• Login
    View Item 
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Doctoral Dissertations
    • View Item
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Wireless transmission with energy harvesting and storage

    Thumbnail
    View/Open
    Amirnavaei_Fatemeh.pdf (2.132Mb)
    Date
    2017-01-01
    Author
    Amirnavaei, Fatemeh
    Metadata
    Show full item record
    Abstract
    In this dissertation, online power control strategies are proposed for wireless communication systems equipped with energy harvesting devices and finite-capacity batteries. The methods are proposed for the unbounded fading environment. Due to the time-dependent and random behavior of the energy arrival and fading, this dissertation focuses on the stochastic optimization problem to maximize the long-term average transmission rate. Leveraging the Lyapunov technique, online algorithms are designed based on the current battery energy level and fading condition. The performance gaps to the optimal scenarios are mathematically derived. The proposed algorithms do not require any statistical information (of the energy arrival and fading) and have a novel behavior of conservative energy harvesting and opportunistic transmission. The algorithms are designed for point-to-point, and relay networks. For a point-to-point channel, a three-stage closed-form online power control policy is proposed. The proposed algorithm has an opportunistic behavior based on the energy arrival and channel fading. The proposed methodology is shown to be applicable for multiantenna beamforming scenarios including MISO, SIMO, and MIMO. The analytical performance gap to the optimal solution is presented. The simulations are compared with other online algorithms in the literature and provides a superior performance. A joint online power control strategy is designed for a two-hop amplify and forward (AF) network. Both transmitter and relay are equipped with finite capacity batteries and energy harvesters. The proposed algorithm is a joint closed-form scheme that has an unique behavior in terms of the channel fading and energy arrival of both hops. Analysis is provided to illustrate the performance gap of the proposed algorithm to the optimal solution. The simulation results show that the performance significantly higher than that of existing online algorithms.
    URI
    https://hdl.handle.net/10155/904
    Collections
    • Doctoral Dissertations [129]
    • Electronic Theses and Dissertations [1336]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV