• Login
    View Item 
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of an end-effector system for autonomous spraying applications and radiation surveying

    Thumbnail
    View/Open
    Guy_Travis.pdf (84.35Mb)
    Date
    2018-11-01
    Author
    Guy, Travis
    Metadata
    Show full item record
    Abstract
    This thesis presents the design and testing of a scale proof-of-concept prototype end-effector system for autonomous shotcrete application and radiation surveying in underground uranium mining environments. The prototype end-effector system presented consists of two functionally distinct prototype tools that achieve the independent tasks of autonomous shotcrete spray pattern control and surface radiation surveying. The work of this thesis is part of a joint project known as the Mobile Autonomous Scanning and Shotcreting (MASS) robot that is currently under development at the University of Ontario Institute of Technology in cooperation with Cameco Corporation. The MASS robot is a mobile manipulator system capable of autonomously facilitating the application of spray-able concrete (shotcrete) for excavation support and conducting remote radiological surveys of surfaces in hazardous underground mining and tunneling environments. The first prototype tool presented is a novel, robotic shotcrete spraying tool that is capable of autonomously maintaining and adjusting its circular spray pattern diameter on target surfaces in response to changes in target surface distance. Control algorithms are presented that give the robotic shotcrete spraying tool the capability to produces advanced figure eight and spiral spraying patterns for surface preparation applications that involve spot filling deep surface cracks and pockets. Physical testing of the prototype tool empirically verified its ability to maintain circular spray pattern diameters at various target distances and demonstrated the application potential of the advanced figure eight and spiral spraying patterns. The second prototype tool presented is a Geiger Muller tube based radiation detection tool that uses shielding and a single hole collimator in combination with precise robotic positioning in order to capture localized radiation measurements of surfaces within radiation rich environments. Physical testing of the prototype tool demonstrated its ability to create radiation survey profiles that distinctly characterized the radiological profile of test target surfaces embedded with various radioactive sources.
    URI
    https://hdl.handle.net/10155/996
    Collections
    • Electronic Theses and Dissertations [1369]
    • Master Theses & Projects [427]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV