• Login
    View Item 
    •   eScholar Home
    • Faculty of Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Polymorphic Adversarial DDoS attack on IDS using GAN

    Thumbnail
    View/Open
    Chauhan_Ravi.pdf (3.638Mb)
    Date
    2020-12-01
    Author
    Chauhan, Ravi
    Metadata
    Show full item record
    Abstract
    IDS are essential components in preventing malicious traffic from penetrating networks. IDS have been rapidly enhancing their detection ability using ML algorithms. As a result, attackers look for new methods to evade the IDS. Polymorphic attacks are favorites among the attackers as they can bypass the IDS. GAN is a method proven in generating various forms of data. It is becoming popular among security researchers as it can produce indistinguishable data from the original data. I proposed a model to generate DDoS attacks using a WGAN. I used several techniques to update the attack feature profile and generate polymorphic data. This data will change the feature profile in every cycle to test if the IDS can detect the new version attack data. Simulation results from the proposed model show that by continuous changing of attack profiles, defensive systems that use incremental learning will still be vulnerable to new attacks.
    URI
    https://hdl.handle.net/10155/1249
    Collections
    • Electronic Theses and Dissertations [1369]
    • Master Theses & Projects [302]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV