• Login
    View Item 
    •   eScholar Home
    • Faculty of Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Perpetually playing physics

    Thumbnail
    View/Open
    Beeler_Chris.pdf (2.759Mb)
    Date
    2019-08-01
    Author
    Beeler, Chris
    Metadata
    Show full item record
    Abstract
    Here we discuss ideas of reinforcement learning and the importance of various aspects of it. We show how reinforcement learning methods based on genetic algorithms can be used to reproduce thermodynamic cycles without prior knowledge of physics. To show this, we introduce an environment that models a simple heat engine. With this, we are able to optimize a neural network based policy to maximize the thermal efficiency for different cases. Using a series of restricted action sets in this environment, our policy was able to reproduce three known thermodynamic cycles. We also introduce an irreversible action, creating an unknown thermodynamic cycle that the agent helps discover, showing how reinforcement learning can find solutions to new problems. We also discuss shortcomings of the method used, the importance of understanding the class of problem being handled, and why some methods can only be used for certain classes of problems.
    URI
    https://hdl.handle.net/10155/1108
    Collections
    • Electronic Theses and Dissertations [1369]
    • Master Theses & Projects [302]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV