• Login
    View Item 
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Yield estimation and smart harvesting for precision agriculture using deep learning

    Thumbnail
    View/Open
    Osman_Youssef.pdf (6.442Mb)
    Date
    2021-08-01
    Author
    Osman, Youssef
    Metadata
    Show full item record
    Abstract
    Precision agriculture is one of the fastest growing fields in recent years. In this thesis, we introduce a framework that provides farmers with a yield estimation from videos of crops and provides guided assistance for harvesting across the farm by utilizing geospatial information that is collected during the recording of the crops. We perform yield estimation by using a tracking model, DeepSORT, that can keep track of detected fruits for accurate counting. We modified the original DeepSORT algorithm to work efficiently on different fruits without the need for retraining. The proposed framework also provides assistance for smart harvesting through an optimized approach for container placement across the field. Performance evaluation shows that the proposed method achieves more than 90% accuracy on a real video footage of apple trees collected by a drone from an apple orchard and approximately 94% accuracy for pumpkin counting from an aerial drone footage.
    URI
    https://hdl.handle.net/10155/1329
    Collections
    • Electronic Theses and Dissertations [1336]
    • Master Theses & Projects [420]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV