• Login
    View Item 
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of an actuation system for a specialized fixture: providing two degrees of freedom for single point incremental forming

    Thumbnail
    View/Open
    Fatima_Mariam.pdf (1.712Mb)
    Date
    2013-02-01
    Author
    Fatima, Mariam
    Metadata
    Show full item record
    Abstract
    In this thesis, an actuation system is developed for a Two-Axis Gyroscopic (TAG) adapter. This adapter is a fixture with two auxiliary axes which is used for the Single Point Incremental Forming (SPIF) technique to enhance a three-axis mill to have five-axis capabilities. With five-axis mill capabilities, variable angles between line segments of the toolpath and the tool can be obtained. To achieve specialized angles between a line segment and the SPIF tool, the sheet is rotated. Inverse kinematic equations for the TAG adapter are derived to calculate the required rotations for the TAG adapter’s auxiliary axes for a line segment of a toolpath. If the next line segment requires a different orientation of the sheet, the sheet is rotated while the tool follows the rotation of the sheet to maintain its position at the connecting point of the line segments of the toolpath. Five equations of motions are derived to calculate the three translations of the mill and two rotations of the TAG adapter’s frames, during forming. A toolpath execution algorithm is implemented in MATLAB which uses the five equations of motion to execute a toolpath. The algorithm generates an array of data points that can be used by a Computer Numerically Controlled (CNC) machine to follow a desired path. A visual representation for the execution of the toolapth is implemented in MATLAB and is used to illustrate the successful completion of a toolpath. A computer controlled motor system is selected and tested in this thesis which will ultimately be integrated with a worm gear system and a CNC machine to develop a full CNC actuation system.
    URI
    https://hdl.handle.net/10155/311
    Collections
    • Electronic Theses and Dissertations [1428]
    • Master Theses & Projects [445]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV