐻∞ controllers 
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9.5.3 Validation in presence of disturbance and noise 

a) Disturbance rejection  

In this section, the performance evaluation of the proposed algorithms for disturbance 

rejection during a maneuver is introduced. An impulse disturbance is applied to the 

system output. The obtained result in the presence of disturbance is shown in Figure 

9-20.  

 

 (a) 

 

(b) 
 

(c) 

Figure 9-20. (a) Comparison of disturbance rejection capabilities for PID, fuzzy 

logic Robust controller, (b) Disturbance rejection, (c) Comparison of control effort 

It has been noticed that the convergence of the fuzzy controller is better than the PID 

and robust 𝐻∞ controllers as it rejects 50% of the disturbance within 0.01 sec and 

rejects 95% of the disturbance within 0.018 sec. On the other hand, the PID controller 
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rejects 50% of the disturbance within 0.05 sec and rejects 95% of the disturbance 

within 0.1 sec. In addition, the robust controller system rejects 50% of the disturbance 

within 0.016 sec and rejects 95% of the disturbance within 0.04 sec. However, the 

control effort variance of the robust 𝐻∞ controller is 7.0430 which is considered the 

lowest control effort compared with the PID and fuzzy logic which is 18.8013 and 

193.4385 respectively. These results clarify that the amount of energy or power 

necessary for the robust 𝐻∞ controller to control the vehicle heading angle is small. 

b) Noise sensitivity  

In this section, the performance of the proposed algorithms will be evaluated in the 

presence of noise. For this purpose, a white Gaussian noise was applied at the output 

of the system. The obtained response in the presence of noise is shown in Figure 

9-21. Based on the obtained result the fuzzy logic controller is sensitive to additive 

noise compared with the PID and 𝐻∞  controllers. Moreover, by comparing the 

control effort of the developed controllers, the control effort variance of the robust 

controller is 0.2123 which is considered the lowest compared with the PID and 

fuzzy which is 4.8129 and 57.4326 respectively. These results explain the 

sensitivity of the fuzzy and PID controllers to the applied noise. 

 
(a) 
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(b) 

Figure 9-21. (a) Comparison of noise sensitivity using PID, fuzzy logic, Robust 

controllers, (b) Comparison of control effort 

9.6 Chapter Summary 

In this paper, a robust 𝐻∞ heading angle tracking algorithm was developed for an 

autonomous scaled multi-wheeled combat vehicle. The proposed algorithm enables the 

vehicle to track the desired heading angle autonomously by individually controlling the 

steering of the four front wheels. The methodology of the  𝐻∞ controller weight function 

selection was discussed, which is based on the compromise between sensitivity and 

complementary sensitivity. In addition, the system is validated in presence of disturbance 

and noise, which shows a good disturbance rejection. Moreover, the controller is less 

sensitive to the applied white Gaussian noise. Several scenarios are considered for tracking 

the predefined heading angles.  

In addition, the developed controller is implemented in a processor to be tested together 

with the vehicle model running on PC for heading control through the PIL. The PIL 

experimental results show a good implementation in the processor environment compared 

with simulation result. The obtained results demonstrated that the proposed 𝐻∞ controller 

has the capability to regulate the steering of the four front wheels to enable the vehicle to 

follow the desired heading angle in a reliable and smooth way in addition to the robustness 

of the system in presence of disturbance and noise. 
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Finally, the comparative study of the developed three controllers shows their capability to 

regulate the four front wheels of the vehicle for tracking the desired heading angle. 

However, the robust controller is closer and smoother in tracking to the heading angle 

compared with the PID and FLC. In addition, in the presence of disturbance the robust 

controller has achieved a good disturbance rejection with low control effort compared with 

the FLC that has a high control effort.  Subsequently, in the presence of noise the robust 

controller shows a good result, which is less sensitive to the applied noise compared with 

the PID and FL controllers, furthermore, is low in the control effort. 
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CHAPTER 10                          

Conclusions and Future Works 

In this chapter the conclusions obtained from the thesis work are described then 

the major contributions are listed. The future work and recommendations are then 

presented and finally the publications done during the course of PhD study are 

listed. 

10.1 Conclusions 

The most important findings of the current work are concluded as follows: 

- The theory of optimal control has been successfully employed to generate an optimal 

path for a multi-wheeled combat vehicle to move from a given starting point and 

safely reach its target point while avoiding the destination border and any obstacles 

imposed on the vehicle path. 

- The artificial potential field method is used to represent both the target location and 

different obstacles which are placed in different locations. 

- Based on the combination of artificial potential filed and optimal control theory, the 

proposed algorithm is able to avoid obstacles and achieve global optimization 

simultaneously. 

- The artificial neural network has been successfully employed to solve the real time 

problem, and it is able to generate the vehicle optimal path, based on the combination 

between the APF and optimal control theory. 

- The Pontryagin’s minimum principle technique has been successfully guaranteed 

the global optimal solution for the generated paths compared with dynamic 

programming, while can save approximately 70% in computing time. 

- The hybrid positing technique has been successfully combined both tightly and 

loosely coupled GPS/INS integration using KF and achieve reliable positioning 
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performance even in adverse GPS environments where the number of satellites falls 

below the minimum. 

- The identified model of the scaled multi-wheeled combat vehicle was succeeded in 

providing an accurate vehicle model, which validated with real data and achieved 

88.44% of the output. 

- The developed PID, fuzzy, and robust 𝐻∞ controllers successfully regulated the four 

front wheels of the vehicle in order to achieve and track the desired vehicle heading 

angle. However, the 𝐻∞ is more accurate in the tracking compared with PID and 

fuzzy controllers. 

- The developed PID, fuzzy, and robust 𝐻∞ controllers have been successfully 

achieved a proper implementation in the processor environment using processor-in-

the-loop co-simulation. 

- The developed 𝐻∞ controller has successfully achieved a good disturbance rejection 

with low control effort, which rejects 50% of the disturbance within 0.016 sec, and 

rejects 95% of the disturbance within 0.04 sec compared with the PID and fuzzy.  

10.2 Current Research Contributions 

- The current research addresses the research gap in the literature which relates to 

applying autonomy feature to the scaled 8x8 combat vehicle when moving between 

two locations. 

- The current research provides a clear understanding of the generated optimal path 

where the optimal control theory is integrated with APF providing the optimal 

collision free path planning. 

- Introduced a comparative performance analysis of the Pontryagin’s Minimum 

Principle and Dynamic Programming techniques that showed the capability of the 

PMP to generate the global optimal solution in our case. 
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- Developed a hybrid positioning framework based on the combination of tightly and 

loosely coupled GPS/INS integration using Kalman Filter which has the capability 

to achieve reliable positioning performance where the number of satellites falls 

below the minimum. 

- Developed a model of scaled multi-wheeled vehicle using system identification 

techniques and successfully identifying and achieving 88.44% of the output. 

- Conducted a comparative performance analysis of the developed control algorithms 

and proved the accuracy of the 𝐻∞ controller to track the desired heading angle and 

robustness in the presence of disturbance and noise.  

10.3 Future Work and Recommendation 

- In this research, an optimal path planning technique has been employed to generate 

the vehicle optimal path and avoiding the imposed static obstacles. Therefore, it is 

recommended in the future work to change the static obstacles to dynamic obstacles. 

This should be done in both the simulation environment and field testing through 

various scenarios.  

- It is necessary to improve the mechanical parts of the scaled multi wheeled combat 

vehicle, which will help to identify a more accurate vehicle model. Consequently, 

the implementation of the designed control system can achieve better results. 

- It is also recommended to implement and examine the developed control systems in 

the real vehicle in order to examine their robustness against disturbances and noise. 

This should be done through various field testing. 

- Enhancing the vehicle positioning estimation by integrating a stereo camera, INS, 

and GPS, which will provide an accurate location estimation for the vehicle. By this 

way, the advantage of the inertial sensor’s fast response and visual sensor’s slow 

drift can be considered. 
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Appendix 1 

𝐴11 to 𝐴66 in above equation are 3 X 3 matrices are described as follows: 

𝑂3𝑥3 = [
0 0 0
0 0 0
0 0 0

]  

𝐴11 = [

0 �̇�sin(𝜑)           −  �̇�cos(𝜑)

       −  �̇�sin(𝜑) 0 −�̇�

�̇�cos( 𝜑) �̇� 0

] , 𝐴12 =   𝐼3, 𝐴13 = 𝐼3X𝑂3𝑥3, 

𝐴14 =  𝐼3X𝑂3𝑥3,  

𝐴15 =  𝐼3X𝑂3𝑥3,  𝐴16 =  𝐼3X𝑂3𝑥3 

𝐴21 = [

−𝑔/𝑟 0 0
0 −𝑔/𝑟 0

0 0
2𝑔

𝑟+ℎ

]  

𝐴22 = [

0 (2𝜔𝑒 + �̇�) sin(𝜑) −(2𝜔𝑒 + �̇�) cos(𝜑)

−(2𝜔𝑒 + �̇�) sin(𝜑) 0 �̇�

(2𝜔𝑒 + �̇�) cos(𝜑) �̇� 0

]  

𝐴23 = [

0 −𝑓𝑢 𝑓𝑛
𝑓𝑢 0 −𝑓𝑒

−𝑓𝑛 𝑓𝑒 0
], 𝐴24 = [

𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅21 𝑅32 𝑅33

], 𝐴25 =  𝐼3X𝑂3𝑥3, 𝐴26 =  𝐼3X𝑂3𝑥3 

𝐴31 = 𝐼3X𝑂3𝑥3 , 𝐴32 = 𝐼3X𝑂3𝑥3,  

𝐴33 = [

0 (𝜔𝑒 + �̇�) sin(𝜑) −(𝜔𝑒 + �̇�) cos(𝜑)

−(𝜔𝑒 + �̇�) 𝑠𝑖𝑛(𝜑) 0 −�̇�

(𝜔𝑒 + �̇�) 𝑐𝑜𝑠(𝜑) �̇� 0

]                   

 𝐴34 = 𝐼3X𝑂3𝑥3 ,   𝐴35 = [
𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅21 𝑅32 𝑅33

] , 𝐴36 = 𝐼3X𝑂3𝑥3 
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A41=I3X𝑂3𝑥3 ,𝐴42 =  I3X𝑂3𝑥3 , 𝐴43 = I3X𝑂3𝑥3   

𝐴44 = [

−βfx 0 0
0 −βfy 0

0 0 −βfz

] , 𝐴45 =  I3X𝑂3𝑥3  

𝐴46 =  I3X𝑂3𝑥3 

𝐴51 =  𝐼3X𝑂3𝑥3 , 𝐴52 =  𝐼3X𝑂3𝑥3 , 𝐴53 = 𝐼3X𝑂3𝑥3 , 𝐴54 = 𝐼3X𝑂3𝑥3  

 𝐴55 = [

−𝛽𝜔𝑥 0 0
0 −𝛽𝜔𝑦 0

0 0 −𝛽𝜔𝑧

] 

𝐴56 = 𝐼3X𝑂3𝑥3 𝐴61 = 𝐼3X𝑂3𝑥3, 𝐴62 = 𝐼3X𝑂3𝑥3, 𝐴63 = 𝐼3X𝑂3𝑥3, 𝐴64 = 𝐼3X𝑂3𝑥3, 

𝐴65 = 𝐼3X𝑂3𝑥3, 

𝐴66 = [

𝛿𝐺𝑃𝑆𝑥
0 0

0 𝛿𝐺𝑃𝑆𝑦
0

0 0 𝛿𝐺𝑃𝑆𝑧

]  
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