• Login
    View Item 
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Doctoral Dissertations
    • View Item
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling and experimental investigation of renewable energy and ammonia-based systems for carbon capturing and useful outputs

    Thumbnail
    View/Open
    Al_Hamed_Khaled.pdf (8.043Mb)
    Date
    2022-04-01
    Author
    Al-Hamed, Khaled H. M.
    Metadata
    Show full item record
    Abstract
    This thesis work focuses on developing ammonia-based carbon capturing systems that produce useful chemical outputs to offset the energy penalty typically imposed by implementing a carbon capture retrofitting to a power plant. These systems have been investigated through models that are based on exergy and economics tools. The motivation, and the objectives of this work are mentioned. Next, a thorough literature review of the topic of ammonia-based carbon capture systems is provided here to identify the gaps in knowledge. This review concluded that there is a significant lack in experimental investigations of ammonia-based carbon capture systems that are powered by renewable energy sources. Also, the direction of future carbon capture systems is moving towards co-producing of useful and valuable chemicals to offset the costs of operating such systems. By knowing this, renewable energy and ammonia-based carbon capturing systems that produce ammonium bicarbonate are developed and described. Thermodynamic models of the present carbon capturing systems are established using the energy and exergy tools. After that, exergoeconomic models are explained for these systems. Results of the simulation work show that the use of an electrochemical ammonia synthesizer has 13.3% lower energy requirements compared to the use of a proton-exchange membrane electrolyzer and the Haber-Bosch process for ammonia synthesis. The cost of producing ammonium bicarbonate is almost 16% of the market price of this chemical commodity. This indicates that the developed carbon capturing system are financially feasible to produce monetary value.
    URI
    https://hdl.handle.net/10155/1436
    Collections
    • Doctoral Dissertations [129]
    • Electronic Theses and Dissertations [1336]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV