• Login
    View Item 
    •   eScholar Home
    • Graduate & Postdoctoral Studies
    • Electronic Theses and Dissertations
    • View Item
    •   eScholar Home
    • Graduate & Postdoctoral Studies
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Flow characteristics and acoustic resonance excitation of finned cylinders in cross-flow

    Thumbnail
    View/Open
    Alziadeh_Mohammed.pdf (70.10Mb)
    Date
    2022-12-01
    Author
    Alziadeh, Mohammed
    Metadata
    Show full item record
    Abstract
    The flow characteristics and acoustic resonance excitation of bare and finned cylinders of different arrangements in cross-flow were experimentally investigated. In the design phase of finned tube heat exchangers, finned cylinders are treated as bare cylinders with a diameter equivalent to their flow blockage. This technique is used in conjunction with empirical data obtained from bare cylinder measurements to estimate the vibration/acoustic excitation parameters such as the Strouhal number and critical flow velocity at which resonance is expected to materialize. However, detailed particle image velocimetry (PIV) measurements revealed that the equivalent diameter approach does not consider the intrinsic changes in the flow characteristics caused by the addition of fins. Dynamic lift force and aeroacoustic response measurements revealed that these changes affected the finned cylinder’s susceptibility to acoustic resonance excitation, different than its equivalent diameter bare cylinder. These variations were amplified when finned cylinders were placed in a tandem arrangement, causing significant changes in the impinging flow mechanism and topology. This resulted in quantitative differences in the excitation parameters between the finned and bare cylinders. These findings ultimately show the need for empirical finned cylinder data in order to reliably estimate excitation parameters in the design phase of heat exchangers. Another simplification made in the design phase of heat exchangers is that the flow is assumed to approach the tube bundle at a zero angle of attack. However, this is not the case in industrial applications. Strouhal periodicities measured using tubes instrumented with pressure taps at different locations within a square tube bundle showed strong dependence on the flow approach angle. This greatly influenced the aeroacoustic response. The viability of non-uniformly distributing the fins along their span to suppress acoustic resonance in the tandem arrangement was studied. Tandem non-uniform finned cylinders reduced the vortex shedding periodicity compared to uniform-finned cylinders with the same number of fins. This led to weaker acoustic resonance associated with the vortex shedding process. However, further work is required to optimize the distribution of the non-uniform fins to control the shear layer instability in the cylinders’ gap, which is the dominant excitation source for pre-coincidence acoustic resonance.
    URI
    https://hdl.handle.net/10155/1563
    Collections
    • Doctoral Dissertations [129]
    • Electronic Theses and Dissertations [1323]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV