• Login
    View Item 
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    •   eScholar Home
    • Faculty of Engineering & Applied Science
    • Master Theses & Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simulation-based fault propagation analysis of process industry using process variable interaction analysis

    Thumbnail
    View/Open
    Hosseini_Amir_Hossein.pdf (4.239Mb)
    Date
    2013-01-01
    Author
    Hosseini, Amir Hossein
    Metadata
    Show full item record
    Abstract
    There are increasing safety concerns in chemical and petrochemical process industry. The huge explosion of Nowruz oil Field platform that happened in Persian gulf-IRAN at 1983, along with other disastrous events have effected chemical industrial renaissance and led to high demand to enhance safety. Oil and chemical Industries involve complex processes and handle hazardous materials that may potentially cause catastrophic consequences in terms of human losses, injuries, asset lost and environmental stresses. One main reason of such catastrophic events is the lack of effective control and monitoring approaches that are required to achieve successful fault diagnosis and accurate hazard identification. Currently, there are aggressive worldwide efforts to propose an effective, robust, and high accuracy fault propagation analysis and monitoring techniques to prevent undesired events at early stages prior to their occurrence. Among these requirements is the development of an intelligent and automated control and monitoring system to first diagnose faulty equipment and process variable deviations, and then identify hazards associated with faults and deviations. Research into safety and control issues become high priority in all aspects. To support these needs, predictive control and intelligent monitoring system is under study and development at the Energy Safety and Control Laboratory (ESCL) – University of Ontario Institute of Technology (UOIT). The purpose of this research is to present a real time fault propagation analysis method for chemical / petrochemical process industry through fault semantic network (FSN) using accurate process variable interactions (PV-PV interactions). The effectiveness, feasibility, and robustness of the proposed method are demonstrated on simulated data emanating from a well-known Tennessee Eastman (TE) chemical process. Unlike most existing probabilistic approaches, fault propagation analysis module classifies faults and identifies faulty equipment and deviations according to obtained data from the underlying processes. It is an expert system that identifies corresponding causes and consequences and links them together. FSN is an integrated framework that is used to link fault propagation scenarios qualitatively and quantitatively. Probability and fuzzy rules are used for reasoning causes and consequences and tuning FSN.
    URI
    https://hdl.handle.net/10155/302
    Collections
    • Electronic Theses and Dissertations [1369]
    • Master Theses & Projects [427]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV