• Login
    View Item 
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermodynamic performance evaluation and experimental study of a Marnoch Heat Engine

    Thumbnail
    View/Open
    Saneipoor_Pooya.pdf (1.487Mb)
    Date
    2009-10-01
    Author
    Saneipoor, Pooya
    Metadata
    Show full item record
    Abstract
    The Marnoch Heat Engine (MHE) is a recently patented type of new heat engine that produces electricity from lower temperature heat sources. The MHE utilizes lower temperature differences to generate electricity than any currently available conventional technologies. Heat can be recovered from a variety of sources to generate electricity, i.e., waste heat from thermal power plants, geothermal, or solar energy. This thesis examines the performance of an MHE demonstration unit, which uses air and a pneumatic piston assembly to convert mechanical flow work from pressure differences to electricity. This thesis finds that heat exchangers and the piston assembly do not need to be co-located, which allows benefits of positioning the heat exchangers in various configurations. This thesis presents a laboratory-scale, proof-of-concept device, which has been built and tested at the University of Ontario Institute of Technology, Canada. It also presents a thermodynamic analysis of the current system. Based on the MHE results, component modifications are made to improve the thermal performance and efficiency. The current configuration has an efficiency of about thirty percent of the maximum efficiency of a Carnot heat engine operating in the temperature range of 0oC to 100oC. The analysis and experimental studies allow future scale-up of the MHE into a pre-commercial facility for larger scale production of electricity from waste heat.
    URI
    https://hdl.handle.net/10155/70
    Collections
    • Electronic Theses and Dissertations [1336]
    • Master Theses & Projects [420]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV