• Login
    View Item 
    •   eScholar Home
    • Faculty of Energy Systems & Nuclear Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Energy Systems & Nuclear Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Determining the effectiveness of nuclear security through computer simulation

    Thumbnail
    View/Open
    Chornoboy_Nicholas_Jordan.pdf (12.46Mb)
    Date
    2015-09-01
    Author
    Chornoboy, Nicholas Jordan
    Metadata
    Show full item record
    Abstract
    There is a growing concern from both national regulators and the International Atomic Energy Agency (IAEA) about the threat posed by attacks against iconic targets such as nuclear power plants. This has led to an increased desire to be able to objectively measure the effectiveness of the physical security of these sites to prevent theft or sabotage of the nuclear and radiological material. Currently verification of physical protection systems is done using subjective expert opinion as well as time consuming and expensive live exercises. A method that allows experts to design and test a facility in the absence of live action exercises using larger sample sizes would be highly desirable. To _ll the niche a synthetic environment model was designed around the force on force simulation program STAGE to allow the full 3-D simulation of a nuclear facility. This allows for simple user modifications to the model, allowing many scenarios to be tested. Many detectors were added to more accurately reflect the types of sensors present at a nuclear facility. Having modeled the facility and the probabilities associated with various events, Monte-Carlo methods were applied to obtain statistics on how effective the guard force was at stopping the adversarial force. This technique can be used to give experts more robust, simple to use tools for the design and verification of physical protection systems.
    URI
    https://hdl.handle.net/10155/594
    Collections
    • Electronic Theses and Dissertations [1336]
    • Master Theses & Projects [79]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV