• Login
    View Item 
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Achieving high efficiency thermoelectric heating and cooling with metal foam heat exchangers

    Thumbnail
    View/Open
    Clark_Gavin.pdf (10.16Mb)
    Date
    2014-04-01
    Author
    Clark, Gavin
    Metadata
    Show full item record
    Abstract
    This thesis examines the development of a high efficiency heat pump system using thermoelectric (TE) and reticulated metal foam (RMF) technologies to power a vehicle`s battery thermal management system. The focus is split into two areas: first a review of TE’s sourcing or removing heat, second an examination of compact heat exchanger (HX) design. Five TE suppliers were investigated to understand the performance and limitations of their TE modules. Testing showed the Kyrotherm product to be superior so it was used as a design basis. RMF’s are known to be an effective means to improve the performance of compact heat exchangers, thus HX’s were evaluated with RMF foams compressed to varying densities in order to understand their potential in conjunction with thermoelectric devices. Experimental results showed performance was limited due to adequate bonding, yet still on par with the highest efficiency technologies currently on the market.
    URI
    https://hdl.handle.net/10155/429
    Collections
    • Electronic Theses and Dissertations [1323]
    • Master Theses & Projects [418]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV