• Login
    View Item 
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Controlling the Vienna rectifier using a simplified space vector pulse width modulation technique

    Thumbnail
    View/Open
    Sunbul_Ali.pdf (5.692Mb)
    Date
    2019-11-01
    Author
    Sunbul, Ali
    Metadata
    Show full item record
    Abstract
    In this thesis, a simplified Space-Vector Pulse-Width-Modulation (SVPWM) technique for the Vienna rectifier is introduced to reduce the computational burden, the switching losses and the Total-Harmonic-Distortion (THD). Furthermore, the robustness of this modulation technique is tested under various faults through a 70 kW MATLAB/Simulink model and the results are validated through 1.2 kW prototype. The results reveal that the simplified SVPWM provides a low THD, unity Power-Factor (PF) and effective capacitor voltage balancing even after extreme faults. This study introduces a multilevel Power-Factor-Correction (PFC) converter in a 2-stage configuration. The first stage is the Vienna rectifier which has a high boosting ratio. To overcome this issue, a high efficiency 4-switch converter is cascaded with the Vienna rectifier. This converter employs storage-less passive components and provides a Zero-Current-Switching (ZCS) for all of its switches. A description of the converter is first introduced followed by the simulation results.
    URI
    https://hdl.handle.net/10155/1115
    Collections
    • Electronic Theses and Dissertations [1369]
    • Master Theses & Projects [427]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV