• Login
    View Item 
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development and optimization of a wide base FEA truck tire model for prediction of tire-road interactions

    Thumbnail
    View/Open
    Reid_Adam_C.pdf (2.227Mb)
    Date
    2015-04-01
    Author
    Reid, Adam Cameron
    Metadata
    Show full item record
    Abstract
    The most important aspect of any land-type vehicle is the efficiency in which it can translate energy from an engine, motor, or external source to the ground in an effort to move. Currently, the most efficient way to do so is through the use of pneumatic tires, which are the only link between the chassis and the ground interface. With recent advancements in the computational efficiency of modern computers, there has been a dynamic movement towards virtual modeling and experimentation of pneumatic tires. This thesis provides a detailed analysis of the selection, construction, validation, and possible applications for a Finite Element Analysis (FEA) based tire model. Through the use of an Adaptive Response Surface Method (ARSM) optimization algorithm, the newly constructed wide base FEA truck tire model underwent a parameter-tuning procedure of its materials until the behaviour of the virtual model closely matched the behaviour of the physical tire. The optimized tire model achieved a minimum of 1.78% error in the amount of rolling resistance force measured during steady-state driving conditions between the physical and simulated experiments. In addition, the static vertical deflection of the virtual tire model was able to be minimized to only 0.42% error in comparison to the physical tire. After the optimization process was completed, the FEA wide base truck tire model was used in virtual isolation experiments to populate an analytical in-plane and out-of-plane rigid ring model for use on rigid surfaces. This process has been completed in an effort to aid in the study, understanding and experimentation related to pneumatic tire dynamics.
    URI
    https://hdl.handle.net/10155/523
    Collections
    • Electronic Theses and Dissertations [1323]
    • Master Theses & Projects [418]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV