• Login
    View Item 
    •   eScholar Home
    • Faculty of Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparative analysis of deep learning and graph cut algorithms for cell image segmentation

    Thumbnail
    View/Open
    Reshad_Ghazal.pdf (5.735Mb)
    Date
    2020-08-01
    Author
    Reshad, Ghazal
    Metadata
    Show full item record
    Abstract
    Image segmentation is a commonly used technique in digital image processing with many applications in the area of computer vision and medical image analysis. The goal of image segmentation is to partition an image into multiple regions, normally based on the characteristics of pixels in a given image. Image segmentation could involve separating the foreground from background in an image, or clustering image regions based on similarities in intensity, color, or shape. In this thesis, we consider the problem of cell image segmentation and evaluate the performance of two major techniques on a dataset of cell image sequences. First, we apply a traditional segmentation algorithm based on the so-called graph cut that addresses the segmentation problem using an energy minimization scheme defined on a weighted graph. Second, we use modern techniques based on deep neural networks, namely U-Net and LSTM that have a time-consuming training and a relatively quick testing phase. Performance of each technique will be analyzed qualitatively and quantitatively based on various standard measures and will be compared statistically.
    URI
    https://hdl.handle.net/10155/1231
    Collections
    • Electronic Theses and Dissertations [1369]
    • Master Theses & Projects [302]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV