• Login
    View Item 
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental and theoretical investigations of a new integrated solar tower system for photocatalytic hydrogen and power production

    Thumbnail
    View/Open
    Shamim_Rafay.pdf (2.069Mb)
    Date
    2013-08-01
    Author
    Shamim, Rafay Omar
    Metadata
    Show full item record
    Abstract
    Solar energy conversion via photocatalytic hydrogen production from water is an attractive route for the propagation of a hydrogen economy. Increasing the efficiency of such systems to meet the target of 10% is essential for industrial their adoption. A new hybridized system employing a photocatalytic reactor and photovoltaic cells in a cavity receiver of a solar tower system is proposed. A fully functioning lab scale system, capable of handling continuous flow processes, is built, and experiments are conducted to investigate the behaviour of this system. Production of hydrogen in the photo-reactor is observed to increase with an increase in temperature and a decrease in the pressure to below the atmospheric pressure. A maximum quantum efficiency of 1.9% is achieved with a 77% - 23% ratio of CdS – ZnS mixture under a visible light source. With power output from the light harnessed by the photovoltaic cells, the energy efficiency is increased from 0.2% to 2%, respectively. The optimal flow rate for an electrolyte concentration of 0.3 M and reactor volume of 90 ml is determined to be 50 ml/h. A thermodynamic study of a proposed large scale system is conducted. This system combines a photocatalytic process, a photovoltaic process, and a heat engine to efficiently utilize solar radiation. For a given solar tower system that requires a reflective area of 913, 289 m2, energy and exergy efficiency values up to 40% and 30% are achieved respectively. Based on archived solar data, for a given summer day the system produces 50 tonnes of hydrogen if outputs from the photovoltaic process and the heat engine are used to run an electrolyzer.
    URI
    https://hdl.handle.net/10155/323
    Collections
    • Electronic Theses and Dissertations [1323]
    • Master Theses & Projects [418]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV